state device

Oleksiy Boyarsky, Yevheniia Cheipesh, Oleksiy Mikulenko, Zhiyang Tan, Vadim Cheianov

Looking into the early Universe with a solid-

Quantum measurement device with quantum impurities for particle physics and physics of the early universe

How to probe the early Universe? $C\nu B$ and CMB

- **Gamov:** Early Universe is radiation dominated. $\rho_{rad}/\rho_{matter} \sim 10^{10}$
- For cosmology, any relativistic particle is "radiation" !
- In fact, early Universe has equal populations of ν/γ .
- As Universe expands, ν/γ decouple, relic backgrounds (CMB /CvB), keep a "frozen" pictures of the Universe.
- Right now, in your room, there are **411 relic photons** and **339 relic neutrinos** in every cm³!
- The " ν freezout" is much earlier than photons
- CvB: one of the few **yet untested predictions of the SM**
- **Detecting CvB is a strategic goal for fundamental** physics. [Weinberg, 1962]

How to probe the early Universe? $C\nu B$ and CMB

- **Gamov:** Early Universe is radiation dominated. $\rho_{rad}/\rho_{matter} \sim 10^{10}$
- For cosmology, any relativistic particle is "radiation" !
- In fact, early Universe has equal populations of ν/γ .
- As Universe expands, ν/γ decouple, relic backgrounds (CMB /CvB), keep a "frozen" pictures of the Universe.
- Right now, in your room, there are **411 relic photons** and **339 relic neutrinos** in every cm³!
- The " ν freezout" is much earlier than photons
- CvB: one of the few **yet untested predictions of the SM**
- **Detecting CvB is a strategic goal for fundamental** physics. [Weinberg, 1962]

Observation of the cosmological neutrinos would then provide a window into the 1st second of creation

Detecting relic neutrinos via β decay

Neutrino capture is **threshold-less** – soft relic neutrino detection [Weinberg, 1962]

 β decay

Neutrino capture

Detecting relic neutrinos via β decay

- Neutrino capture is threshold-less soft relic neutrino detection [Weinberg, 1962]
- The **2 parts of the spectru**m are separated by $2m_{\nu}$

Challenges

- High energy precision (order of $m_{\nu} \sim 10$ meV)
- Sufficient activity rate (several events per year)

 β decay

Neutrino capture

 $(A,Z) \rightarrow (A,Z+1) + e^- + \bar{\nu}_e \quad \nu_e + (A,Z) \rightarrow (A,Z+1) + e^-$

High enough activity

- Low emitter **Q-value** [Cocco et.al., 2007]
- Lifetime of emitter: small enough to have a high decay rate, but large enough not to decay instantly

High enough activity

- Low emitter **Q-value** [Cocco et.al., 2007]
- Lifetime of emitter: small enough to have a high decay rate, but large enough not to decay instantly

• High number of emitters (order of 10^{25})

In gaseous form?

31

High enough activity

- Low emitter **Q-value** [Cocco et.al., 2007]
- Lifetime of emitter: small enough to have a high decayrate, but large enough not to decay instantly

High number of emitters (order of 10^{25})

High energy precision

Low emitter **Q-value**

In gaseous form?

High enough activity

- Low emitter **Q-value** [Cocco et.al., 2007]
- Lifetime of emitter: small enough to have a high decayrate, but large enough not to decay instantly

- Low emitter **Q-value**
- Low emitter densities electron free path bigger than the system size

Cross section

High number of emitters (order of 10^{25})

High energy precision

 $\lambda = \left(\frac{1}{R_{atom}^2} \frac{N}{L^3} \right)^{-1} > L$

 $L \sim 1 \mathrm{km}$

Very naive! In reality much bigger

High enough activity

- Low emitter **Q-value** [Cocco et.al., 2007]
- Lifetime of emitter: small enough to have a high decayrate, but large enough not to decay instantly

High number of emitters (order of 10^{25})

High energy precision

Low emitter **Q-value**

Low emitter densities electron free path bigger than the system size

Low **volume**

 $\Delta E \sim \frac{V_{source}}{V}$

High enough activity

- Low emitter **Q-value** [Cocco et.al., 2007]
- Lifetime of emitter: small enough to have a high decayrate, but large enough not to decay instantly

High number of emitters (order of 10^{25})

High energy precision

Low emitter **Q-value**

Low emitter densities electron free path bigger than the system size

Low volume

High enough activity

- Low emitter **Q-value** [Cocco et.al., 2007]
- Lifetime of emitter: small enough to have a high decay rate, but large enough not to decay instantly
- High number of emitters (order of 10^{25})

High energy precision

Low emitter **Q-value**

Low emitter densities electron free path bigger than the system size

Low volume

- Radioactive material in gaseous Ο form does not suit
- Need in the **solid-state based** Ο experiment

PTOLEMY project State of the art

- **Tritium** as a β -decay emitter.
- Tritium is deposed on graphene sheets
- \approx 4 CvB **events** per year.
- Outstanding energy resolution of the apparatus ≈ 10 meV.

P on-**T** ecorvo **O** bservatory for **L** ight, E arly-universe, **M** assive-neutrino **Y** ield

Jungle of many-body and chemical effects

We need energy resolution $> m_{\nu} \sim 10 \text{ meV}$

Jungle of many-body and chemical effects

The width of the peak that serves as a signature of $C\nu B$ is defined by

- The energy **resolution of the apparatus**
- Intrinsic physical effects

The uncertainty in energy of the emitted electron ΔE

- Is of the order of $0.5~{\rm eV}$
- Is 2 orders of magnitude greater than the resolution needed
- Weakly depends on the potential stiffness.
- Strongly depends on the radioactive nucleus.

The uncertainty in energy of the emitted electron ΔE

- Is of the order of 0.5 eV
- Is 2 orders of magnitude greater than the resolution needed
- Weakly depends on the potential stiffness.
- Strongly depends on the radioactive nucleus.

$$\frac{\Delta E}{\sqrt{\hbar m_e}} \approx \underbrace{\varkappa^{1/4}}_{\text{potential}} \underbrace{\sqrt{\frac{Q}{m_{\text{nucl}}^{3/2}}}}_{\text{nucleus}}$$

- By making the bonding potential softer one reduces ΔE
- In order to reduce ΔE by an order, one has to make the bonding potential 4 orders of magnitude softer

The uncertainty in energy of the emitted electron ΔE

- Is of the order of 0.5 eV
- Is 2 orders of magnitude greater than the resolution needed
- Weakly depends on the potential stiffness.
- Strongly depends on the radioactive nucleus.

$$\frac{\Delta E}{\sqrt{\hbar m_e}} \approx \underbrace{\varkappa^{1/4}}_{\text{potential}} \underbrace{\sqrt{\frac{Q}{m_{\text{nucl}}^{3/2}}}}_{\text{nucleus}}$$

- By making the bonding potential softer one reduces ΔE
- In order to reduce ΔE by an order, one has to make the bonding potential **4 orders of magnitude softer**

Binding Tritium inside array of carbon nanotubes [Apponi et.] al., Phys. Rev. D, 2022]

Tritium will form molecules, in 1D the rate defined by

$$\frac{d\lambda}{dt} = -K_{1D}\lambda^3$$

• For experiment time $\Delta t \sim 100$ days at T = 0.1K it gives a surface density five orders of magnitude lower then fully loaded graphene

The uncertainty in energy of the emitted electron ΔE

- Is of the order of 0.5 eV
- Is 2 orders of magnitude greater than the resolution needed
- Weakly depends on the potential stiffness.
- Strongly depends on the radioactive nucleus.
- What if we make the bonding potential harder, not softer

The uncertainty in energy of the emitted electron ΔE

- Is of the order of 0.5 eV
- Is 2 orders of magnitude greater than the resolution needed
- Weakly depends on the potential stiffness.
- Strongly depends on the radioactive nucleus.
- What if we make the bonding potential harder, not softer
- Heavy bounded nucleus is sitting in the harmonic potential, therefore its low energy excitation spectrum is discrete
- In such an atom, the end of the total β decay spectrum (including chemical interaction of the atom with the substrate) will be **discrete**

[Apponi et. al., Phys. Rev. D, 2022]

- The last discrete level that corresponds to maximal electron energy corresponds to the process where atom stays in its ground state (**recoil-less** β **decay**)
- Such a level is **not smeared** by the background
- the matrix element of it \mathcal{M} is suppressed as compared to the one of the unbounded ${}^{3}H(\mathcal{M}_{0})$ as

$$\mathcal{M} = \mathcal{M}_0 \exp\left(-\frac{k_\beta^2}{4\sqrt{m_{nucl}\kappa}}\right)$$

- Where k_{β} is the momentum of emitted electron
- For ${}^{3}H$ adsorbed on graphene one has $\mathcal{M} \approx 10^{-4} \mathcal{M}_{0}$
- For other types of binding κ can be bigger, but not sufficiently.

The uncertainty in energy of the emitted electron ΔE

- Is of the order of 0.5 eV
- Is 2 orders of magnitude greater than the resolution needed
- Weakly depends on the potential stiffness.
- Strongly depends on the radioactive nucleus.

[Cheipesh et. al., arXiv:2111.09292, 2021] [Mikulenko et. al., arXiv:2111.09292, 2021]

Choosing heavy nuclei

The candidate should satisfy following conditions:

- Minimize combination $\gamma^4 = Q^2 m_{el} / c^2 m_{nucl}^3$
- Have sufficient neutrino capture rate $(\sigma v)_{\nu} \gtrsim 10^{-3} \times (\sigma v)_{\nu}^{^{3}H}$
- Have meaningfully big lifetime $\tau \gtrsim 1$ yr
- The daughter nucleus should either be stable (with regard to both β and α decays) or have Q-value smaller then the one of a parent nucleus.
- The simple estimate of the capture cross section can be made $(\sigma v)_{\rho st} = (\tau Q^3)^{-1}$
- For ${}^{3}H$ and ${}^{63}Ni$ that undergo allowed β decay this estimate is exact
- ¹⁷¹*Tm* undergoes so-called **1st non-unique forbidden** decay

[Mikulenko et. al., arXiv:2111.09292, 2021] [Cheipesh et.al., Scipost, 2023]

Parent	$ au_{1/2}$, [yr]	Daughter	<i>Q</i> ,[keV]	$(\sigma v)_{\rm est}/(\sigma v)_{\rm 3_{\rm H}} [10^{-3}]$	$\gamma/\gamma_{3_{\mathrm{H}}}$
¹⁷¹ Tm	1.92	¹⁷¹ Yb	96.5	45.0	0.110
⁶³ Ni	101.	⁶³ Cu	66.9	2.6	0.193

Table 1: List of possible candidates for suitable β -emitter and their characteristics. The capture rates are calculated using the estimate $(\sigma v)_{est} = (\tau Q^3)^{-1}$.

³*H*:
$$N \approx 2 \cdot 10^{24}$$

¹⁷¹*Tm*: $N \approx 8 \cdot 10^{25}$
⁶³*Ni*: $N \approx 1.1 \cdot 10^{27}$

Number of emitters needed for the single event exposure per year using the estimate $(\sigma v)_{est} = (\tau Q^3)^{-1}$

Neutrino capture rate for ^{171}Tm

- The ^{171}Tm neutrino capture cross section can be estimated using the **ξ-approximation** [Mikulenko et. al. 2021, Brdar et.al., 2022]. It calculates electromagnetic corrections to the spectrum but treats decay as unique.
- This gives $\Gamma_{capture}^{171Tm} = 3 \cdot 10^{-2} \Gamma_{capture}^{3H}$ consistent with the crude estimate $(\sigma v)_{\rho st} = (\tau Q^3)^{-1}$ up to a factor of two [Mikulenko et. al. 2021].
- In order to be sure, one needs to measure the end of the β decay spectrum.
- A **precise measurement** of the end point of β spectrum has been performed, using a double focalizing magnetic spectrometer that focuses electrons of specific energy into the detector [Juget et. al., to appear].
- The energy measurement calibration is done using a ^{133}Ba source. The achieved energy resolution of the detector is 4 - 5 keV in the energy range of interest.
- **Detector efficiency** is computed using a ${}^{60}Co$ source by comparison with the spectrum computed in BetaShape.

[Mikulenko et. al., arXiv:2111.09292, 2021] [Brdar et.al., Phys. Rev. C, 2023] [Juget et. al., to appear]

Sigma (keV) 9 8 0.2770 ± 0.0504 4.1775 ± 0.1390 2.2238e-005 ± 8.1321e-005 Energy resolution (sigma) measured with ^{133}Ba conversion electrons 0.008 0.006 0.004 0.002 200 100 50 150

> Detector efficiency is computed using a ^{60}Co source by comparison with the spectrum computed in BetaShape.

Neutrino capture rate for ^{171}Tm

- **Pure** ${}^{171}Tm$ source with activity 50 kBq was prepared. The spectrum shape is measured from 33 keV to 102 keV with steps of 0.25 keV, and 72 minutes duration.
- The spectrum endpoint is $E_{max} = 97.62(39)$ keV, compatible with the two last measurements [Smith et.al., 1957, Gregers Hansen, 1964].

[Juget et. al., to appear] [Smith et.al., 1957] [Gregers Hansen, 1964]

Measured spectrum of ^{171}Tm

Neutrino capture rate for ^{171}Tm

- **Pure** ${}^{171}Tm$ source with activity 50 kBq was prepared. The spectrum shape is measured from 33 keV to 102 keV with steps of 0.25 keV, and 72 minutes duration.
- The spectrum endpoint is $E_{max} = 97.62(39)$ keV, compatible with the two last measurements [Smith et.al., 1957, Gregers Hansen, 1964].
- The deviations from the allowed spectrum do not exceed ~ 10% in the whole energy range up to the endpoint
- To estimate deviations from allowed spectrum, Kurie plot with a fit from 33 keV to 95 keV and residuals of the Kurie plot were calculated. The uncertainty corresponds to the fit only.
- Combined uncertainty is ≈ 0.4 keV.
- The results agree with the ones obtained using ξ -approximation at 1% level

[Juget et. al., to appear] [Smith et.al., 1957] [Gregers Hansen, 1964]

Jungle of many-body and chemical effects

