The Elusive Universe at the Precision Frontiers

The Elusive Universe Underlying **Theory Dark Matter Gravity** The rest of the feeble interactions **Standard Model** Neutrino **Particles**

Explore the Elusive Universe

Most of the universe is not fully understood We won't stop until we understand all of it

Strong Probes of the Elusive Universe

Coupling strength

...

Vu Doi Too

Novel Directions at the Precision Frontier

New technologies with many **practical** applications. **Keep us safe & punctual!**

- 1. The precise tracking of asteroids with space missions, e.g., OSIRIS-REx tracking the dangerous asteroid Bennu
 - ~ 1 meter precision for objects in 1 AU ($\sim 10^{11}$ meter-distant) distance
- Tsai et al, arXiv:2210.03749 for dark matter (DM) & cosmic neutrinos
- 2. The precise time keeping (e.g., NASA Deep Space Atomic Clock)
- lose 1 second every 10 million years
 Tsai, Eby, Safronova, Nature Astronomy (2022)
 for ultralight dark matter (ULDM) searches

Theme of this talk:

Bridging High Energy Theory, Precision Astronomy, & Space Quantum Technology!

Outline

1. Precision Astrometry:

Dark Matter & Cosmic Neutrinos

2. Quantum Probe for Ultralight Dark Matter

(Backup Slides)

Vera Rubin Carnegie Institution for Science

Albert Einstein Mount Wilson Observatory, California

How do we know dark matter exist?

Size

Cosmic Microwave Background

Large Scale Structure

Bullet Cluster Merger

DM Gravitational Interactions

Credit: NASA/CXC/M. Weiss (Gpc

Galactic Rotation Curves

Credit: De Leo-Winkler(10 kpc)

Modified from a slide from Tien-Tien Yu (U of Oregon)

DM Gravity in Smaller Scale?

Size

DM Gravitational Interactions

Precision Astrometry

Tsai *et al.*, arXiv:2210.03749 (under review by Nature Astronomy)

A question we asked

Stars

Solar System Objects

Yu-Dai Tsai (UC Irvine)

 $\rho_{\rm DM}$ for galaxies

Vera Rubin

From: https://en.wikipedia.org/wiki/File:Galaxy_rotation_under_the_influence_of_dark_matter.og under the Creative Commons attribution-Share Alike 3.0 Unported license.

 $\rho_{\rm DM}(r)$ for solar system

Wave-like DM

A question we asked

 $\rho_{\rm DM}$ for galaxies

Stars

Solar System Objects

 $ho_{\mathrm{DM}}(r)$ for solar system

$$ho_{
m DM} \ll rac{m_\odot}{({
m AU})^3}$$

$$\bar{\rho}_{DM} = 0.3 \text{ GeV/cm}^3, \ \bar{\rho}_{DM} \sim 10^{-18} \frac{m_{\odot}}{(\text{AU})^3}$$

Velocity measurements ineffective

We need to go beyond it!

Beyond Velocity: Perihelion Precession

Newton:
$$\mathbf{F}(\mathbf{r}) = -G \frac{m_{\odot} m_*}{r^2} \mathbf{\hat{r}}$$
, no precession.

- a is the semi-major axis
- e is the eccentricity, quantify how non-spherical the orbit is.

- "Anomalous" precession of Mercury's perihelion
- One of the first ways to confirm **General Relativity**

Our Project: Local DM or Cosmic Neutrinos Induce Precessions

Dark Matter Gravity:
$$\mathbf{F}(\mathbf{r}) = \frac{2\pi}{3} Gm \rho_0 \left(\frac{2r_0^3}{r^2} - 2r\right) \mathbf{\hat{r}}$$

$$\simeq -\frac{4\pi}{3} Gm \rho_0 r \mathbf{\hat{r}} + \frac{4\pi}{3} Gm \rho_0 \frac{r_0^3}{r^2} \mathbf{\hat{r}}.$$
 m is the mass of the object

Induced Precession: $\Delta \varphi \simeq -4\pi^2 \rho_0 a^3 (1-e^2)^{1/2}/M_{\odot}$

Asteroids & Other Solar System Objects

Radar (Goldstone)

Optical (Pan-STARRS, LSST)

Space Missions

Use millions of solar-system objects to study many fundamental physics topics. Need theory & data expertise to realize the full potential of the dataset.

Asteroids & Planetary Defense

- Tracking asteroids is important to our safety
- We have space missions, like OSIRIS-REx, to track dangerous asteroids like Bennu, return sample.
- NASA Plan: OSIRIS-REx will track Apophis and become OSIRIS-APEX

Robust Analysis: High-Fidelity Force Model

NASA JPL & OSIRIS-REx Expert Davide Farnocchia

JPL Planetary Ephemerides DE441

Relativistic **Effects**

Oblateness

The Yarkovsky effect based on in-situ characterization, solar radiation pressure, Poynting-Robertson drag, etc.

Adding Dark Matter to the Force Model

Force terms considered by Davide Farnocchia

$$\begin{split} \ddot{\mathbf{r}}_{i} &= \sum_{j \neq i} \frac{\mu_{j} \left(\mathbf{r}_{j} - \mathbf{r}_{i} \right)}{r_{ij}^{3}} \left\{ 1 - \frac{2 \left(\beta + \gamma \right)}{c^{2}} \sum_{l \neq i} \frac{\mu_{l}}{r_{il}} - \frac{2 \beta - 1}{c^{2}} \sum_{k \neq j} \frac{\mu_{k}}{r_{jk}} \right. \\ &+ \gamma \left(\frac{\dot{s}_{i}}{c} \right)^{2} + \left(1 + \gamma \right) \left(\frac{\dot{s}_{j}}{c} \right)^{2} - \frac{2 \left(1 + \gamma \right)}{c^{2}} \dot{\mathbf{r}}_{i} \cdot \dot{\mathbf{r}}_{j} \\ &- \frac{3}{2 c^{2}} \left[\frac{\left(\mathbf{r}_{i} - \mathbf{r}_{j} \right) \cdot \dot{\mathbf{r}}_{j}}{r_{ij}} \right]^{2} + \frac{1}{2 c^{2}} \left(\mathbf{r}_{j} - \mathbf{r}_{i} \right) \cdot \ddot{\mathbf{r}}_{j} \right\} \\ &+ \frac{1}{c^{2}} \sum_{j \neq i} \frac{\mu_{j}}{r_{ij}^{3}} \left\{ \left[\mathbf{r}_{i} - \mathbf{r}_{j} \right] \cdot \left[\left(2 + 2 \gamma \right) \dot{\mathbf{r}}_{i} - \left(1 + 2 \gamma \right) \dot{\mathbf{r}}_{j} \right] \right\} \left(\dot{\mathbf{r}}_{i} - \dot{\mathbf{r}}_{j} \right) \\ &+ \frac{3 + 4 \gamma}{2 c^{2}} \sum_{j \neq i} \frac{\mu_{j} \ddot{\mathbf{r}}_{j}}{r_{ij}} \end{split}$$

The dark matter contribution

$$egin{align} F(r) &= rac{2\pi}{3} Gm
ho_0 \left(rac{2r_0^3}{r^2} - 2r
ight) \mathbf{\hat{r}} \ &\simeq -rac{4\pi}{3} Gm
ho_0 r \mathbf{\hat{r}} \ \end{split}$$

List of uncertainties considered:

1) Errors in planetary trajectories and masses; 2) Errors in perturber masses & trajectories; 3) Higher order relativistic terms; 4) Higher order gravity terms; 5) Simplified assumptions in nongravitational force model (non-spherical effects, Yarkovsky, solar torque, physical parameter evolution, etc.); 7) Solar mass loss and solar wind; 8) Meteoroid impacts, Spacecraft interaction

Planetary constraints, see Pitjev, Pitjeva, Astronomy Letters (2013)

New Model-Independent Constraints on DM Profile

- ρ_{max}(r) is the derived upper bound on DM though only gravitational interaction
- $\bar{\rho}_{DM}$ = 0.3 GeV/cm³
- NEO: Near-Earth Objects

The horizontal lines are NOT error bars, but the coverage of the constraints.

The Implications of Our Constraints

1. Strong constraints on DM models predict local over-densities in solar system, including solar halo, axion mini-cluster, solar basin, etc.

Implications of the Constraints: DM-SM Interaction

2. Strong constraints on **DM-SM long-range interaction**, only \sim **4-6 order stronger than gravity: very strong bound**

$$\mathbf{F}_{\mathrm{DM-SM}}(\mathbf{r}) \simeq -\tilde{\alpha}_D \frac{4\pi}{3} G m \rho_0' r \mathbf{\hat{r}}.$$
 $ho_{\mathrm{DM}} \lesssim \bar{\rho}_{\mathrm{DM}} \left(6 \times 10^6 / \tilde{\alpha}_D\right), \, \mathrm{Bennu}.$
 $ho_{\mathrm{DM}} \lesssim \bar{\rho}_{\mathrm{DM}} \left(3 \times 10^4 / \tilde{\alpha}_D\right), \, \mathrm{Saturn}.$

Constraints on particle physics and cosmology motivated models, **Tsai** *et al*, in progress

Implications of the Constraints: CvB

3. Close-to-leading constraints on **cosmic neutrino background (CvB)** over-density profile.

$$\eta \equiv n_{\nu}/\bar{n}_{\nu} \lesssim 3.4 \times 10^{11} (0.1 \text{ eV}/m_{\nu}), 95\% \text{ CL [Planets]}$$

 $\eta \leq 1.1 \times 10^{11} (95\% \text{ CL})$, from $\nu_e + {}^3H \rightarrow {}^3H_e^+ + e^-$ KATRIN Col., PRL (2022), the leading lab constraint.

Dedicated search for CvB see, e.g., the PTOLEMY proposal, PTOLEMY collaboration, <u>arXiv:1808.01892</u> (2022)

Other CvB phenomenology, see, e.g., Brdar et al, PLB (2022)

Summary of High-Energy Theory Targets

• GR Test:
$$\Delta \varphi = \frac{6\pi G M_{\odot}}{a(1-e^2)c^2} \left[\frac{4-\beta}{3} \right] \propto a^{-1}$$

• Fifth Forces:
$$|\Delta \varphi_{\phi,A'}| \simeq a(1-e) \left[\left(\frac{mc}{\hbar} \right)^2 \frac{g^2}{4\pi G m_p^2} \frac{2\pi}{1 + \frac{g^2}{4\pi G m_p^2}} \right] \propto a$$
 (light mediator limit $m \ll \hbar/ac$), see Tsai et al arXiv:2107.04038

- Dark Matter: $\Delta \varphi \simeq -4\pi^2 \rho_0 a^3 (1 e^2)^{1/2} / M_{\odot} \propto a^3$
- HEP theory inputs are crucial
- Calling for modern data-analysis approaches

Millions of Objects of Interest

Tsai, Wu, Vagnozzi, Visinelli, 2107.04038

Minor Planets	a [au]	\sim Numbers
Near-Earth Object (NEO)	< 1.3*	> 25000
Main-Belt Asteroid (M)	$\sim 2-3$	~ 1 million
Hilda (H)	3.7 - 4.2	> 4000
Jupiter Trojan (JT)	5.2	> 9800
Trans-Neptunian Object (TNO)	> 30	2700
Extreme TNO (ETNO)	> 150	12
*NEOs are defined as having perihelia $a(1 - e) < 1.3$ au.		

Roadmap to Observe Local Dark Matter through Gravity

The "Asteroid Network" project for fundamental physics,

- 1. Increase precision (e.g., with quantum clocks onboard of space missions)
- 2. Consider more asteroids & minor planets (near Sun & far from Sun)

Summary & Results & Plans

Precision Astrometry

Precision Frontier:

HEP Theories &

Space Missions

New Precision Probes

Plan:

Study more **HEP Theory & cosmology** topics

Collaborate with particle theorists & cosmologists, space scientists, astronomers, machine-Learners, and quantum experts

Improved understanding of

- Dark Matter Local
 Distribution
 Tsai et al., arXiv:2210.03749
- 2. Cosmic Neutrino Local Distribution

 Tsai et al., arXiv:2210.03749
- 3. Ultralight Dark Matter
 Tsai+, Nature Astronomy (2022)
- 4. Fifth Force Tsai et al., arXiv:2107.04038
- Gravity Theories;Many Other Topics

Quantum Sensors

Future Observations

Rubin Observatory/LSST

Credit: LSST/NSF/AURA
LSST: Large Synoptic Survey Telescope

5 times more asteroids

Space Missions

Explore Jupiter's Trojan asteroids

James Webb Space Telescope (JWST)

Cosmic Frontier: HEP Theories & New Data

Plan:

- Study more HEP Theory & cosmology topics
- Conduct robust analysis;
 with data-intense techniques

Improved understanding of

 Dark Matter Local Distribution

Tsai et al., arXiv:2210.03749

Cosmic Neutrino Local Distribution

Tsai et al., arXiv:2210.03749

- Ultralight Dark Matter Tsai+, Nature Astronomy (2022)
- Fifth Force
 Tsai et al., arXiv:2107.04038
- Gravity Theories;Many Other Topics

My Understanding Before Our Projects

New Precision Lab for HEP Theories Cosmology and Astrophysics

The Team: SpaceQ & Asteroid Network

Defenders of the Earth Davide Farnocchia (NASA JPL) Marco Micheli (ESA)

AMO & Quantum Expert Marianna Safronova (UDel & NIST)

*postdocs **student

Cosmologists

Sunny Vagnozzi (Cambridge/Trento) Luca Visinelli (TDLI) Jason Arakawa* (UDel) Josh Eby* (IPMU)

Astronomers

AI & Machine Learners (ATLAS@LHC) Aishik Ghosh*, Daniel Whiteson (UCI)

Big thanks to the team!

- SpaceQ was featured by DOE Office of Science Newsletter, NIST Cal Presidential Office, U Chicago News, VICE Magazine, etc.
- Also, you can find my **outreach interview** about **fifth-forces** [here]

Johanna Paine** (UCI)

Paul Robertson (UCI)

Frederick Reines
Nobel Prize Laureate. Professor at UC Irvine
Utilized a **nuclear reactor to study free neutrinos**

The Elusive Universe is at the horizon I presented a practical roadmap to explore it wide & deep Thank you for listening!

The relevant literatures are growing fast, please let us know if we forgot to include your important works.

Outline

1. Precision Astrometry:

Dark Matter, Cosmic Neutrinos, Fifth Forces & GR

2. Quantum Probe for Ultralight Dark Matter

NASA DSAC & Parker Solar Probe

- NASA Deep Space Atomic Clock (DSAC) loses one second every 10 million years
- The clock has operated for more than 12 months in space; long-term fractional frequency stability of 3×10^{-15} , Burt et al., Nature (2021)
- Exceeds previous space clock performance by up to an order of magnitude
- Clock-Comparison for CPT & Lorentz Violation, Kostelecký, Vargas, PRD '18

Size of PSP $\sim 1.0 \times 3.0 \times 2.3 \text{ m}$ (685 kg \rightarrow 555 kg)

- Parker Solar Probe (PSP)
- see, e.g., "Probing the energetic particle environment near the Sun," McComas et al, Nature (2019)

My Question: Why don't we put a quantum clocks on a solar probe? What fundamental physics can we study?

SpaceQ Mission Concept

 $\phi(t,ec{x}) = \phi_0 \cos(m_\phi t - ec{k}_\phi \cdot ec{x} + \ldots).$ (Non-relativistic solution) $\omega \simeq m_\phi.$

- Oscillation frequency ~ dark matter mass
 - Propose a two-clock comparison experiment onboard a future Solar Probe

Projected Sensitivity for ULDM

Tsai, Eby, Safronova, Nature Astronomy (2022)

0.1 AU: motivated by the **Parker Solar Probe**

Marianna Safronova (UDel & NIST)

 $\mathcal{L} \supset g_e \phi \bar{e}e$ (+ photon & gluon couplings)

Motivate
Novel Clocks!

$$\mathcal{L} = \kappa \phi(d_{m_e} m_e \bar{e}e)$$

$$\kappa = \sqrt{4\pi/M_P}$$
 with $M_P = 1.2 \times 10^{19}$ GeV. $m_e = 0.511$ MeV is just a normalization.

Naturalness condition:

$$\frac{g_e^2\Lambda^2}{(4\pi)^2}\lesssim m_\phi^2, \ \ \Lambda=4\pi v_{EW}\simeq 3 \ {
m TeV}.$$

Spatial Variation of Fundamental Constants

Tsai, Eby, Safronova, Nature Astronomy (2022)

fine-structure constant quark and QCD parameters
$$k_X \equiv c^2 \frac{\delta X}{X \, \delta U}. \quad X = lpha, \, \mu, \, {
m or} \, m_q/\Lambda_{QCD}.$$
 electron to proton mass ratio

 δU : change in gravitational potential.

$$\delta U/c^2 \simeq 3.3 imes 10^{-10},~$$
 Earth variation, Lange et al, PRL (2021)

$$\delta U/c^2 \sim 9 imes 10^{-8}, \;\;$$
 from Earth to Solar probe at 0.1 AU.

• Achieve constraints on k_X that are a factor of \sim 300 stronger