Bump-hunting in the diffuse flux of high-energy cosmic neutrinos Damiano F. G. Fiorillo

based on arXiv:2301.00024, with Mauricio Bustamante

CERN Neutrino Platform Pheno Week 2023

VILLUM FUNDEN

Multimessenger astrophysics

point back to sources

Damiano Fiorillo

Astrophysical sources of cosmic-rays

Damiano Fiorillo

Cosmic neutrinos

 Point source discovery (NGC 1068)

 Transients discovery (TXS 0506+056, AT2019dsg, ...)

Cosmic neutrinos

 Point source discovery (NGC 1068)

Timing

 Transients discovery (TXS 0506+056, AT2019dsg, ...)

Diffuse neutrino flux

 Consistent with power-law spectrum $\propto E_{\nu}^{-2.87}$

 Uncertainties too large to discriminate models

IceCube Collaboration,

Neutrinos as astrophysical messengers

Two production mechanisms for neutrinos

Neutrinos as astrophysical messengers

Two production mechanisms for neutrinos

Proton target (interstellar or intergalactic gas,...)

pp

 Spectral shape depends only on cosmic-ray spectrum

• Typically $E^{-\gamma}$ ($\gamma > 2$?) up to a maximum energy

Neutrinos as astrophysical messengers

Two production mechanisms for neutrinos

> Proton target (interstellar or intergalactic gas,...)

 Spectral shape depends only on cosmic-ray spectrum

• Typically $E^{-\gamma}$ ($\gamma > 2$?) up to a maximum energy

Damiano Fiorillo

Photon target (synchrotron photons, infrared light, ...)

 Spectral shape depends both on cosmic-ray spectrum and photon spectrum

• Typically $E^{-\gamma}$ ($\gamma < 2$?) up to a maximum energy

Comparison with data

Damiano Fiorillo

Need for a flexible parameterization to compare with data

 Power-law with cutoff (ex. pp with soft CR spectrum)

Bump (ex. *pγ* with scattering efficiency growing with energy)

Present-day data

Damiano Fiorillo

No statistical preference — low statistics!

How much exposure it takes to clearly distinguish a bump? ♦ If we keep seeing a power law, what do we learn?

Damiano Fiorillo

Future data

Damiano Fiorillo

Neutrino energy, E_{ν} [GeV]

Damiano Fiorillo

Neutrino energy, E_{ν} [GeV]

Damiano Fiorillo

Neutrino energy, E_{ν} [GeV]

Pure power-law scenario

Damiano Fiorillo

Data might still be consistent with a power-law!

 Bounds on bump contribution to the diffuse flux

11

Conclusions

In 10 years high-energy neutrino statistics larger by an order of magnitude

Tiny spectral features can be probed

Model discrimination between 1 vs 2 populations

Backup slides

✦ Tracks allow precise angular reconstruction

✦ Cascades allow precise energy reconstruction

Photohadronic neutrino production

Bump neutrino spectrum

 10^{7}

Damiano Fiorillo

◆ *pp* sources can have bump spectrum if proton spectrum is hard ($\gamma < 2$)

pγ sources typically have bump spectrum — diffuse can be more complicated

Theoretical motivation

Source populations

Damiano Fiorillo

Impact of bump width