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Plan

• Neutrino sources and detectors
• Long baseline neutrino experiments

• Deep Underground Neutrino Experiment
• Near and Far Detectors

• Neutrino oscillations in the standard three flavour paradigm and beyond
• Non-standard Interactions
• Sterile neutrinos

• Other possibilities



Neutrino sources

Credit : Sabila Parveen, adapted from 1903.04333 [astro-ph.HE], 1911.05088, PRD 2020
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DEEP UNDERGROUND NEUTRINO EXPERIMENT
CDR, Vol 1, 1601.05471 [physics.ins-det], CDR, Vol 2, 1512.06148 [physics.ins-det], TDR vol 1, JINST 15 (2020) 08, T08008, TDR 

Vol 2, 2002.03005 [hep-ex]
• Beam - LBNF (FNAL), 1.2-2.4MW, Baseline 1300 km
• Far detector (LArTPC, ~ 40 kt fiducial mass) located on-axis such that observed flux is a broad spectrum (0.5-5 

GeV) 
• DUNE has a broad program of neutrino oscillation physics, constrain the standard three neutrino paradigm 

• Beam covers first and second oscillation maxima
• Alternative beam tunes possible

2.2 Neutrino Three-Flavor Mixing, CP Violation and the Mass Hierarchy 27

of producing and detecting ‹· ’s, the oscillation modes ‹µ,e æ ‹e,µ provide the most promising
experimental signatures of leptonic CP violation.

For ‹µ,e æ ‹e,µ oscillations that occur as the neutrinos propagate through matter, as in terrestrial
long-baseline experiments, the coherent forward scattering of ‹e’s on electrons in matter modifies
the energy and path-length dependence of the vacuum oscillation probability in a way that de-
pends on the magnitude and sign of �m2

32
. This is the Mikheyev-Smirnov-Wolfenstein (MSW)

effect [71,72] that has already been observed in solar-neutrino oscillation (disappearance) experi-
ments [73,74,75,76]. The oscillation probability of ‹µ,e æ ‹e,µ through matter, in a constant density
approximation, keeping terms up to second order in – © |�m2

21
|/|�m2

31
| and sin

2 ◊13, is [77,55]:
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In the above, the CP phase ”CP appears (via Jcp) in the expressions for Psin ” (the CP-odd term)
which switches sign in going from ‹µ æ ‹e to the ‹µ æ ‹e channel, and Pcos ” (the CP-conserving
term) which does not. The matter effect also introduces a neutrino-antineutrino asymmetry, the
origin of which is simply the presence of electrons and absence of positrons in the Earth.

Recall that in Equation 2.2, the CP phase appears in the PMNS matrix through the mixing of
the ‹1 and ‹3 mass states. The physical characteristics of an appearance experiment are therefore
determined by the baseline and neutrino energy at which the mixing between the ‹1 and ‹3 states
is maximal, as follows:

L(km)

E‹(GeV)
= (2n ≠ 1)

fi

2

1

1.27 ◊ �m2
31(eV

2)
(2.17)

¥ (2n ≠ 1) ◊ 510 km/GeV (2.18)

where n = 1, 2, 3... denotes the oscillation nodes at which the appearance probability is maximal.

The dependences on E‹ of the oscillation probability for the LBNE baseline of L =1,300 km are
plotted on the right in Figures 2.3 and 2.4. The colored curves demonstrate the variation in the ‹e

appearance probability as a function of E‹ , for three different values of ”CP.

The Long-Baseline Neutrino Experiment

FAR DETECTOR

NEAR 
DETECTOR

⌫µ

<latexit sha1_base64="S/EVNxgLV5l2yQMoOFjxi954Xj8=">AAAB7nicdVDJSgNBEK1xjXGLevTSGARPw4yJS25BLx4jmAUyQ+jpdJImPT1DL0IY8hFePCji1e/x5t/Yk0RQ0QcFj/eqqKoXpZwp7XkfztLyyuraemGjuLm1vbNb2ttvqcRIQpsk4YnsRFhRzgRtaqY57aSS4jjitB2Nr3O/fU+lYom405OUhjEeCjZgBGsrtQNhekFseqWy59ZynKM5qdQs8aq+V6kg3/VmKMMCjV7pPegnxMRUaMKxUl3fS3WYYakZ4XRaDIyiKSZjPKRdSwWOqQqz2blTdGyVPhok0pbQaKZ+n8hwrNQkjmxnjPVI/fZy8S+va/TgMsyYSI2mgswXDQxHOkH576jPJCWaTyzBRDJ7KyIjLDHRNqGiDeHrU/Q/aZ26ftU9u62W61eLOApwCEdwAj5cQB1uoAFNIDCGB3iCZyd1Hp0X53XeuuQsZg7gB5y3Tw87kBI=</latexit>

⌫e, ⌫µ

<latexit sha1_base64="Du6EcRW7C6r5t0uMNdsKAYh2hFM=">AAAB9XicdVDLSgMxFM3UV62vqks3wSK4kGHG1kd3RTcuK9gHdMaSSdM2NMkMeShl6H+4caGIW//FnX9jpq2gogcu93DOveTmRAmjSnveh5NbWFxaXsmvFtbWNza3its7TRUbiUkDxyyW7QgpwqggDU01I+1EEsQjRlrR6DLzW3dEKhqLGz1OSMjRQNA+xUhb6TYQpkuOYNYCbrrFkudWM5zCGSlXLfEqvlcuQ9/1piiBOerd4nvQi7HhRGjMkFId30t0mCKpKWZkUgiMIgnCIzQgHUsF4kSF6fTqCTywSg/2Y2lLaDhVv2+kiCs15pGd5EgP1W8vE//yOkb3z8OUisRoIvDsob5hUMcwiwD2qCRYs7ElCEtqb4V4iCTC2gZVsCF8/RT+T5rHrl9xT64rpdrFPI482AP74BD44AzUwBWogwbAQIIH8ASenXvn0XlxXmejOWe+swt+wHn7BKpLkqc=</latexit>



DEEP UNDERGROUND NEUTRINO EXPERIMENT
CDR, Vol 1, 1601.05471 [physics.ins-det], CDR, Vol 2, 1512.06148 [physics.ins-det], TDR vol 1, JINST 15 (2020) 08, T08008, TDR 

Vol 2, 2002.03005 [hep-ex]

2.2 Neutrino Three-Flavor Mixing, CP Violation and the Mass Hierarchy 27

of producing and detecting ‹· ’s, the oscillation modes ‹µ,e æ ‹e,µ provide the most promising
experimental signatures of leptonic CP violation.

For ‹µ,e æ ‹e,µ oscillations that occur as the neutrinos propagate through matter, as in terrestrial
long-baseline experiments, the coherent forward scattering of ‹e’s on electrons in matter modifies
the energy and path-length dependence of the vacuum oscillation probability in a way that de-
pends on the magnitude and sign of �m2

32
. This is the Mikheyev-Smirnov-Wolfenstein (MSW)

effect [71,72] that has already been observed in solar-neutrino oscillation (disappearance) experi-
ments [73,74,75,76]. The oscillation probability of ‹µ,e æ ‹e,µ through matter, in a constant density
approximation, keeping terms up to second order in – © |�m2

21
|/|�m2

31
| and sin

2 ◊13, is [77,55]:

P (‹µ æ ‹e)
≥= P (‹e æ ‹µ) ≥= P0 + Psin ”¸ ˚˙ ˝

CP violating

+Pcos ” + P3 (2.12)

where

P0 = sin
2 ◊23

sin
2

2◊13

(A ≠ 1)2
sin

2
[(A ≠ 1)�], (2.13)

P3 = –2
cos

2 ◊23

sin
2

2◊12

A2
sin

2
(A�), (2.14)

Psin ” = –
8Jcp

A(1 ≠ A)
sin � sin(A�) sin[(1 ≠ A)�], (2.15)

Pcos ” = –
8Jcp cot ”CP

A(1 ≠ A)
cos � sin(A�) sin[(1 ≠ A)�], (2.16)

and where
� = �m2

31
L/4E, and A =

Ô
3GF Ne2E/�m2

31
.

In the above, the CP phase ”CP appears (via Jcp) in the expressions for Psin ” (the CP-odd term)
which switches sign in going from ‹µ æ ‹e to the ‹µ æ ‹e channel, and Pcos ” (the CP-conserving
term) which does not. The matter effect also introduces a neutrino-antineutrino asymmetry, the
origin of which is simply the presence of electrons and absence of positrons in the Earth.

Recall that in Equation 2.2, the CP phase appears in the PMNS matrix through the mixing of
the ‹1 and ‹3 mass states. The physical characteristics of an appearance experiment are therefore
determined by the baseline and neutrino energy at which the mixing between the ‹1 and ‹3 states
is maximal, as follows:

L(km)

E‹(GeV)
= (2n ≠ 1)

fi

2

1

1.27 ◊ �m2
31(eV

2)
(2.17)

¥ (2n ≠ 1) ◊ 510 km/GeV (2.18)

where n = 1, 2, 3... denotes the oscillation nodes at which the appearance probability is maximal.

The dependences on E‹ of the oscillation probability for the LBNE baseline of L =1,300 km are
plotted on the right in Figures 2.3 and 2.4. The colored curves demonstrate the variation in the ‹e

appearance probability as a function of E‹ , for three different values of ”CP.

The Long-Baseline Neutrino Experiment

Long-Baseline Oscillation Experiments

Elizabeth Worcester, Future LBL Experiments, NDM22 8

Value of dCP affects both rate and shape of appearance probability, 
with asymmetric impact on neutrinos and antineutrinos

• Measure nµ survival and ne appearance in a nµ dominated beam
• Optimize choice of baseline and energy for desired measurement
• Appearance probability depends on Dm232, sin2q23, sin22q13, dCP, and 

matter effects
• Muon neutrino beam
• Measure electron neutrino appearance  and muon neutrino disappearance probability 



DUNE Far Detector
CDR, Vol 1, 1601.05471 [physics.ins-det], CDR, Vol 2, 1512.06148 [physics.ins-det], TDR vol 1, JINST 15 (2020) 08, T08008, TDR 

Vol 2, 2002.03005 [hep-ex]

• 1300 km baseline
• Liquid Argon time projection chamber (LArTPC) - high resolution neutrino interaction imaging
• 4x17 kton LArTPC modules



DUNE Near Detector
DUNE-ND Preliminary, 2103.13910

• ND Goals - 
• Constrain systematics to electron neutrino 

appearance measurement
• Precision physics measurements

• Three components
• ND-LAr - LArTPC similar to FD
• ND-GAr - Gas Argon TPC detector
• SAND - on-axis magnetized beam 

monitor
• ND-LAr and ND-GAr movable off-axis for the 

DUNE-PRISM program
• Each element specifically designed to fulfill 

requirements of oscillation measurement

SAND
ND-GAr ND-LAr

4.86m 5.2m 5m

v



Neutrino interaction modeling
Phased Construction arXiv:2203.06100, Talk by Elizabeth Worcester, NDM22 

 

• Neutrinos in these experiments are not interacting with bare 
nucleons - structure of nucleus matters

• Detailed modelling of complex nuclei needed
• Interaction model affects energy reconstruction – mis-

reconstructed energy can significantly bias results
• Neutrino-nucleus interaction model does not currently describe 

world neutrino interaction data → program of neutrino interaction 
experiments, model-building, and event generator development 
very important for precision measurements in neutrino physics

• Long-baseline experiments are being designed to provide 
experimental solutions to imperfect interaction model

• Improve model constraints by making precise measurements of 
final states 

• Reduce sensitivity to details of model by making data-driven 
predictions

Neutrino Interaction Modeling

Elizabeth Worcester, Future LBL Experiments, NDM22 13

Neutrinos in these experiments are not interacting with bare 
nucleons…structure of the nucleus matters!

• Modeling neutrino interactions requires detailed modeling of complex nuclei!
• Interaction model affects energy reconstruction – mis-reconstructed energy can 

significantly bias results
• Neutrino-nucleus interaction model does not currently describe world neutrino interaction 

data → program of neutrino interaction experiments, model-building, and event generator 
development very important for precision measurements in neutrino physics

• Long-baseline experiments are being designed to provide experimental solutions to 
imperfect interaction model

• Improve model constraints by making precise measurements of final states
• Reduce sensitivity to details of model by making data-driven predictions

See talk by S. Pastore
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PRISM (Precision Reaction Independent 
Spectrum Measurement) 

• Off-axis angle changes the observed near detector 
flux (pion decay kinematics)  

• PRISM: Analysis strategy to reduce dependence on 
interaction modeling by using near detector data at 
different off-axis angles to build predicted far-
detector spectrum  
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Three flavour neutrino oscillations
Pontecorvo, Sov. Phys. JETP, 6 (1957), p. 429 ; Maki, Nakagawa, Sakata, Prog. Theor. Phys., 28 (1962), p. 870
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Figure 2: Neutrino mixing angles represented as a product of Euler rotations: (⌫e, ⌫µ, ⌫⌧ )T = R23R13R12(⌫1, ⌫2, ⌫3)T .
Some representative values of the angles are shown for the NO case.

The charged current (CC) couplings to W� in the flavour basis are given by �
gp
2
ei

L
�µW�

µ
⌫i

eL
, which

becomes in the mass basis,

L
CC

lepton = �
g

p
2

�
eL µ

L
⌧L

�
UPMNS�

µW�
µ

0

@
⌫1L

⌫2L

⌫3L

1

A + H.c. (9)

where we the lepton mixing matrix is identified as, 5,

UPMNS = UeLU †
⌫eL

. (10)

It is possible to remove three of the lepton phases, using the phase invariance of me, mµ, m⌧ . For
example, meeLeR, is unchanged by eL ! ei�eeL and eR ! ei�eeR. The three such phases �e, �µ, �⌧ may
be chosen in various ways to yield an assortment of possible PMNS parametrisations one of which is the
PDG standard choice discussed below). This does not apply to the Majorana mass terms �

1
2mi⌫iL⌫c

iL

where mi are real and positive, and thus the PMNS matrix may be parametrised as in Eq.4 but with

5Di↵erent physically equivalent conventions appear in the literature, we follow the conventions in [25].

11

• CP violating phase
• Sign of larger mass-splitting
• Octant of theta 23

• 3 angles
• 1 phase 
• 2 mass-squared differences

Parameters

Unknowns

Figure 1: Fractional flavour content for di↵erent mass states with varying cos�.

Out of the nine flavour parameters in the standard three flavour mixing framework, only six 3

can be accessed via oscillation experiments - three angles (✓12, ✓13, ✓23), two mass squared
di↵erences (�m2

31, �m
2
21) and a single Dirac-type CP 4 phase (�). The angles and the mass-

squared di↵erences (and absolute value of only one of them) have been measured with great
precision, only recently it has become possible to pin down the CP phase in the leptonic
sector - thanks to the measurement of ✓13 and largeness of its value [?, ?, ?]. The recent
global analysis of all neutrino data leads to the following values of these parameters :

Neutrino flavor transitions have been observed in atmospheric, solar, reactor and accelerator
experiments. Transitions for at least two di↵erent E/L’s (neutrino energy divided by base-
line) are seen. To explain these transitions, extensions to the Standard Model of particle
physics are required. The simplest and most widely accepted extension is to allow the neu-
trinos to have masses and mixings, similar to the quark sector, then these flavor transitions
can be explained by neutrino oscillations.

This picture of neutrino masses and mixings has recently come into sharper focus with the
salt data presented by the SNO collaboration [?]. When combined with the KamLAND
experiment [?] and other solar neutrino experiments [?, ?] the range of allowed values for
the solar mass squared di↵erence, �m2

sol, and the mixing angle, ✓sol, are reported as

6.6⇥ 10�5eV2 < �m2
sol < 8.7⇥ 10�5eV2

0.33 < tan2 ✓sol < 0.50 (1)

at the 90 % confidence level. Also maximal mixing, tan2 ✓sol = 1, has been ruled out at
greater than 5 �. The solar data is consistent with ⌫e ! ⌫µ and/or ⌫⌧ .

The atmospheric data from SuperKamiokande has changed only slight in the past year with
a preliminary new analysis presented at EPS conference [?] and is consistent with the K2K

3
The absolute mass scale and the two Majorana phases are not accessible in oscillation experiments.

4
CP refers to charge conjugation and parity symmetry.

2

U =

0

@
1 0 0
0 c23 s23
0 �s23 c23

1

A

| {z }
Atmospheric

Reactorz }| {0

@
c13 0 s13e�i�

0 1 0
�s13ei� 0 c13

1

A

0

@
c12 s12 0
�s12 c12 0
0 0 1

1

A

| {z }
Solar

where sij = sin ✓ij , cij = cos ✓ij and � is the Dirac-type CP phase

If Majorana - two additional phases appear, U ! Udiag(1, ei, ei⇣)

<latexit sha1_base64="tkaWpjb0Gd6WZA+NM7k0FmYnT7E=">AAAE5HicjVRLTxRBEB7YVXF8gR69VCQSSFgys4KPAwmKBz2Y4GOBhIFNbU/tbsO80t0LrpPm6sWDxnj1R3nzr3iye2Z2WQ1EO+lJTX31+OrrnulkEZfK835OTdfqly5fmbnqXrt+4+at2bnb2zIdCEYtlkap2O2gpIgn1FJcRbSbCcK4E9FO52jT4jvHJCRPk3dqmNF+jL2EdzlDZVztuelfeUu380DRe5VrDe465MEgCUl0BDLKg4i6atENOtTjSY5C4FDnjDHt+gCwAF6xgwAKi7Xz5gNt/bKyLOQWWKNyjaOCwA0oCaui4AaC9/pqacRGRvlTFacy65PgTGtbzDXk0uN/czMd/JJH0dqyse90kDeAQxBSpFAbZhYs5yiHcBtnkeO4asqq5kWsD8as3xAylQrL2P1PLW3t5kg3ay1M8mlWopVGiXij2fxS4vM4AUxo+TaN0HJyzQClU8T5idGWDM/TU9uYH+r1QPLEiKz6pLDwFOCyfbAqgqUSJgIMNK6HSVgkuJV2Nm0McgkmC55zI0bD3kXY3IKsby6v1sUM48iXXXiFh6nABKEB6iQFDENuLyxGZYYEzDJCsVy2axlCKbTOeoUce1ov+svVSR6ZcNSjtw9kj3WpPTvvrXjFggljzfOfPPTBrzzzTrW22rM/gjBlg5gSxSKUcs/3MrVvZFecRWSkHUjKkB1hj/aMmWBMcj8vPlIN940nhG4qzE4UFN7JjBxjKYdxx0TGqPryb8w6z8P2Bqr7eD/nSTZQlLCyUXcQgVGkUDnkgpiKhsZAJoyMDFgfzSEo819wjQijSeFiY7u54q+urL1end94Vskx49x17jmLju88cjacF86W03JYDWsfa59rX+rd+qf61/q3MnR6qsq54/yx6t9/A9VlkKQ=</latexit>

Credit : King Credit : Mena and Parke, 2004



Current status : three flavour neutrino oscillations
NuFIT 5.0 (2020), www.nu-fit.org, JHEP 09 (2020) 178 [arXiv:2007.14792], 2003.08511, 2006.11237

Credit : Sushant Raut

• Bari group  
• Spanish group 
• NuFIT group
• Solid line - NH
• Dashed line - IH
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Violation of discrete symmetries: C, P, T

accelerator (with beam power of upto 1.2 MW) at Fermi National Accelerator Laboratory
(Fermilab) to produce high intensity neutrino source. For the far detector, a massive liquid
argon time-projection chamber (LArTPC) would be deployed deep underground at a depth
of 4850 feet at the Sanford Underground Research Facility located at the site of the former
Homestake Mine in Lead, South Dakota (where Ray Davis carried out the solar neutrino
experiment during 1967-1993) and is about 1300 km from the neutrino source at Fermilab. In
addition, a high precision near neutrino detector is planned at a distance of approximately
500 m from the target at Fermilab site. The baseline of 1300 km is expected to deliver
optimal sensitivity to CP violation, measurement of � and at the same time is long enough
to address the question of neutrino mass hierarchy [37–39]. It is worth mentioning that CP
violation can be established at 3� level if we consider DUNE for at least ⇠ 68% of CP phase
values [7,8] and it has been shown that a combination of di↵erent experiments can increase
this fraction to ⇠ 80% for reasonable exposures [38].

The plan of the article is as follows. We first briefly outline the NSI framework and give the
present constraints on NSI parameters in Sec. 2. We then go on to describe observable CP
asymmetry for the particular channel ⌫µ ! ⌫e relevant for DUNE both in vacuum and in
matter (SI and NSI) in Sec. 3. We present our results and discussions in Sec. 4 and discuss
the event rates obtained at DUNE far detector in Sec. 5. We end with conclusions in Sec. 6.

2 Framework

2.1 Preliminaries : CP, T and CPT asymmetries

C, P, T are discrete symmetries that refer to charge conjugation, parity and time reversal
respectively. Before going on to discuss the CPT�V case, let us review the relations between
the probabilities in the CPT�C scenario for appearance and disappearance channels. Let
us define the following asymmetries (involving neutrinos and antineutrinos) :

ACP
↵� =

P↵� � P̄↵�

P↵� + P̄↵�
, AT

↵� =
P↵� � P�↵

P↵� + P�↵
, ACPT
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the Jarlskog invariant J = s12c12s23c23s13c213 sin �. CP violation and T violation are related
in a neat manner.

The case of CPT�V (i.e., ACPT
↵� 6= 0) is not so simple as one can have CP violation, T

violation or both and apriori there is no straightforward connection between them

ACP
↵� 6= AT

↵� and ACP
↵↵ 6= 0 , AT

↵↵ 6= 0 . (4)

Moreover, the disappearance probabilities can also lead to non-zero CP asymmetries.

Imposing the unitarity condition, we obtain

ACP
ee + ACP

eµ + ACP
e⌧ = 0

ACP
µe + ACP

µµ + ACP
µ⌧ = 0

ACP
⌧e + ACP

⌧µ + ACP
⌧⌧ = 0 (5)

Obviously, these asymmetries present themselves in di↵erent channels (appearance and dis-
appearance) that can be employed to study CP violation. J is not the only source of CP
violation in this case.

2.2 Model for CPT Violation

CPT�V e↵ects that can be phenomenologically described by e↵ective interactions of the
form

LCPT�V = ⌫̄↵
Lb

↵�
µ �µ⌫�

L , (6)

where b↵�µ represents CPT�V. The propagation of neutrinos is governed by a Schrödinger-
type equation with the e↵ective Hamiltoninan in presence of CPT�V as follows

H = Hvac +HSI +HCPT�V , (7)

where Hvac is the vacuum Hamiltonian and HSI,HCPT�V are the e↵ective Hamiltonians in
presence of SI alone and CPT�V respectively. Note that the terms appearing in HCPT�V do
not depend upon the medium properties. In general, the dispersion relation gets modified
in present of HCPT�V. The index of refraction in the CPT�V scenario corresponds to the
existence of an intrinsic background field that isotropically permeates the vacuum. The
nature of this and other background fields has been extensively studied for theories with
Lorentz invariance violation (see [40] for a review). Thus,

H =
1

2E

8
<

:U

0

@
0

�m2
21

�m2
31

1

AU † +

0

@
(aL)ee (aL)eµ (aL)e⌧
(aL)eµ

? (aL)µµ (aL)µ⌧
(aL)e⌧

? (aL)µ⌧
? (aL)⌧⌧

1

A

9
=

; , (8)

where A(x) = 2
p
2EGFne(x) is the standard CC potential due to the coherent forward scat-

tering of neutrinos and ne is the electron number density. We assume rotational invariance
so the nine parameters (aL)↵� denoting isotropic component of the CPT�V terms charac-
terize deviations from CPT�C. The three flavour neutrino mixing matrix U [⌘ U23 W13 U12

with W13 = U� U13 U †
� and U� = diag{1, 1, exp (i�)}] is characterized by three angles and a

3
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CP Asymmetry in vacuum

To leading order in small delta m^2 

⌫µ ! ⌫e

ACP =
Pµe � P̄µe

Pµe + P̄µe

The sign of ∆m2
32 is undetermined. For m3 > m2, normal ordering, neutrinoless double beta

decay is highly suppressed, while for m2 > m3, inverted hierarchy, there is a chance that it
could be observable in the next generation of experiments. So, determining the sign of ∆m2

32 is
important. In the case of θ23, maximal mixing, θ23 ≃ 45◦ is favored. How close that angle is to
45◦ and whether it is less than or greater than 45◦ (currently only sin22θ23 is determined) is a
key issue for model building. A very precise measurement is strongly warranted.

Solar neutrino and the Kamland reactor oscillation experiments indicate[1]

∆m2
21 = m2

2 − m2
1 = 8 ± 1 × 10−5eV2 (3a)

sin2 2θ12 ≃ 0.84 ± 0.10, θ12 ≃ 33◦ ± 4◦ (3b)

The angle θ12 is large but not maximal.
Within the 3 generation formalism, what remains to be determined are the value of θ13,

which is currently bounded[1]

0 ≤ sin2 2θ13
<∼ 0.14, (4)

by reactor experiments, along with the phase, δ, about which nothing is currently known

− 180◦ ≤ δ < 180◦ (5)

After those parameters are determined, one will have an intrinsic measure of leptonic
CP violation via the Jarlskog invariant[2]

JCP ≡
1

8
sin 2θ12 sin 2θ13 sin 2θ23 cos θ13 sin δ. (6)

From the known angles (sin2 2θ12 ≈ 0.8, sin2 2θ23 ≃ 1)

JCP ≃ 0.23 sin θ13 sin δ, (7)

which suggests it is potentially enormous in comparison with the quark CKM matrix value

JCKM
CP ≃ 3 ± 1 × 10−5 (8)

Besides determining the ∆m2
ij, their signs, θij and δ as precisely as possible, one would also like

to have precision redundancy in those studies which probes deviations due to “new physics”
such as sterile neutrino mixing, extra dimensions, exotic neutrino interactions, etc.

2. CP Violation
The flavor changing oscillations νµ → νe and ν̄µ → ν̄e have a very rich structure which includes
CP violation. The oscillation probability is given by 3 important contributions as well as matter
effects and smaller terms (which we neglect)[3, 4]

P (νµ → νe) = PI(νµ → νe) + PII(νµ → νe) + PIII(νµ → νe) + matter + smaller terms (9)

PI(νµ → νe) = sin2 θ23 sin2 2θ13 sin2

(

∆m2
31L

4Eν

)

(10)

PII(νµ → νe) =
1

2
sin 2θ12 sin 2θ13 sin 2θ23 cos θ13

sin

(

∆m2
21L

2Eν

)

×

[

sin δ sin2

(

∆m2
31L

4Eν

)

+ cos δ sin

(

∆m2
31L

4Eν

)

cos

(

∆m2
31L

4Eν

)]

(11)

PIII(νµ → νe) = sin2 2θ12 cos2 θ13 cos2 θ23 sin2

(

∆m2
21L

4Eν

)

(12)

while for ν̄µ, δ → −δ and matter effects change sign.
The rich structure of νµ → νe oscillations is nicely illustrated in Figs. 1-4 for BNL-

Homestake and Fermilab-Homestake distances. Matter modifies the oscillation amplitudes and
peak positions (the effect is opposite for an inverted hierarchy), making it straight forward to
determine the sign of ∆m2

31 with only a νµ beam. Also, the effect of δ is important even for
δ = 0, no CP violation. By measuring the νµ oscillation probability as function of a L

Eν
over

a broad rage, one can in principle measure all the parameters of neutrino oscillations with no
degeneracies in δ, θ23 and the mass hierarchy by a fit to Eq(9). For that reason, we favor[3, 4, 5]
using an on axis broad band neutrino beam for 0.5 GeV ≤ Eν ≤ 5 GeV .

Do we need to know the value of θ13 before we embark on measuring δ? Not really, since
the degree of difficulty for measuring δ is to a large extent independent of θ13 (unless it is very
small) and the baseline distance (for 1200 km <∼ L <∼ 4000 km ) if we use the wide band beam.
To see that feature, consider the CP violation asymmetry.

ACP ≡
P (νµ → νe) − P (ν̄µ → ν̄e)

P (νµ → νe) + P (ν̄µ → ν̄e)
(13)

It is given to leading order in ∆m2
21 (assuming sin2 2θ13 is not too small) by

ACP ≃
cos θ23 sin 2θ12 sin δ

sin θ23 sin θ13

(

∆m2
21L

4Eν

)

+matter effects (14)

For fixed Eν , the asymmetry grows linearly with distance and increases as θ13 gets smaller. Of
course |ACP | is bounded by 1; so, if it exceeds that value, e.g. if sin2 2θ13

<∼ 0.003, a breakdown
in our assumption about the dominance of PI in the denominator of eq.(13) is occurring.

The statistical figure of merit[3] is given by

F.O.M. =
(

δACP

ACP

)−2

=
A2

CP N

1 − A2
CP

(15)

where N is the total number of νµ → νe + ν̄µ → ν̄e events (properly normalized). Since N falls
(roughly) as sin2 θ13 and A2

CP ∼ 1/ sin2 θ13, we see that to a first approximation the F.O.M. is
independent of sin θ13. Similarly, for a given Eν the neutrino flux and consequently N falls as
1/L2 but that is canceled by L2 in A2

CP . So, to a good approximation, our ability to measure
CP violation is insensitive to L(at oscillation max.) and the value of θ13 (if it is not too small).

ACP =
cos ✓23 sin 2✓12 sin �

sin ✓23 sin ✓13

✓
�m2

21L

4E

◆
+matter e↵ects

Grows with L and 1/E

⇠ 1/ sin ✓13

⇠ cot ✓23

Interference term
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Phased Construction
arXiv:2203.06100

Phase I: two 17-kt (~10 kt fiducial) far detector modules, 1.2 MW proton 
beam, ND: ND-LAr + TMS (movable), SAND
Phase II*: total of four far detector modules, 2.4 MW proton beam, full ND 
(ND-GAr replaces TMS)

*opportunity for expanded physics scope

Phase I
two 17-kt (~10 kt fiducial) far 
detector modules, 1.2 MW proton 
beam, ND: ND-LAr + Temporary 
muon spectrometer (movable), 
SAND  

total of four far detector 
modules, 2.4 MW proton 
beam, full ND (ND-GAr 
replaces Temporary muon 
spectrometer)

Phase II

Phased Construction arXiv:2203.06100, Talk by Elizabeth Worcester, NDM22 
 



Precision measurements at DUNE
arXiv:2006.16043 arXiv:2109.01304, Talk by Elizabeth Worcester, NDM22 
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Precision Measurements:

arXiv:2006.16043
arXiv:2109.01304

Width of band represents difference between sensitivity with and without external constraint on q13
q13 precision comparable to that of reactor experiments for large exposures

Width of band represents difference between sensitivity with and without external constraint on 13 angle.
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factor of ~3

Jogesh Rout, Sheeba Shafaq, Mary Bishai and PM, PRD 2021
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The CP phase resolution (with improved energy resolution) 

is better than 10 degrees

S. Choubey, M. Ghosh, D. Kempe and T. Ohlsson, Exploring invisible neutrino decay at ESSnuSB, 2010.16334.

Chakravarty, Dutta, Goswami, Pramanik, Invisible neutrino decay : First vs second oscillation maximum, 2012.04958
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DUNE: Impact of Interaction 
Model Uncertainty on CP 

Violation Sensitivity

• Order few percent uncertainty required 
for precision measurements

• Sources of uncertainty:
• Neutrino flux
• Neutrino interaction model
• Detector effects

• DUNE and HyperK systematics largely 
uncorrelated, with different:

• Neutrino energies
• Far detector target nuclei
• Detector calibration, 

reconstruction, and event 
selection effects

• Impact of biases due to shortcomings 
in the interaction model is large

• Near detectors are critical to achieve 
precision measurement goals!

• Order few percent uncertainty required for 
precision measurements

• Sources of uncertainty :
• Neutrino flux
• Neutrino interaction model 
• Detector effects

• Impact of biases due to shortcomings in 
the interaction model is large

• Near detectors critical to achieve precision 
measurement goals



Impact of BSM physics on standard 
unknowns



Sensitivity to CP violation and mass hierarchy DUNE
Mehedi Masud, Animesh Chatterjee, PM, J Phys G 2016, Mehedi Masud, PM, PRD 2016, Jogesh Rout, Mehedi Masud, PM, PRD 2017, M. Masud, M. Bishai and PM, Scientific Reports (2019), see also Gandhi et 

al, JHEP 11 (2015) 039, JHEP 11 (2016) 122, Deepthi, Goswami, Nath, PRD 96 (2017), Singha, Ghosh, Majhi and Mohanta, 2211.01816, Abinash Medhi, Debajyoti Dutta and Moon Moon Devi, 2111.12943
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Figure 6: CP sensitivity for collective NSI terms at DUNE.

Having described the e↵ect of o↵-diagonal NSI terms, we now address the impact of the
diagonal ones - "ee, "µµ, "⌧⌧ . We show the impact of the three diagonal NSI parameters ("ee,
"µµ and "⌧⌧ ) in Fig. 5. The e↵ect of "µµ is very small as it is the most constrained parameter
(Eq. 8). For the choice of values of the NSI parameters, the CP sensitivity sees a drop most
likely due to the statistical e↵ect (a) dominating in these cases.

After understanding the impact of individual diagonal as well as o↵-diagonal NSI terms, we
now address the collective e↵ect of the most influential NSI terms as far as CP sensitivity
is concerned. In Fig. 6, we show the collective impact of the three terms (|"ee|, |"eµ|, |"e⌧ |)
which show the largest impact when considered in isolation. We note that when the NSI
terms are small, the associated phases of the NSI terms (even if taken collectively) do
not contribute in an observable manner to (b) and (a) dominates. However when we take
somewhat larger values, we see the interplay of the the two e↵ects (a) and (b) with the
possibility of second e↵ect (b) overtaking the first (a) as we go from small to large values
keeping the marginalisation range intact.

We summarize the impact of NSI on the CP violation sensitivity at long baselines as shown
in Fig. 6 for DUNE. If we compare the solid and dashed black curves, we note that for
small values of parameters (0.01, 0.01, 0.1) NSI brings down the �

2 from ⇠ 5� to ⇠ 3� at
� ⇠ ±⇡/2 for the case of zero NSI phases. The impact of true non-zero NSI phases can
be seen in the form of grey bands for the choice of moduli of the NSI terms. For larger
values of parameters (0.07, 0.07, 0.7) NSI can drastically alter the �

2 not only at � ' ±⇡/2
(SI, maximum) but at almost all values of � including at � = 0,±⇡ if we allow for phase
variation. For some particular choice of the NSI moduli and phases, we note that in this
case, the �2 decreases from ⇠ 5� to ⇠ 2.5� or increases to ⇠> 5.5� not only at � ' ±⇡/2 but
for most values of �. This can lead to a misleading inference that CP is violated even when
we have CP conservation in the SI case (� = 0,±⇡). Here the phases have a bigger impact
which can be seen as widening of the grey bands as we go from smaller to larger moduli of
NSI terms.
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Correlations among NSI parameters
Mehedi Masud, Samiran Roy, PM, PRD 2019
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Sterile neutrino

Experiment L E Channel
LSND 30 m 20-200 MeV Electron antinu Appearance 

MiniBooNE 541 m 0.2-3 GeV Electron anti(nu) Appearance + Disappearance 
MicroBooNE 541 m 0.5-3 GeV Appearance + Disappearance

Dasgupta and Kopp, 2106.05913

LSND MiniBooNE

2.1 LSND: Neutrinos from Stopped Pion Decay

other

p(ν
_

e,e
+)n

p(ν
_

µ
→ν

_

e,e
+)n

Ee MeV

B
e
a
m

 E
ve

n
ts

Beam Excess

0

5

10

15

20

25

30

35

20 25 30 35 40 45 50 55 60

other

p(ν
_

e,e
+)n

p(ν
_

µ
→ν

_

e,e
+)n

L/E
ν
 (meters/MeV)

B
e

a
m

 E
xc

e
ss

Beam Excess

0

2.5

5

7.5

10

12.5

15

17.5

0.4 0.6 0.8 1 1.2 1.4

Figure 2.2: The distribution of observed events in LSND as a function of positron energy
Ee (left) and as a function of L/E⌫ (baseline over reconstructed neutrino energy, right).
Green histograms show the background from the intrinsic ⌫̄e contamination in the beam
(mostly due to the decay of µ� from ⇡

� decay in flight), while red histograms indicate
all other backgrounds, such as misidentified ⌫µ and ⌫̄µ. Blue histograms correspond to
the predicted signal from (2-flavor) neutrino oscillations. Figure taken from [20].

eled the LSND target hall (including also the aforementioned A1 and A2 targets).
Thanks to the nearly hermetic shielding of this area, it is difficult to imagine where
these estimates could have gone wrong.

• Accidental backgrounds. The signature of a CC ⌫e interaction, consisting of a
positron and a neutron, can be mimicked by random coincidences between cosmic-
ray induced neutrons and cosmic-ray induced electrons or positrons, or by random
coincidence between cosmic-ray induced neutrons and electrons generated by CC
⌫e interactions. (Unlike ⌫̄e, ⌫e are abundant in the LSND beam.) However, these
backgrounds can be estimated straightforwardly, and it turns out that they are
negligible because the probability for both temporal and spatial coincidence between
a random neutron and a random electron or positron is tiny.

• Knock-on neutrons. If a ⌫e interacts with a carbon nucleus inside the LSND
detector via quasi-elastic scattering, it will convert into an electron and eject a
proton. On its way out of the nucleus, this proton may transfer its energy to a
neutron, so that the final state will be e

� + n. This final state is indistinguishable
from the e

+ + n signature of a ⌫̄e interaction. As ⌫e are abundant in the LSND
beam, even a small probability for the production of such knock-on neutrons could
be problematic. However, energetics come to the rescue: the energy required to
liberate a neutron from a carbon nucleus is so high that events of this type would
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2.2 MiniBooNE: A Horn-Focused Neutrino Beam
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Figure 2.3: MiniBooNE observed event spectra in neutrino mode (left) and in anti-
neutrino mode (right). Black data points correspond to the observed event rates, shaded
histograms indicate the (largely data-driven) background predictions, and the blue dashed
histogram illustrates the best oscillation fit. Plots taken from refs. [23] (left) and [24]
(right).

single electron or positron, as well as CC ⌫µ and ⌫̄µ interactions, identified by the single
muon in the final state.

MiniBooNE has collected a neutrino flux corresponding to 18.75 ⇥ 1020 protons on
target in neutrino mode (⇡+ focused) and 11.27⇥1020 protons on target in anti-neutrino
mode (⇡� focused). The resulting event spectra and predicted backgrounds are shown in
fig. 2.3. A clear excess is observed, with a significance of 4.7� in neutrino mode and of 4.8�
when neutrino and anti-neutrino mode data are combined [23]. Like the LSND excess,
the MiniBooNE excess can be explained in terms of active-to-sterile neutrino oscillations
when considered in isolation (blue dashed histograms in fig. 2.3), but this explanation
runs into severe difficulties when fitted together with data from other experiments (see
section 4.1).

While backgrounds in MiniBooNE are manifold, many background contributions can
be estimated using data-driven methods. An irreducible source of background arises from
the intrinsic contamination of the beam by ⌫e and ⌫̄e produced in kaon or muon decays
(turquoise histograms in fig. 2.3. Kaons are produced in the primary target, and albeit
the production rate is much lower than for pions, their larger branching ratio to ⌫e / ⌫̄e

makes them non-negligible. Muons are produced in pion decay, and while most of them
are stopped in the rock separating the decay tunnel from the detector, some of them
decay already in the decay tunnel, leading to an extra flux of high energy neutrinos.
The intrinsic ⌫e / ⌫̄e contamination of the MiniBooNE beam was determined based on
external measurements and on data from the SciBooNE detector located in the same
beam, upstream of MiniBooNE [25].

A second source of background arises from ⇡
0 production in neutral current (NC)

neutrino interactions, followed by the decay ⇡
0
! �� (red histograms in fig. 2.3). As
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Figure 2.3: MiniBooNE observed event spectra in neutrino mode (left) and in anti-
neutrino mode (right). Black data points correspond to the observed event rates, shaded
histograms indicate the (largely data-driven) background predictions, and the blue dashed
histogram illustrates the best oscillation fit. Plots taken from refs. [23] (left) and [24]
(right).

single electron or positron, as well as CC ⌫µ and ⌫̄µ interactions, identified by the single
muon in the final state.

MiniBooNE has collected a neutrino flux corresponding to 18.75 ⇥ 1020 protons on
target in neutrino mode (⇡+ focused) and 11.27⇥1020 protons on target in anti-neutrino
mode (⇡� focused). The resulting event spectra and predicted backgrounds are shown in
fig. 2.3. A clear excess is observed, with a significance of 4.7� in neutrino mode and of 4.8�
when neutrino and anti-neutrino mode data are combined [23]. Like the LSND excess,
the MiniBooNE excess can be explained in terms of active-to-sterile neutrino oscillations
when considered in isolation (blue dashed histograms in fig. 2.3), but this explanation
runs into severe difficulties when fitted together with data from other experiments (see
section 4.1).

While backgrounds in MiniBooNE are manifold, many background contributions can
be estimated using data-driven methods. An irreducible source of background arises from
the intrinsic contamination of the beam by ⌫e and ⌫̄e produced in kaon or muon decays
(turquoise histograms in fig. 2.3. Kaons are produced in the primary target, and albeit
the production rate is much lower than for pions, their larger branching ratio to ⌫e / ⌫̄e

makes them non-negligible. Muons are produced in pion decay, and while most of them
are stopped in the rock separating the decay tunnel from the detector, some of them
decay already in the decay tunnel, leading to an extra flux of high energy neutrinos.
The intrinsic ⌫e / ⌫̄e contamination of the MiniBooNE beam was determined based on
external measurements and on data from the SciBooNE detector located in the same
beam, upstream of MiniBooNE [25].

A second source of background arises from ⇡
0 production in neutral current (NC)

neutrino interactions, followed by the decay ⇡
0
! �� (red histograms in fig. 2.3). As
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Are sterile neutrinos out ?
Arguelles et al, 2111.10359, see also Denton, Phys.Rev.Lett. 129 (2022) 6, 061801MicroBooNE 3
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FIG. 1. Event rate at MiniBooNE (top) and MicroBooNE
(bottom) as a function of reconstructed neutrino energy. We
show several MiniBooNE templates, including that of the 3+1
oscillation best-fit, as non-stacked histograms. The bottom
panel shows the spectra predicted by these templates in the
MicroBooNE Inclusive fully contained channel.

ing MicroBooNE �2
µB, and construct the difference with

respect to the no-excess hypothesis, ��2
µB. We also show

as a black line the result of profiling over all templates
with the same signal strength. The horizontal lines then
correspond to the MicroBooNE 1, 2, 3, and 4� exclusion
limits [35, 36].

As we see in Fig. 2, introducing shape and normal-
ization uncertainties in the MBLEE template can either
enhance or mitigate MicroBooNE’s sensitivity. To illus-
trate the variability of the template shapes and normal-
izations, we have marked with a star the two templates
shown in Fig. 1, corresponding to two extreme points in
the p > 80% region.

Many templates that are a good fit to MiniBooNE data
cannot be excluded by MicroBooNE — we observe a large
number of templates with good fits to MiniBooNE data,
p > 80% (10%), well below the ��2

µB = 9 (4) line. We
thus conclude that, while recent MicroBooNE results in-
deed constrain the ⌫e interpretation of the MiniBooNE
excess in a model-independent way, they do not com-
pletely rule it out. Because of the correlated systematic
uncertainties between MiniBooNE and MicroBooNE, to
fully establish the compatibility of these templates, a
joint analysis is required.

Sterile Neutrino Analysis.— The analysis above does

FIG. 2. ��2 of the MicroBooNE Inclusive analysis with re-
spect to the no-excess hypothesis, for various templates found
by our MCMC. Each point corresponds to a specific template
that provides a good fit to MiniBooNE data with a p-value
greater than 80%, 10%, and 1% (shades of blue). The stars
correspond to templates 1 and 2 presented in Fig. 1.

not rely on any specific particle physics model. As an ex-
ample of a physics model that can explain the MBLEE,
we turn to light sterile neutrinos. They provide a simple
scenario that could lead to ⌫µ ! ⌫e transitions at short
baselines, and have been extensively studied in the liter-
ature [1, 4, 37–39]. Here, we do not rely on the unfolding
technique discussed above, as we simulate expected dis-
tributions in MiniBooNE with respect to the true neu-
trino energy.

To perform analyses including sterile neutrinos, we
use [40] and first calculate, as a function of oscillation
parameters, the expected MBLEE. Using the same pro-
cedure discussed above, we map these spectra into the
expected excesses in MicroBooNE’s Inclusive and CCQE
analyses. Leveraging [27, 28], we can also account for os-
cillations of the ⌫µ and ⌫e Charged-Current (CC) back-
ground expectations in MicroBooNE’s analyses to allow
for a complete, four-neutrino oscillation analysis [41].

We start by discussing the results of the simplified ster-
ile neutrino model, which assumes the backgrounds to
be independent of the sterile neutrino parameters. This
simplified model is parametrized by a squared-mass dif-
ference �m2

41 and an effective mixing angle sin2 2✓µe ⌘
4|Ue4Uµ4|2 with U the leptonic mixing matrix.

Figure 3 presents the results of our analyses of Mi-
croBooNE’s Inclusive and CCQE channels in blue and
orange, respectively, at 3� C.L. We first note that the
Inclusive analysis has more constraining power than the
CCQE analysis. This can be traced back to the detection
efficiencies, which for the MiniBooNE and MicroBooNE
CCQE analyses decrease at large energies, while in the
Inclusive MicroBooNE analysis they stay constant. As
sterile neutrinos predict a non-negligible excess at high
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FIG. 3. MicroBooNE constraints on sterile neutrino param-
eter space at 3� C.L. (blue, Inclusive and orange, CCQE).
For reference, we show the MiniBooNE 1-, 2-, and 3-� pre-
ferred regions in shades of grey [42], the future sensitivity of
the three SBN detectors (pink) [43], and existing constraints
from KARMEN (green) [19] and OPERA (gold) [44].

energies, the Inclusive analysis is more powerful.
As we see from Fig. 3, MicroBooNE data, at 3� CL,

disfavor part of the region preferred by MiniBooNE at the
same CL. Nevertheless, we find that there is still a large
viable fraction of the parameter space, even within 1� CL
preferred region of MiniBooNE. We find it unlikely that
future MicroBooNE results will significantly improve on
this, even though MicroBooNE has only analyzed about
half of their data set, because of a deficit in their Inclu-
sive data that generates more sensitivity than expected
(cf. Fig. 1 and the Supplemental Material; this could be
due to an underfluctuation in the data or to background
mismodeling). This highlights the importance of search-
ing for sterile neutrinos with the three SBN detectors —
SBND, MicroBooNE, and ICARUS — which will probe
the full 2� region preferred by MiniBooNE with less de-
pendence on the neutrino cross section and flux.

Finally, we stress that a fully-consistent four-neutrino
analysis should also consider oscillations of the back-
grounds. This is relevant at MiniBooNE [16, 45], and
even more for the MicroBooNE Inclusive analysis: while
the former has large non-neutrino induced backgrounds,
the dominant background in the latter is beam-⌫e con-
tamination. Moreover, since other neutrino samples (par-
ticularly CC ⌫µ) are used to constrain systematics and
backgrounds, oscillations should also be considered for
these samples.

Figure 4 presents our results in a consistent four-
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FIG. 4. MicroBooNE constraints on �m2
41 and sin2 (2✓ee)

(left) or sin2 (2✓µµ) (right). In each panel, we have either
fixed (solid lines) or profiled over (dashed) the unshown mix-
ing angle. For comparison, we show existing constraints and
preferred regions (see [46–60]).

neutrino approach, considering oscillations of all ⌫e and
⌫µ samples. We show the MicroBooNE-Inclusive 95% CL
constraints on �m2

41 and sin2 (2✓ee) ⌘ 4|Ue4|2(1� |Ue4|)2
(top panel) or sin2 (2✓µµ) ⌘ 4|Uµ4|2(1 � |Uµ4|)2 (bottom
panel). In each panel of Fig. 4 we perform two analy-
ses (both in blue): solid lines present the constraint on
a mixing angle when the other is fixed to zero, whereas
dashed lines present the constraint when we profile over
the other mixing angle. The disappearance prospects
for ⌫e are compared against hints of sterile neutrinos
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due to the awesome reconstruction power of Liquid Ar-
gon Time Projection Chambers (LArTPCs). In addition,
MiniBooNE has reported an excess of electron neutrino
candidate events [8] that seem to require an explanation
beyond a m4 ⇠ 1 eV sterile neutrino due to constraints
from MicroBooNE, MINOS+, IceCube, and cosmology
[12, 13, 28, 41–44], some of which could potentially be
evaded in more complicated models [31–40, 49, 50]. It
is still to be determined if existing explanations of Mini-
BooNE without a m4 ⇠ 1 eV sterile neutrino [51–61] are
also consistent with MicroBooNE’s new results; until this
story is better understood it does not make statistical
sense to analyze the MiniBooNE data for ⌫e disappear-
ance.

In this letter we will present a ⌫e disappearance ster-
ile oscillation analysis of the MicroBooNE data focus-
ing on the Wire-Cell analysis in section II, compare the
result to others in the literature, and discuss the re-
sults. The analysis of the other three channels can be
found in appendix B. Next, we will compare the Micro-
BooNE results to others in the literature in section III.
We then discuss our results and conclude in section IV
and V. All the data files associated the parameter scans
shown in fig. 2 and appendix B can be found at peter-
denton.github.io/Data/Micro Dis/index.html.

II. ANALYSIS

MicroBooNE has reported four ⌫e analyses dubbed:
Wire-Cell [44] which is sensitive to final states with one
electron and anything else including both fully and par-
tially contained events, Pandora [43] which is sensitive to
final states with one electron, zero pions, and either zero
protons or 1+ protons, and Deep-Learning [42] which
is sensitive to final states with one electron and one pro-
ton, primarily from charged-current quasi-elastic interac-
tions. Each of these four analyses has di↵erent strengths
and weaknesses in terms of statistics, purity, and calibra-
tion data summarized in [41]. As the Wire-Cell analysis
has the highest ⌫e statistics, we take it as our fiducial
analysis, but we also investigate the other channels for
completeness, see appendix B.

To analyze the MicroBooNE data in terms of a sterile
neutrino, we consider a two parameter model where the
sterile neutrino mixes dominantly with electron neutri-
nos. Thus the expected ⌫e events will be reduced by the
disappearance probability,

P (⌫e ! ⌫e) = 1 � sin2(2✓14) sin2

✓
�m2

41L

4E

◆
, (1)

where L = 470 m is MicroBooNE baseline [46], �m2
41 ⌘

m2
4 � m2

1 is the new oscillation frequency, and ✓14 gives
the amplitude of the oscillations. This is equivalent to
setting ✓24 = ✓34 = 0, or to small enough values to be
irrelevant.

While a full analysis including a combination of all
channels, a full treatment of energy reconstruction, back-

FIG. 1. Top: The disappearance probability in true en-
ergy for the best fit set of sterile oscillation parameters,
�m2

41 = 1.25 eV2 and sin2(2✓14) = 0.35, for the Wire-Cell
data. Bottom: The expected event rate at MicroBooNE in
the Wire-Cell analysis in reconstructed neutrino energy [44]
including contributions from backgrounds (red) and ⌫e events
(green) along with the systematic uncertainty (gray hatched).
The actual data is shown in black and the expected data, as-
suming the best fit sterile hypothesis, is shown in orange.
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FIG. 2. The preferred regions in �m2
41 - sin2(2✓14) parame-

ter space using data from MicroBooNE’s Wire-Cell analysis
[44]. The blue (orange) contours are at 1� (2�) as determined
by Wilks’ theorem; the Feldman-Cousins significance of the
best fit compared to no oscillations is 2.4� with a simplified
treatment of systematics.

grounds, and other systematics is necessary to robustly
quantify the statistical significance of these sterile oscilla-
tions, we can still get a good estimate of the parameters
of interest preferred in a simplified analysis. In order to

Do not probe the full parameter space of 
sterile nu models hinted by MiniBooNE
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Exclusion plot in sterile case
Abi et al, Eur.Phys.J.C 81 (2021) 4, 322

But when putting ✓14 = 0�, ✓24 = 0�, ✓34 = 20�, then the value of �N would be very
small can take as zero which was expected for a particular ⌫µ ! ⌫e channel.
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Figure 13: The top plot shows the DUNE sensitivities to ✓14 from appearance, disappearance
channels at 90% confidence limits in near detector (ND) and far detector (FD). The bottom
plot displays sensitivities to ✓24 using same appearance, disappearance channels in both
detectors. In both cases, regions to the upper of the contours are excluded.We are taking
the run time of 13 year, 6.5 yr + 6.5 yr dividing in each ⌫ (⌫) mode in LE beam. We are
combining the ME beam with LE beam and dividing the runtime between LE and ME as
follows- LE(10) + ME(3) also, combining LE(13) with neutral current (NC) channel and
near detector (ND)
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Fig. 3 Comparison of the DUNE sensitivity to ✓34 using the
NC samples at the ND and FD with previous and existing
experiments. Regions to the right of the contour are excluded.

CL allowed region is obtained, which can be compared
with the LSND allowed region in the same figure.

4 Non-Unitarity of the Neutrino Mixing Matrix

A generic characteristic of most models explaining the
neutrino mass pattern is the presence of heavy neu-
trino states, additional to the three light states of the
SM of particle physics [20–22]. These types of mod-
els imply that the 3 ⇥ 3 Pontecorvo-Maki-Nakagawa-
Sakata (PMNS) matrix is not unitary due to mixing
with additional states. Besides the type-I seesaw mech-
anism [23–26], di↵erent low-scale seesaw models include
right-handed neutrinos that are relatively not-so-heavy,
with mass of 1-10 TeV [27], and perhaps detectable at
collider experiments.

These additional heavy leptons would mix with the
light neutrino states and, as a result, the complete uni-
tary mixing matrix would be a squared n ⇥ n matrix,
with n the total number of neutrino states. Therefore,
the usual 3⇥3 PMNS matrix, which we dub N to stress
its non-standard nature, will be non-unitary. One pos-
sible general way to parameterize these unitarity devi-
ations in N is through a triangular matrix [28]1

N =

8
>>>>>>:

1 � ↵ee 0 0
↵µe 1 � ↵µµ 0
↵⌧e ↵⌧µ 1 � ↵⌧⌧

9
>>>>>>; U , (6)

1For a similar parameterization corresponding to a (3 + 1)
and a (3 + 3)-dimensional mixing matrix, see Refs. [29, 30]
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Fig. 4 DUNE sensitivities to ✓µe from the appearance and
disappearance samples at the ND and FD are shown on the
top plot, along with a comparison with previous existing ex-
periments and the sensitivity from the future SBN program.
Regions to the right of the DUNE contours are excluded.
The plot is adapted from Ref. [18]. In the bottom plot, the
ellipse displays the DUNE discovery potential assuming ✓µe
and �m2

41 set at the best-fit point determined by LSND [19]
(represented by the star) for the best-case scenario referenced
in the text.

with U representing the unitary PMNS matrix, and the
↵ij representing the non-unitary parameters.2 In the
limit where ↵ij = 0, N becomes the usual PMNS mix-
ing matrix.

The triangular matrix in this equation accounts for
the non-unitarity of the 3 ⇥ 3 matrix for any number
of extra neutrino species. This parameterization has
been shown to be particularly well-suited for oscillation
searches [28, 31] since, compared to other alternatives,
it minimizes the departures of its unitary component U
from the mixing angles that are directly measured in

2The original parameterization in Ref. [28] uses ↵ii instead of
↵�� . The equivalence between the two notations is as follows:
↵ii = 1 � ↵�� and ↵ij = ↵�� .
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What about tau neutrinos at DUNE ?
• Among all fermions of the SM, tau neutrinos are least experimentally seen. Only 9 tau neutrino + tau anti 

neutrinos CC events seen in DONuT experiment and 10 tau neutrino CC events seen in OPERA 
experiment.

• Current generation of neutrino experiments provides nearly complete description of 3 flavor paradigm.

• All information about tau sector is taken from 

• Lepton universality for cross-sections

• PMNS unitarity for oscillations

• We need to test these assumptions.

                             

              

Truth Level Studies: Nature of F5 and Hypothesis of F4 = 0, F5 = 0 for 
higher values of x. 

Barbara Yaeggy - University of Cincinnati

- GENIE 3.0.6 truth Information
- Using DUNE far detector geometry 

(Argon 40 ) 
- Tau optimized flux

● CP optimized (3 horns configuration) 

- Low energy 
- Default starting configuration

● Tau-optimized (2 horns configuration) - 
future upgrade, under investigation

- High energy spectrum 
- Possible configuration after CP 

program has completed

Expected counts/year:

~ 30   𝜈𝜏   in CP-optimized neutrino mode
~ 130 𝜈𝜏   in CP-optimized neutrino mode

~ 800 𝜈𝜏   in Tau-optimized neutrino mode

7

CP optimized configuration (3 horns)

~130 tau neutrino counts/year

~30 tau anti-nu counts/year

Tau optimized configuration (2 horns)

~800 tau nu counts/year



Other possibilities



“for experiments with entangled photons, establishing the 
violation of Bell inequalities and pioneering quantum 

information science”

2022 Nobel 

 

ALAIN ASPECT JOHN F CLAUSER ANTON ZEILINGER

ICTS Program on Horizons in Accelerators, Particle/Nuclear Physics and Laboratory-based Quantum Sensors for HEP/NP (Nov 2022)

https://www.nobelprize.org/prizes/physics/2022/aspect/facts/


Violation of Leggett-Garg Inequalities
J. A. Formaggio, D. I. Kaiser, M. M. Murskyj, and T. E. Weiss, Phys. Rev. Lett. 117, 050402 (2016) ; M. Schirber, Physics 9, s81 

(2016)

2016

Violation of the Leggett-Garg Inequality in Neutrino Oscillations

J. A. Formaggio,* D. I. Kaiser, M.M. Murskyj, and T. E. Weiss
Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

(Received 8 February 2016; published 26 July 2016)

The Leggett-Garg inequality, an analogue of Bell’s inequality involving correlations of measurements on
a system at different times, stands as one of the hallmark tests of quantum mechanics against classical
predictions. The phenomenon of neutrino oscillations should adhere to quantum-mechanical predictions
and provide an observable violation of the Leggett-Garg inequality. We demonstrate how oscillation
phenomena can be used to test for violations of the classical bound by performing measurements on an
ensemble of neutrinos at distinct energies, as opposed to a single neutrino at distinct times. A study of the
MINOS experiment’s data shows a greater than 6σ violation over a distance of 735 km, representing the
longest distance over which either the Leggett-Garg inequality or Bell’s inequality has been tested.

DOI: 10.1103/PhysRevLett.117.050402

Perhaps one of the most counterintuitive aspects of
quantum mechanics is the principle of superposition, which
stipulates that an entity can exist simultaneously in multiple
different states. Bell and others indicated how experiments
could distinguish between classical systems and those that
demonstrate quantum superposition [1,2]. Bell’s inequality
concerns correlations among measurements on spatially
separated systems. Leggett and Garg developed an analo-
gous test that concerns correlations among measurements
performed on a system at different times, and they extended
this test to apply to macroscopic entities [3]. Sometimes
referred to as the “time analogue” of Bell’s inequality, the
Leggett-Garg inequality (LGI) allows for a complementary
test of quantum mechanics while potentially avoiding some
of the difficulties involved in performing a truly loophole-
free test of Bell’s inequality [4–7]. See [8] for a recent
review.
The original goal of LGI tests was to demonstrate

macroscopic coherence—that is, that quantum mechanics
applies on macroscopic scales up to the level at which
many-particle systems exhibit decoherence [3,8–12]. For
this reason, a major focus of recent LGI research has been
scaling up to tests with macroscopic systems.
LGI tests have another purpose: to test “realism,” the

notion that physical systems possess complete sets of
definite values for various parameters prior to, and inde-
pendent of, measurement. Realism is often encoded in
hidden-variable theories, which allow for systems that are
treated as identical according to quantum mechanics to be
fundamentally distinguishable through a hidden set of
parameters that they possess, such that any measurement
on a system reveals a preexisting value [13]. LGI violations
imply that such hidden-variable (or “realistic”) alternatives
to quantum mechanics cannot adequately describe a sys-
tem’s time evolution. Experiments using few-particle sys-
tems can test realism even if they do not directly address
macrorealism [13–19].

Neutrino flavor oscillations, which are coherent in the
few-particle limit, provide an interesting system with which
to test the LGI. Neutrinos have been detected in three
distinct “flavors,” which interact in particular ways with
electrons, muons, and tau leptons, respectively. Flavor
oscillations occur because the flavor states are distinct
from the neutrino mass states; in particular, a given flavor
state may be represented as a coherent superposition of the
different mass states [20,21]. Neutrino flavor oscillations
may be treated with the same formalism that is typically
used to describe other systems displaying quantum coher-
ence, such as squeezed atomic states [22]. The major
difference between neutrinos and these familiar systems,
however, is that the coherence length of neutrino oscil-
lations—the length over which interference occurs and
oscillations may be observed—extends over vast distances,
even astrophysical scales [23]. A LGI experiment using
neutrino oscillations therefore presents a stark contrast to
other types of LGI tests, which typically use photons,
electrons, or nuclear spins, for which coherence distances
are much more constrained [8].
Experimental violations of the LGI can lead to definitive

conclusions about realism only if the measurement out-
comes represent the underlying time evolution of the
system. Invasive measurements, characterized either by
wave function collapse or by experimental imperfections
that classically disrupt the system, would prevent an
experimenter from ruling out realistic alternatives to
quantum mechanics, even in the face of an apparent
violation of the LGI. Several experiments have worked
to bypass this limitation by using indirect or weak mea-
surements to probe the system [11,14,15].
In the case of neutrino flavor oscillations, it is possible to

circumvent the problems posed by invasivity by performing
measurements on members of an identically prepared
ensemble; this obviates the issue of whether individual
measurements influence one another. When combined with
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• MINOS measures the survival probabilities of oscillating muon neutrinos produced in the NuMI accelerator 
complex. 

• The accelerator provides a source of neutrinos with a fixed baseline and an energy spectrum that peaks at a point 
corresponding to δL/Eν ∼ 250 km/GeV, close to the region where the survival probability Pμμ reaches its first 
minimum.

•  This experimental design provides an ideal phase space to test for LGI violations.
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• This violation occurs over a distance of 735 km, providing the longest range over 
which a Bell-like test of quantum mechanics has been carried out to date. 

violation [30,31], which indicates that the MINOS oscil-
lation data depend on τ but not on ti or tj separately.
The MINOS Collaboration recently released preliminary

oscillation results as a function of neutrino energy [32]. For
their baseline distance of 735 km, the MINOS experiment
covers the energy interval 0.5–50 GeV, which corresponds
to a phase range of∼ð0;3π=2", within which LGI violations
are expected to be near maximal for a quantum-mechanical
system. As Fig. 1 illustrates, the data are readily consistent
with the existing quantum-mechanical model of neutrino
oscillations [34]. To test or constrain alternative explan-
ations, we use survival probabilities measured at different
energies Ea and, thus, at different phases ψa.
To construct K3, we select all pairs of measured points

on the Fig. 1 oscillation curve a ≥ b such that the projected
sum of phases ψa þ ψb given by Eq. (8) falls within

0.5% of a third measured phase value ψc. A total of 82
correlation triples ðψa;ψb;ψcÞ satisfy the phase condition
ψa þ ψb ∈ ψc % 0.5%, 64 of which explicitly violate the
LGI bound, yielding K3> 1. In order to properly account
for the strong statistical correlations which exist between
different empirical values ofK3, we generate a large sample
of pseudodata based on the observed Pμμ values. These data
points are modeled as normal distributions, with their
means and variances matched to those of the observed
probabilities. Each simulated measurement thus yields an
artificial number of values for K3, from which one can
determine the probability that the system represented by the
given data set violates the LGI. The modeling and param-
eter extraction is executed using the STAN Markov simu-
lation package [35].
Because of statistical fluctuations present in the oscil-

lation data, some fraction of the observed K3 values may
fluctuate above the classical bound, even if the underlying
distribution is itself classical or realistic. To determine
the frequency with which classical distributions give
false-positive LGI violations, we use the same Markov
chain statistical sampling method to construct a classical
distribution of KC

3. This allows us to make a quantitative
comparison between classical and quantum predictions:
The observed number of points above the classical bound
may be directly compared to the predictions from classical
[Eq. (4)] and quantum [Eq. (11)] rules. The impact of the
systematic uncertainties from the amplitude and phases, as
best estimated from Ref. [36], are also included in our
construction of KC

3.
To estimate the degree to which these results are

inconsistent with a hidden-variable or realistic model, we
fit the distribution of the number of expected LGI violations
from the classical model [Eq. (4)] to a beta-binomial
function, so as to account for the heteroscedasticity of
the underlying distribution. The observed number of LGI
violations (64 out of 82) represents a 6.2σ deviation from

FIG. 1. The survival probability of νμ as measured by the
MINOS experiment. The solid (blue) curve indicates the pre-
diction for oscillations assuming global values of Δm2

atm,
sin22θatm [33], while the dashed (red) curve indicates the
prediction fitting directly to the measured MINOS values of
Pμμ. The red band indicates a 1σ confidence interval around the
fitted prediction. The data are taken from Ref. [32].

FIG. 2. (Left) The number of K3values that violate the LGI bound. The red curve indicates the expected classical distribution, while
the indigo curve indicates the quantum expectation. The arrow indicates the observed number of violations. (Right) The distribution of
K4versus the sum of the phases

P
aψa as reconstructed from Pμμ at various energies. The data (black points) show a clear clustering

above the LGI bound. Also shown are the expected distributions for the classical (red dots) and quantum (blue dots) theoretical
predictions. Note that K4can attain multiple values for a given relative phase, because there are many triplets of phase points that add up
to a given relative phase. The shown points have high statistical correlations.

PRL 117, 050402 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
29 JULY 2016

050402-4

The Hamiltonian for neutrino propagation in the two-
flavor limit is given by (setting ℏ ¼ c¼ 1) [20,21]

H ¼
!
pþm2

1 þm2
2

4p
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2
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1
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2

!
VC − ω cos 2θ ω sin 2θ

ω sin 2θ ω cos 2θ − VC

"

≡ r01þ
~r · ~σ
2

; ð5Þ

where θ is the neutrino vacuum mixing angle, m1 and m2

label the distinct mass states, ω≡ ðm2
2 −m2

1Þ=2p is the
oscillation frequency, and p≃ E is the relativistic neutrino
momentum-energy. The term VCðNÞ ¼

ffiffiffi
2

p
GFneðnÞ is the

charged (neutral) current potential due to coherent forward
scattering of neutrinos with electrons (neutrons) in matter,
and GF is the Fermi coupling constant. The term in Eq. (5)
proportional to 1 affects all flavor states identically and
therefore does not contribute to flavor oscillations.
For neutrinos of a given energy Ea, the time evolution of

flavor states is governed by the unitary operator U, which is
related to Hosc ≡ ~r · ~σ=2 via

Uðωa; ti; tjÞ≡ Uðψa;ijÞ ¼ exp
!
−i

Z
tj

ti
HoscðωaÞdt

"

≃ cosðψa;ijÞ1 − i sinðψa;ijÞðr̂ðωaÞ · ~σÞ; ð6Þ

where ωa is the oscillation frequency for energy Ea and
ψa;ij ≡ j~rðωaÞjðtj − tiÞ=2 is the phase accumulated while
propagating from ti to tj with energy Ea. In the limit in
which matter effects remain negligible,

ψa;ij ≃ ωa

2
ðtj − tiÞ ¼

1

4Ea
ðm2

2 −m2
1Þðtj − tiÞ: ð7Þ

A neutrino’s time evolution depends only on the accumu-
lated phase ψa;ij rather than the individual times ti and tj.
Moreover, the phases obey a sum rule: For a given energy
Ea, we have ψa;12 þ ψa;23 ¼ ψa;13, or, more generally,

Xn−1

i¼1

ψa;i;iþ1 ¼ ψa;1n: ð8Þ

Given the unitary operator defined in Eq. (6), for
neutrinos propagating with energy Ea, we find the evolu-
tion of the operator Q̂ðtj − tiÞ ¼ U†ðψa;ijÞQ̂Uðψa;ijÞ ¼
~ba;ij · ~σ. The observable is defined only along the ẑ
projection, for which ~ba;ij · ẑ ¼ 1 − 2ðr̂ · x̂ Þ2sin2ψa;ij, and
hence the correlation Cij defined in Eq. (3) simplifies to

CijðωaÞ ¼ 1 − 2sin22θsin2ψa;ij: ð9Þ

The evolution of a given state depends only on the phase
ψa;ij. Hence, we may probe the LGI by exploiting

differences in phase that come from the spacetime sepa-
ration between measurements. For a pair of measurements
that depend on an oscillation frequency ωa and a time
interval τ ¼ tj − ti, the overall phase is ψa;ij ¼ ωaτ=2,
consistent with the stationarity condition. Furthermore, for
an experimental arrangement in which measurements occur
at a fixed distance δL from the neutrino source, we have
τ≃ δL in the relativistic limit. In that case, the phase varies
only with the energy Ea; that is, ψa;ij → ψa ¼ ωaδL=2.
This means that we may use measurements at different
frequencies ωa, as opposed to different times, to probe the
LGI. We select measurements at various Ea such that the
phases obey a sum rule: ψa þ ψb ¼ ψc ¼ ðωa þ ωbÞδL=2.
Assuming a beam that begins in the pure jνμi state and is

subjected to measurement at two fixed locations separated
by δL, the correlation term in Eq. (9) simplifies to the
difference between the neutrino survival probability and
oscillation probability:

CðωaÞ ¼ PμμðψaÞ − PμeðψaÞ ¼ 2PμμðψaÞ − 1; ð10Þ

over a time interval τ ¼ tj − ti ≃ δL. In the limit in which
matter effects remain negligible, the survival probability
(and thus each correlation function) depends only on the
neutrino energy Ea. It is therefore possible to construct the
Leggett-Garg parameter KQ

n as a sum of measured neutrino
survival probabilities PμμðψaÞ for fixed δL:

KQ
n ¼ ð2 − nÞ þ 2

Xn−1

a¼1

PμμðψaÞ − 2Pμμ

!Xn−1

a¼1

ψa

"
: ð11Þ

For nonzero mixing angles θ, violations of the Kn ≤
ðn − 2Þ limit are expected in neutrino oscillations.
Results.—In order to test for violations of the LGI, we

use the data gathered by the MINOS neutrino experiment,
which extends from Fermi National Accelerator Laboratory
in Batavia, Illinois, to Soudan, Minnesota [29]. MINOS
measures the survival probabilities of oscillating muon
neutrinos produced in the NuMI accelerator complex. The
accelerator provides a source of neutrinos with a fixed
baseline and an energy spectrum that peaks at a point
corresponding to δL=Eν ∼ 250 km=GeV, close to the
region where the survival probability Pμμ reaches its first
minimum. This experimental design provides an ideal
phase space to test for LGI violations.
The MINOS Near Detector at Fermilab measures a beam

of neutrinos, more than 98% of which are found to be in the
jνμi state [29], consistent with the identically prepared
flavor state assumption. Moreover, the MINOS experimen-
tal data exhibit stationarity, as verified by tests of Lorentz
invariance in neutrino oscillations. Violation of Lorentz
invariance would lead to a time-dependent alteration of the
oscillation parameters, caused by the relative velocity of
Earth as it orbits around the Sun. Tests of Lorentz violation
using the sameMINOS data we use here reveal no observed
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Given the unitary operator defined in Eq. (6), for
neutrinos propagating with energy Ea, we find the evolu-
tion of the operator Q̂ðtj − tiÞ ¼ U†ðψa;ijÞQ̂Uðψa;ijÞ ¼
~ba;ij · ~σ. The observable is defined only along the ẑ
projection, for which ~ba;ij · ẑ ¼ 1 − 2ðr̂ · x̂ Þ2sin2ψa;ij, and
hence the correlation Cij defined in Eq. (3) simplifies to
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The evolution of a given state depends only on the phase
ψa;ij. Hence, we may probe the LGI by exploiting

differences in phase that come from the spacetime sepa-
ration between measurements. For a pair of measurements
that depend on an oscillation frequency ωa and a time
interval τ ¼ tj − ti, the overall phase is ψa;ij ¼ ωaτ=2,
consistent with the stationarity condition. Furthermore, for
an experimental arrangement in which measurements occur
at a fixed distance δL from the neutrino source, we have
τ≃ δL in the relativistic limit. In that case, the phase varies
only with the energy Ea; that is, ψa;ij → ψa ¼ ωaδL=2.
This means that we may use measurements at different
frequencies ωa, as opposed to different times, to probe the
LGI. We select measurements at various Ea such that the
phases obey a sum rule: ψa þ ψb ¼ ψc ¼ ðωa þ ωbÞδL=2.
Assuming a beam that begins in the pure jνμi state and is

subjected to measurement at two fixed locations separated
by δL, the correlation term in Eq. (9) simplifies to the
difference between the neutrino survival probability and
oscillation probability:

CðωaÞ ¼ PμμðψaÞ − PμeðψaÞ ¼ 2PμμðψaÞ − 1; ð10Þ

over a time interval τ ¼ tj − ti ≃ δL. In the limit in which
matter effects remain negligible, the survival probability
(and thus each correlation function) depends only on the
neutrino energy Ea. It is therefore possible to construct the
Leggett-Garg parameter KQ

n as a sum of measured neutrino
survival probabilities PμμðψaÞ for fixed δL:
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For nonzero mixing angles θ, violations of the Kn ≤
ðn − 2Þ limit are expected in neutrino oscillations.
Results.—In order to test for violations of the LGI, we

use the data gathered by the MINOS neutrino experiment,
which extends from Fermi National Accelerator Laboratory
in Batavia, Illinois, to Soudan, Minnesota [29]. MINOS
measures the survival probabilities of oscillating muon
neutrinos produced in the NuMI accelerator complex. The
accelerator provides a source of neutrinos with a fixed
baseline and an energy spectrum that peaks at a point
corresponding to δL=Eν ∼ 250 km=GeV, close to the
region where the survival probability Pμμ reaches its first
minimum. This experimental design provides an ideal
phase space to test for LGI violations.
The MINOS Near Detector at Fermilab measures a beam

of neutrinos, more than 98% of which are found to be in the
jνμi state [29], consistent with the identically prepared
flavor state assumption. Moreover, the MINOS experimen-
tal data exhibit stationarity, as verified by tests of Lorentz
invariance in neutrino oscillations. Violation of Lorentz
invariance would lead to a time-dependent alteration of the
oscillation parameters, caused by the relative velocity of
Earth as it orbits around the Sun. Tests of Lorentz violation
using the sameMINOS data we use here reveal no observed
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LGI in two flavour case
Gangopadhyay, Home and Sinha Roy , Phys. Rev. A 88, 022115 (2013) We consider two-flavor neutrino oscillation. Let the initial state of neutrino

be prepared in a specific flavor, say muon neutrino |⌫µi. Then we have

Q =

(
+1 for ⌫µ

�1 for ⌫e or ⌫⌧

The correlation function C12 can be evaluated as

C12 = P⌫e⌫e (t1, t2)� P⌫e⌫µ(t1, t2)� P⌫µ⌫e (t1, t2) + P⌫µ⌫µ(t1, t2)

where P⌫↵⌫� (t1, t2) = Pµ↵(t1)P↵�(t2) is the joint probability of obtaining
neutrino in state |⌫↵i at time t1 and in state |⌫�i at time t2.

In the ultra-relativistic limit, this time di↵erence translates to the spatial
di↵erence �L = (Li � Lj), where Li and Lj are the fixed distances from the
neutrino source where the measurements occur. Therefore we have,
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Figure: K3 and K4 plotted as a function of �L for the two flavour neutrino oscillations
in matter. The contribution of various Cij ’s is also depicted.
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We consider two-flavor neutrino oscillation. Let the initial state of neutrino
be prepared in a specific flavor, say muon neutrino |⌫µi. Then we have

Q =

(
+1 for ⌫µ

�1 for ⌫e or ⌫⌧

The correlation function C12 can be evaluated as

C12 = P⌫e⌫e (t1, t2)� P⌫e⌫µ(t1, t2)� P⌫µ⌫e (t1, t2) + P⌫µ⌫µ(t1, t2)

where P⌫↵⌫� (t1, t2) = Pµ↵(t1)P↵�(t2) is the joint probability of obtaining
neutrino in state |⌫↵i at time t1 and in state |⌫�i at time t2.

In the ultra-relativistic limit, this time di↵erence translates to the spatial
di↵erence �L = (Li � Lj), where Li and Lj are the fixed distances from the
neutrino source where the measurements occur. Therefore we have,

C12 = 1� 2 sin2 2✓ sin2
✓
�m2�L
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Damped oscillations and LGI
Blennow, Ohlsson and Winter, JHEP (2005)

We can unify the description of di↵erent damping cases using damping factors
of the form

Dij = exp

 
�ij

|�m2
ij |

⇠L�

E�

!

where, we assume Dij = Dji . ij � 0 is a non-negative damping coe�cient
matrix, and �, �, and ⇠ are numbers that describe the “signature” of the
damping.
Depending on the value of ⇠, there can be two cases:

⇠ > 0: only the oscillatory terms are expected to be damped, since
�m2

ii = 0

⇠ = 0: the oscillation probability could be damped (depending on ij),
since terms independent of the oscillation phases are a↵ected

In presence of damping, the probability can be expressed as

P↵� =
3X

i,j=1

U↵j U
⇤
�j U

⇤
↵i U�i exp(�i2�ij)Dij

=
3X

i=1

J↵�
ii Dii + 2

X

1i<j3

|J↵�
ij |Dij cos(2�ij + arg J↵�

ij )

Plot of probabilities
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Figure: The two flavour oscillation probability corresponding to various damping cases
and comparison with the standard case.
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S. No. Damping Scenario Dij = exp
⇣
�ij

|�m2
ij |⇠L�

E�

⌘
 (units)

Decoherence like
⇠ 6= 0

1
Intrinsic wave
packet decoherence

exp

✓
��

2
E

(�m
2
ij)

2
L
2

8E4

◆
�
2
E

8
(GeV2)

2
Quantum
decoherence

exp

✓
�

(�m
2
ij)

2
L
2

E2

◆
 (dimensionless)

Decay like
⇠ = 0

3
Invisible neutrino
decay

exp

✓
�

L

E

◆
 (GeV · km�1)

4
Oscillations into
sterile neutrino

exp

✓
�✏

L
2

(2E)2

◆
✏ (eV4)

5
Neutrino
absorption

exp (�LE)  (GeV�1
· km�1)

Table 1: Damping scenarios considered in the present work.

Note the dependence of probability on the sign of cos(2�21) term. This explains the
fact that near the location of the peak, we get suppression and near the location of the
dip, we get enhancement. This case is “decoherence-like” (probability conserving).
In the limiting case, D21 ! 0, we obtain the expression

P↵� ! �↵�

⇥
1� sin2(2✓)

⇤
+

1

2
sin2(2✓) (9)

which corresponds to the case of averaged oscillations.

The e↵ect of neutrino wave packet decoherence on the two flavour oscillation proba-
bility is shown in Fig. 1. From the figure, it is clear that wave packet decoherence
leads to damping of the oscillatory term only. It should be noted that this particular
decoherence signature is related to processes a↵ecting production and detection.

2. Quantum decoherence

If neutrino system is coupled to an environment, one may encounter e↵ects due to
quantum decoherence. Quantum decoherence e↵ects in neutrino propagation are in-
troduced using the Liouville-Lindblad formalism for open quantum systems [91–96].
The density matrix ⇢ describing the neutrino flavour evolves according to

@⇢

@t
= �i [H, ⇢] +D [⇢] (10)

where the Hamiltonian, H, is responsible for the usual unitary evolution, and the
extra term, D [⇢], for non-unitary evolution, i.e., decoherence. We describe all possible
decoherence cases in the context of two flavour neutrino oscillations in Appendix A.

In what follows, we consider two cases :

5

See also Shafaq and Mehta, J Phys. G 48, 085002 (2021) 
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Non-standard Neutrino Oscillations :

description in terms of unitarity triangles
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where λj = (∆m2
j1)m/∆m2

31. N2 and N3 are normalisation factors, given by

N2 =
[
1 + A2|ε̃23|2

(λ3 − λ2)2
+ A2|ε̃12|2

λ2
2

]−1/2
,

N3 =
[
1 + A2|ε̃23|2

(λ3 − λ2)2
+ A2|ε̃13|2

λ2
3

]−1/2
. (2.19)

Once we have computed the elements of UN , we can readily find the NSI modified LUT
parameters using eq. (2.4) with U → UN ,

bNµe = |UN
22U

N∗
12 | , cNµe = |UN

23U
N∗
13 | , αN

µe = arg
(

−UN
23U

N∗
13

UN
22U

N∗
12

)

;

bNµτ = |UN
22U

N∗
32 | , cNµτ = |UN

23U
N∗
33 | , αN

µτ = arg
(

−UN
23U

N∗
33

UN
22U

N∗
32

)

. (2.20)

Note that the subscripts indicate the oscillation channel (νµ → νe or νµ → ντ ) under
consideration. It is worth pointing out that bNαβ , c

N
αβ ,α

N
αβ depend only on the elements of

the mixing matrix in a rephasing invariant form [39] and are independent of the specific
parameterization. The first order perturbed eigenvalues of KNSI are given by,

(∆m2
31)N ≃ (∆m2

31)m +A(ε̃33 − ε̃11)∆m2
31 ,

(∆m2
21)N ≃ (∆m2

21)m +A(ε̃22 − ε̃11)∆m2
31 . (2.21)

The oscillation probability takes the same form as in the case of standard matter
(eq. (2.11)), or in the case of vacuum (eq. (2.7)), with the appropriately modified values
of the sides and angles of the LUT relevant for the particular channel:

Pℓℓ′ = 4(cNℓℓ′)2 sin2 ∆N
31 − 8bNℓℓ′cNℓℓ′ sin∆N

31 sin∆N
21 cos[∆N

32 + αN
ℓℓ′ ] + 4(bNℓℓ′)2 sin2 ∆N

21 . (2.22)

Expressing the NSI oscillation probability as eq. (2.22) and thereby establishing the
robustness of the expression of oscillation probability in terms of the LUT parameters in
the presence of NSI constitutes the key result of this work. Thus, the invariance of the
probability expression allows for a neat geometric view of neutrino oscillations in terms of
LUT, as depicted in figure 1.

It should be noted that the above description only applies to appearance channels
(l ̸= l′). For the disappearance channels (l = l′), there is no LUT and, therefore, we can
infer the disappearance probabilities only indirectly by imposing the unitarity condition.
For example, for the muon disappearance channel, we can write Pµµ = 1 − Pµe − Pµτ .

3 Validity of the approximate LUT expression for NSI

The accuracy of the LUT expression for the neutrino oscillation probability with standard
matter interactions given by eq. (2.11) with respect to the exact numerical calculation
was tested in ref. [46] for different baselines ranging between 295 − 1300 km. In this
section, we compare the precision of our LUT formula in presence of NSI, eq. (2.22), with
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The dimensionless coefficients εf(f
′)X

αβ quantify the strength of the NSI with respect to
the standard weak interaction. Here f and f ′ refer to the charged fermions involved in
the interactions (electrons and up and down-quarks), while X denotes the left and right
chirality of the projection operator PX . The CC NSI can affect the neutrino production
and detection processes. In this work, however, we focus only on NC NSI, since we are
interested in the effect of NSI in the neutrino propagation through matter, which is affected
by the vector part of the NSI, given by εfVαβ = εfLαβ + εfRαβ . In the most general case, the
neutrino oscillation probability is indeed affected by the combination

εαβ = εeVαβ + Nu

Ne
εuVαβ + Nd

Ne
εdVαβ , (2.14)

with the electron, up-quark and down-quark densities denoted by Ne, Nu and Nd, respec-
tively. The Hamiltonian with NSI is then given by,

H = ∆m2
31

2E U

⎛

⎜⎝
0 0 0
0 r 0
0 0 1

⎞

⎟⎠U † +
√
2GFNe

⎛

⎜⎝
1 0 0
0 0 0
0 0 0

⎞

⎟⎠+
√
2GFNe

⎛

⎜⎝
εee εeµ εeτ

ε∗
eµ εµµ εµτ

ε∗
eτ ε∗

µτ εττ

⎞

⎟⎠

︸ ︷︷ ︸
ε

= ∆m2
31

2E Um
[
Kdiag +Aε̃

]
(Um)† , (2.15)

where Kdiag contains the eigenvalues for the SI case and ε̃ = (Um)†εUm. In analogy with
the matrix K in eq. (2.9), here we define the corresponding matrix in the presence of NSI as

KNSI = Kdiag +Aε̃ . (2.16)

In order to find the effective mass-squared splittings in the case of NSI, we can diagonalise
KNSI with a matrix S such that S†KNSIS = KNSI

diag and obtain a modified mixing matrix
given by UN = UmS. We then introduce NSI as a perturbation to the standard matter
potential and invoke time-independent perturbation theory to diagonalise the perturbed
matrix KNSI. For a perturbed matrix, H = H0 + λH(1), the modified eigenvalues are
given (after first order correction) by En = E(0)

n + λ ⟨Φ(0)
n |H(1) |Φ(0)

n ⟩, where E(0)
n is the

unperturbed eigenvalue with the corresponding unperturbed eigenvector being |Φ(0)
n ⟩. The

modified eigenvectors of H, after first order correction, are given by,

|Φn⟩ = |Φ(0)
n ⟩ − λ

∑

k ̸=n

⟨Φ(0)
k |H(1) |Φ(0)

n ⟩
E(0)

k − E(0)
n

|Φ(0)
k ⟩ . (2.17)

Using these, the relevant elements of UN can be expressed in terms of elements of Um as

UN
12 =N2

[
Um
12 −A

ε̃∗
23

λ3−λ2
Um
13 −A

ε̃12
−λ2

Um
11

]
, UN

13 =N3

[
Um
13 −A

ε̃23
λ2−λ3

Um
12 −A

ε̃13
−λ3

Um
11

]
,

UN
22 =N2

[
Um
22 −A

ε̃∗
23

λ3−λ2
Um
23 −A

ε̃12
−λ2

Um
21

]
, UN

23 =N3

[
Um
23 −A

ε̃23
λ2−λ3

Um
22 −A

ε̃13
−λ3

Um
21

]
,

UN
32 =N2

[
Um
32 −A

ε̃∗
23

λ3−λ2
Um
33 −A

ε̃12
−λ2

Um
31

]
, UN

33 =N3

[
Um
33 −A

ε̃23
λ2−λ3

Um
32 −A

ε̃13
−λ3

Um
31

]
,

(2.18)
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Expressing the NSI oscillation probability as eq. (2.22) and thereby establishing the
robustness of the expression of oscillation probability in terms of the LUT parameters in
the presence of NSI constitutes the key result of this work. Thus, the invariance of the
probability expression allows for a neat geometric view of neutrino oscillations in terms of
LUT, as depicted in figure 1.

It should be noted that the above description only applies to appearance channels
(l ̸= l′). For the disappearance channels (l = l′), there is no LUT and, therefore, we can
infer the disappearance probabilities only indirectly by imposing the unitarity condition.
For example, for the muon disappearance channel, we can write Pµµ = 1 − Pµe − Pµτ .

3 Validity of the approximate LUT expression for NSI

The accuracy of the LUT expression for the neutrino oscillation probability with standard
matter interactions given by eq. (2.11) with respect to the exact numerical calculation
was tested in ref. [46] for different baselines ranging between 295 − 1300 km. In this
section, we compare the precision of our LUT formula in presence of NSI, eq. (2.22), with
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