Physics opportunities with Near and Far Detectors at long baseline neutrino experiments

Poonam Mehta
School of Physical Sciences,
Jawaharlal Nehru Universily,
New Delhi
Samiran Roy (2020)
Collaborators:
Ahimesh Chatterjee, Mehedi Masud \& Mary Bishai

Sheeba Shafaq (2022)

```
Bishai
```


Plan

- Neutrino sources and detectors
- Long baseline neutrino experiments
- Deep Underground Neutrino Experiment
- Near and Far Detectors
- Neutrino oscillations in the standard three flavour paradigm and beyond
- Non-standard Interactions
- Sterile neutrinos
- Other possibilities

Neutrino sources

Credit : Sabila Parveen, adapted from 1903.04333 [astro-ph.HE], 1911.05088, PRD 2020

DEEP UNDERGROUND NEUTRINO EXPERIMENT

CDR, Vol 1, 1601.05471 [physics.ins-det], CDR, Vol 2, 1512.06148 [physics.ins-det], TDR vol 1, JINST 15 (2020) 08, T08008, TDR Vol 2, 2002.03005 [hep-ex]

- Beam - LBNF (FNAL), 1.2-2.4MW, Baseline 1300 km
- Far detector (LArTPC, ~ 40 kt fiducial mass) located on-axis such that observed flux is a broad spectrum (0.5-5 GeV)
- DUNE has a broad program of neutrino oscillation physics, constrain the standard three neutrino paradigm
- Beam covers first and second oscillation maxima
- Alternative beam tunes possible

$$
\begin{aligned}
\frac{L(\mathrm{~km})}{E_{\nu}(\mathrm{GeV})} & =(2 n-1) \frac{\pi}{2} \frac{1}{1.27 \times \Delta m_{31}^{2}\left(\mathrm{eV}^{2}\right)} \\
& \approx(2 n-1) \times 510 \mathrm{~km} / \mathrm{GeV}
\end{aligned}
$$

Sanford Underground

Research Facility

DEEP UNDERGROUND NEUTRINO EXPERIMENT

CDR, Vol 1, 1601.05471 [physics.ins-det], CDR, Vol 2, 1512.06148 [physics.ins-det], TDR vol 1, JINST 15 (2020) 08, T08008, TDR Vol 2, 2002.03005 [hep-ex]

- Muon neutrino beam
- Measure electron neutrino appearance and muon neutrino disappearance probability

$$
\begin{aligned}
\frac{L(\mathrm{~km})}{E_{\nu}(\mathrm{GeV})} & =(2 n-1) \frac{\pi}{2} \frac{1}{1.27 \times \Delta m_{31}^{2}\left(\mathrm{eV}^{2}\right)} \\
& \approx(2 n-1) \times 510 \mathrm{~km} / \mathrm{GeV}
\end{aligned}
$$

DUNE Far Detector

CDR, Vol 1, 1601.05471 [physics.ins-det], CDR, Vol 2, 1512.06148 [physics.ins-det], TDR vol 1, JINST 15 (2020) 08, T08008, TDR Vol 2, 2002.03005 [hep-ex]

- 1300 km baseline
- Liquid Argon time projection chamber (LArTPC) - high resolution neutrino interaction imaging
- 4×17 kton LArTPC modules

DUNE Near Detector

DUNE-ND Preliminary, 2103.13910

- ND Goals -
- Constrain systematics to electron neutrino appearance measurement
- Precision physics measurements
- Three components
- ND-LAr - LArTPC similar to FD
- ND-GAr - Gas Argon TPC detector
- SAND - on-axis magnetized beam monitor
- ND-LAr and ND-GAr movable off-axis for the DUNE-PRISM program
- Each element specifically designed to fulfill requirements of oscillation measurement

Neutrino interaction modeling

Phased Construction arXiv:2203.06100, Talk by Elizabeth Worcester, NDM22

- Neutrinos in these experiments are not interacting with bare nucleons - structure of nucleus matters
- Detailed modelling of complex nuclei needed
- Interaction model affects energy reconstruction - misreconstructed energy can significantly bias results
- Neutrino-nucleus interaction model does not currently describe world neutrino interaction data \rightarrow program of neutrino interaction experiments, model-building, and event generator development very important for precision measurements in neutrino physics
- Long-baseline experiments are being designed to provide experimental solutions to imperfect interaction model
- Improve model constraints by making precise measurements of final states
- Reduce sensitivity to details of model by making data-driven predictions

Diagrams by Patrick Stowell
PRISM (Precision Reaction Independent Spectrum Measurement)

- Off-axis angle changes the observed near detector flux (pion decay kinematics)
- PRISM: Analysis strategy to reduce dependence on interaction modeling by using near detector data at different off-axis angles to build predicted fardetector spectrum

Neutrino oscillations

Three flavour neutrino oscillations

Pontecorvo, Sov. Phys. JETP, 6 (1957), p. 429 ; Maki, Nakagawa, Sakata, Prog. Theor. Phys., 28 (1962), p. 870
$U=\underbrace{\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23}\end{array}\right)}_{\text {Atmospheric }} \overbrace{\left(\begin{array}{ccc}c_{13} & 0 & s_{13} e^{-i \delta} \\ 0 & 1 & 0 \\ -s_{13} e^{i \delta} & 0 & c_{13}\end{array}\right)}^{\left(\begin{array}{ccc}c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1\end{array}\right)}$
where $s_{i j}=\sin \theta_{i j}, \quad c_{i j}=\cos \theta_{i j}$ and δ is the Dirac-type CP phase If Majorana - two additional phases appear, $U \rightarrow U \operatorname{diag}\left(1, e^{i \kappa}, e^{i \zeta}\right)$

Parameters

- 3 angles
- 1 phase
- 2 mass-squared differences

Unknowns

- CP violating phase
- Sign of larger mass-splitting
- Octant of theta 23

Current status : three flavour neutrino oscillations

NuFIT 5.0 (2020), www.nu-fit.org, JHEP 09 (2020) 178 [arXiv:2007.14792], 2003.08511, 2006.11237

- Bari group
- Spanish group
- NuFIT group
- Solid line - NH
- Dashed line - IH

[^0]
Standard unknowns

Violation of discrete symmetries: C, P, T

$$
A_{\alpha \beta}^{C P}=\frac{P_{\alpha \beta}-\bar{P}_{\alpha \beta}}{P_{\alpha \beta}+\bar{P}_{\alpha \beta}}, \quad A_{\alpha \beta}^{T}=\frac{P_{\alpha \beta}-P_{\beta \alpha}}{P_{\alpha \beta}+P_{\beta \alpha}}, \quad A_{\alpha \beta}^{C P T}=\frac{P_{\alpha \beta}-\bar{P}_{\beta \alpha}}{P_{\alpha \beta}+\bar{P}_{\beta \alpha}}
$$

CPT Invariance

$$
\begin{array}{ll}
A_{\alpha \beta}^{C P}=-A_{\beta \alpha}^{C P} & \\
A_{\alpha \alpha}^{C P}=0 & \begin{array}{l}
\text { No CP asymmetry in } \\
\text { survival probability }
\end{array}
\end{array}
$$

Unitarity

$$
\begin{aligned}
& \sum_{\beta} P_{\alpha \beta}=1=\sum_{\beta} \bar{P}_{\alpha \beta} \\
& A_{e \mu}^{C P}=A_{\mu \tau}^{C P}=A_{\tau e}^{C P} \propto \Delta P \\
& A_{e \mu}^{T}=A_{\mu \tau}^{T}=A_{\tau e}^{T} \propto \Delta P
\end{aligned} \text { Single CP /T asymmetry }
$$

$$
P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right) \xrightarrow{C P} P\left(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}\right)
$$

Jarlskog factor

$$
J=s_{12} c_{12} s_{23} c_{23} s_{13} c_{13}^{2} \sin \delta
$$

$$
\nu_{\mu} \rightarrow \nu_{e}
$$

CP Asymmetry in vacuum

Marciano and Parsa, hep-ph/0610258

$$
\begin{aligned}
& \mathcal{A}_{C P}=\frac{P_{\mu e}-\bar{P}_{\mu e}}{P_{\mu e}+\bar{P}_{\mu e}} \\
& P\left(\nu_{\mu} \rightarrow \nu_{e}\right)=P_{I}\left(\nu_{\mu} \rightarrow \nu_{e}\right)+P_{I I}\left(\nu_{\mu} \rightarrow \nu_{e}\right)+P_{I I I}\left(\nu_{\mu} \rightarrow \nu_{e}\right)+\text { matter }+ \text { smaller terms }
\end{aligned}
$$

To leading order in small delta $m^{\wedge} 2$
$\mathcal{A}_{C P}=\frac{\cos \theta_{23} \sin 2 \theta_{12} \sin \delta}{\sin \theta_{23} \sin \theta_{13}}\left(\frac{\Delta m_{21}^{2} L}{4 E}\right)+$ matter effects

$$
P_{I}\left(\nu_{\mu} \rightarrow \nu_{e}\right)=\sin ^{2} \theta_{23} \sin ^{2} 2 \theta_{13} \sin ^{2}\left(\frac{\Delta m_{13}^{2} L}{4 E_{\nu}}\right)
$$

$$
P_{I I}\left(\nu_{\mu} \rightarrow \nu_{e}\right)=\frac{1}{2} \sin 2 \theta_{12} \sin 2 \theta_{13} \sin 2 \theta_{23} \cos \theta_{13}
$$

Interference term

$$
\sin \left(\frac{\Delta m_{21}^{2} L}{2 E_{\nu}}\right) \times\left[\sin \delta \sin ^{2}\left(\frac{\Delta m_{31}^{2} L}{4 E_{\nu}}\right)\right.
$$

$$
\begin{aligned}
& \sim 1 / \sin \theta_{13} \\
& \sim \cot \theta_{23}
\end{aligned}
$$

Grows with L and I/E

Oscillation physics at DUNE

Phased Construction arXiv:2203.06100, Talk by Elizabeth Worcester, NDM22

Phase I

two 17-kt (~10 kt fiducial) far detector modules, 1.2 MW proton beam, ND: ND-LAr + Temporary muon spectrometer (movable), SAND

Phase II

total of four far detector modules, 2.4 MW proton beam, full ND (ND-GAr replaces Temporary muon spectrometer)

Precision measurements at DUNE

arXiv:2006.16043 arXiv:2109.01304, Talk by Elizabeth Worcester, NDM22

Width of band represents difference between sensitivity with and without external constraint on 13 angle.

Prospects with 2nd maxima at DUNE

Jogesh Rout, Sheeba Shafaq, Mary Bishai and PM, PRD 2021

S. Choubey, M. Ghosh, D. Kempe and T. Ohlsson, Exploring invisible neutrino decay at ESSnuSB, 2010.16334.

Systematic uncertainty

Phased Construction arXiv:2203.06100, Talk by Elizabeth Worcester, NDM22

- Order few percent uncertainty required for precision measurements
- Sources of uncertainty :
- Neutrino flux
- Neutrino interaction model
- Detector effects
- Impact of biases due to shortcomings in the interaction model is large
- Near detectors critical to achieve precision measurement goals

Impact of BSM physics on standard unknowns

Sensitivity to CP violation and mass hierarchy DUNE

Mehedi Masud, Animesh Chatterjee, PM, J Phys G 2016, Mehedi Masud, PM, PRD 2016, Jogesh Rout, Mehedi Masud, PM, PRD 2017, M. Masud, M. Bishai and PM, Scientific Reports (2019), see also Gandhi et al, JHEP 11 (2015) 039, JHEP 11 (2016) 122, Deepthi, Goswami, Nath, PRD 96 (2017), Singha, Ghosh, Majhi and Mohanta, 2211.01816, Abinash Medhi, Debajyoti Dutta and Moon Moon Devi, 2111.12943

SI-NSI separation at DUNE

Correlations among NSI parameters

Mehedi Masud, Samiran Roy, PM, PRD 2019

Sterile neutrino

Dasgupta and Kopp, 2106.05913

PRD64, 112007 (2001)

1805.12028

Experiment	L	E	Channel
LSND	30 m	$20-200 \mathrm{MeV}$	Electron antinu Appearance
MiniBooNE	541 m	$0.2-3 \mathrm{GeV}$	Electron anti(nu) Appearance + Disappearance
MicroBooNE	541 m	$0.5-3 \mathrm{GeV}$	Appearance + Disappearance

Are sterile neutrinos out?

MicroBooNE

$$
\mathrm{P}_{\mu \mathrm{e}}^{\mathrm{vac}}=\sin ^{2}\left(2 \theta_{\mu \mathrm{e}}\right) \sin ^{2} \frac{\Delta \mathrm{~m}_{41}^{2} \mathrm{~L}}{4 \mathrm{E}}
$$

Exclusion plot in sterile case

Abi et al, Eur.Phys.J.C 81 (2021) 4, 322

Sabila Parveen, Mehedi Masud, Mary Bishai and PM, to appear

What about tau neutrinos at DUNE ?

Barbara Yaeggy, talk at NuFact 2022, 2203.05591 Snowmass white paper

- Among all fermions of the SM, tau neutrinos are least experimentally seen. Only 9 tau neutrino + tau anti neutrinos CC events seen in DONuT experiment and 10 tau neutrino CC events seen in OPERA experiment.
- Current generation of neutrino experiments provides nearly complete description of 3 flavor paradigm.
- All information about tau sector is taken from
- Lepton universality for cross-sections
- PMNS unitarity for oscillations
- We need to test these assumptions.

CP optimized configuration (3 horns)
~130 tau neutrino counts/year
~30 tau anti-nu counts/year
Tau optimized configuration (2 horns)
~800 tau nu counts/year

Other possibilities

"for experiments with entangled photons, establishing the violation of Bell inequalities and pioneering quantum information science"

JOHN F CLAUSER

ANTON ZEILINGER

Violation of Leggett-Garg Inequalities

J. A. Formaggio, D.I. Kaiser, M. M. Murskyj, and T. E. Weiss, Phys. Rev. Lett. 117, 050402 (2016) ; M. Schirber, Physics 9, s81 (2016)

Violation of the Leggett-Garg Inequality in Neutrino Oscillations

> J. A. Formaggio, ${ }^{\text {D. I. Kaiser, M. M. Murskyj, and T. E. Weiss }}$ Massachusetts Institute of Technology, Cambridge, Massachusetts, USA (Received 8 February 2016; published 26 July 2016)
The Leggett-Garg inequality, an analogue of Bell's inequality involving correlations of measurements on a system at different times, stands as one of the hallmark tests of quantum mechanics against classical predictions. The phenomenon of neutrino oscillations should adhere to quantum-mechanical predictions and provide an observable violation of the Leggett-Garg inequality. We demonstrate how oscillation phenomena can be used to test for violations of the classical bound by performing measurements on an ensemble of neutrinos at distinct energies, as opposed to a single neutrino at distinct times. A study of the MINOS experiment's data shows a greater than 6σ violation over a distance of 735 km , representing the longest distance over which either the Leggett-Garg inequality or Bell's inequality has been tested.

- MINOS measures the survival probabilities of oscillating muon neutrinos produced in the NuMI accelerator complex.
- The accelerator provides a source of neutrinos with a fixed baseline and an energy spectrum that peaks at a point corresponding to $\delta \mathrm{L} / \mathrm{Ev} \sim 250 \mathrm{~km} / \mathrm{GeV}$, close to the region where the survival probability $\mathrm{P} \mu \mu$ reaches its first minimum.
- This experimental design provides an ideal phase space to test for LGI violations.

LGl test at MINOS

J. A. Formaggio, D. I. Kaiser, M. M. Murskyj, and T.E. Weiss, Phys. Rev. Lett. 117, 050402 (2016) ; M. Schirber, Physics 9, s81 (2016)

$$
\begin{aligned}
& \psi_{a ; i j} \simeq \frac{\omega_{a}}{2}\left(t_{j}-t_{i}\right)=\frac{1}{4 E_{a}}\left(m_{2}^{2}-m_{1}^{2}\right)\left(t_{j}-t_{i}\right) . \\
& \sum_{i=1}^{n-1} \psi_{a ; i, i+1}=\psi_{a ; i n} . \\
& \mathcal{C}_{i j}\left(\omega_{a}\right)=1-2 \sin ^{2} 2 \theta \sin ^{2} \psi_{a ; i j} .
\end{aligned}
$$

$$
K_{n}^{Q}=(2-n)+2 \sum_{a=1}^{n-1} P_{\mu \mu}\left(\psi_{a}\right)-2 P_{\mu \mu}\left(\sum_{a=1}^{n-1} \psi_{a}\right)
$$

- This violation occurs over a distance of 735 km , providing the longest range over which a Bell-like test of quantum mechanics has been carried out to date.

LGI in two flavour case

Gangopadhyay, Home and Sinha Roy , Phys. Rev. A 88, 022115 (2013)

$$
\left.\begin{array}{l}
Q=\left\{\begin{array}{ll}
+1 & \text { for } \nu_{\mu} \\
-1 & \text { for } \nu_{e} \text { or } \nu_{\tau}
\end{array} \quad C_{12}=1-\right.
\end{array}\right\} \begin{aligned}
& K_{3}=1-2 \sin ^{2} 2 \theta\left[2 \sin ^{2} \frac{\Delta m^{2} \tau}{4 E}-\sin ^{2} \frac{2 \Delta m^{2} \tau}{4 E}\right] \\
& K_{4}=2-2 \sin ^{2} 2 \theta\left[3 \sin ^{2} \frac{\Delta m^{2} \tau}{4 E}-\sin ^{2} \frac{3 \Delta m^{2} \tau}{4 E}\right]
\end{aligned}
$$

$$
C_{12}=\mathbb{P}_{\nu_{e} \nu_{e}}\left(t_{1}, t_{2}\right)-\mathbb{P}_{\nu_{e} \nu_{\mu}}\left(t_{1}, t_{2}\right)-\mathbb{P}_{\nu_{\mu} \nu_{e}}\left(t_{1}, t_{2}\right)+\mathbb{P}_{\nu_{\mu} \nu_{\mu}}\left(t_{1}, t_{2}\right)
$$

$$
\mathbb{P}_{\nu_{\alpha} \nu_{\beta}}\left(t_{1}, t_{2}\right)=P_{\mu \alpha}\left(t_{1}\right) P_{\alpha \beta}\left(t_{2}\right) \text { Joint Probabilities }
$$

Damped oscillations and LGI

Blennow, Ohlsson and Winter, JHEP (2005)

$$
\begin{aligned}
P_{\alpha \beta} & =\sum_{i, j=1}^{3} U_{\alpha j} U_{\beta j}^{*} U_{\alpha i}^{*} U_{\beta i} \exp \left(-\mathrm{i} 2 \Delta_{i j}\right) D_{i j} \\
& =\sum_{i=1}^{3} J_{i i}^{\alpha \beta} D_{i i}+2 \sum_{1 \leq i<j \leq 3}\left|J_{i j}^{\alpha \beta}\right| D_{i j} \cos \left(2 \Delta_{i j}+\arg J_{i j}^{\alpha \beta}\right)
\end{aligned}
$$

S. No.	Damping Scenario	$D_{i j}=\exp \left(-\kappa_{i j} \frac{\left\|\Delta m_{i j}^{2}\right\| \xi^{\beta}}{E^{\gamma}}\right)$	κ (units)
	Decoherence like		
1	Intrinsic wave packet decoherence	$\exp \left(-\sigma_{E}^{2} \frac{\left(\Delta m_{i j}^{2}\right)^{2} L^{2}}{8 E^{4}}\right)$	$\frac{\sigma_{E}^{2}}{8}\left(\mathrm{GeV}^{2}\right)$
2	Quantum decoherence	$\exp \left(-\kappa \frac{\left(\Delta m_{i j}^{2}\right)^{2} L^{2}}{E^{2}}\right)$	κ (dimensionless)
	Decay like		
	$\xi=0$		
3	Invisible neutrino decay	$\exp \left(-\kappa \frac{L}{E}\right)$	$\kappa\left(\mathrm{GeV} \cdot \mathrm{km}^{-1}\right)$
4	Oscillations into sterile neutrino	$\exp \left(-\epsilon \frac{L^{2}}{(2 E)^{2}}\right)$	$\epsilon\left(\mathrm{eV}^{4}\right)$
5	Neutrino absorption	$\exp (-\kappa L E)$	$\kappa\left(\mathrm{GeV}^{-1} \cdot \mathrm{~km}^{-1}\right)$

Non-standard Neutrino Oscillations :

description in terms of unitarity triangles

$$
H=H_{0}+H_{S I}+H_{N S I}
$$

$$
=\frac{1}{2 E} U\left(\begin{array}{ccc}
\left.\begin{array}{ccc}
m_{1}^{2} & & \\
& m_{2}^{2} & \\
& & m_{3}^{2}
\end{array}\right) & U^{\dagger}+\sqrt{2} G_{F} N_{e}\left(\begin{array}{ccc}
1 & & \\
& 0 & \\
& & \\
& & \\
\text { vacuum term }
\end{array}\right) \\
\text { standard matter term } & \sqrt{2} G_{F} N_{e}\left(\begin{array}{ccc}
\varepsilon_{e e} & \varepsilon_{e \mu} & \varepsilon_{e \tau} \\
\varepsilon_{e \mu}^{*} & \varepsilon_{\mu \mu} & \varepsilon_{\mu \tau} \\
\varepsilon_{e \tau}^{*} & \varepsilon_{\mu \tau}^{*} & \varepsilon_{\tau \tau}
\end{array}\right) \\
\text { NSI term }
\end{array}\right.
$$

$$
=\frac{\Delta m_{31}^{2}}{2 E} U^{m}\left[K_{\text {diag }}+A \tilde{\varepsilon}\right]\left(U^{m}\right)^{\dagger}
$$

Approximate expression for appearance probability depends on 3 parameters of the triangle

$$
P_{\ell \ell^{\prime}}=4\left(c_{\ell \ell^{\prime}}^{N}\right)^{2} \sin ^{2} \Delta_{31}^{N}-8 b_{\ell \ell^{\prime}}^{N} c_{\ell \ell^{\prime}}^{N} \sin \Delta_{31}^{N} \sin \Delta_{21}^{N} \cos \left[\Delta_{32}^{N}+\alpha_{\ell \ell^{\prime}}^{N}\right]+4\left(b_{\ell \ell^{\prime}}^{N}\right)^{2} \sin ^{2} \Delta_{21}^{N}
$$

$$
b_{\mu e}^{N}=\left|U_{22}^{N} U_{12}^{N *}\right|, \quad c_{\mu e}^{N}=\left|U_{23}^{N} U_{13}^{N *}\right|, \quad \alpha_{\mu e}^{N}=\arg \left(-\frac{U_{23}^{N} U_{13}^{N *}}{U_{22}^{N} U_{12}^{N *}}\right)
$$

Same form as vacuum

THANK YOU

[^0]: Credit : Sushant Raut

