CERN Neutrino Platform Pheno Week 2023

13 - 17 March 2023

Light PBH limits from high scale leptogenesis

Ninetta Saviano

Based on 2304.XXXX in collaboration with R. Calabrese,M. Chianese, J. Gunn, G. Miele, S. Morisi

Genesis of Primordial Black Holes

Primordial Black Holes: Black Holes generated at earlier than star formation times and therefore not of stellar origin.

1966: their existence first proposed by Zel'dovich and Novikov

mid-1970s: the concept was picked up and developed by Hawking and Carr. (For the first time the Black Hole name appears)

Hawking Evaporation

Hawking Evaporation

Due to a mixture of quantum and general relativity effects, the PBH can emit particles in a "black body" like (grey-body) with a temperature T_{PBH}

Hawking radiation: emission of all elementary particles with mass $< T_H$

For non-rotating and neutral PBH:

$$T_{PBH} = \frac{\hbar c^3}{8\pi G k_B M_{pl}} \simeq 10.6 \left[\frac{10^{15}g}{M_{pl}}\right] MeV$$

Hawking, Nature 248 (1974); Carr, ApJ. 206 (1976); Hawking, Comm. Math. Phys. 43 (1976); Page, PRD 13 (1976)

Current big interest in PBHs

Current big interest in PBHs

Formation mechanism

Dark Matter

Gravitational waves

Astrophysical issues

Current big interest in PBHs

Early Universe

Constraints on PBH abundance

Several observations strongly constrain the PBH abundance:

 $f(M) \equiv \frac{\Omega_{\rm PBH}(M)}{\Omega_{\rm CDM}}$

Constraints on PBH abundance

Several observations strongly constrain the PBH abundance:

$$f(M) \equiv \frac{\Omega_{\rm PBH}(M)}{\Omega_{\rm CDM}}$$

Constraints on PBH abundance

Combined constraints on $\beta(M)$ for a monochromatic PBH mass function

Non-standard cosmology PBH induced

Depending on the value of β (β') the PBHs could eventually dominate the evolution of the universe before their evaporation

Adapted from Hooper et al, 1905.01301

Baryon asymmetry of the Universe:

$$\eta \equiv \frac{n_B - n_{\bar{B}}}{n_{\gamma}} \Big|_0 = (6.21 \pm 0.16) 10^{-10}$$

$$Planck \ Collaboration$$

$$Y_{\Delta B} \equiv \frac{n_B - n_{\bar{B}}}{s} \Big|_0 = (8.75 \pm 0.23) \times 10^{-11}$$

Sakharov conditions to dynamically generate a baryon asymmetry

- 1. Baryon number violation
- 2. C and CP violation
- 3. Out of equilibrium dynamics

These ingredients are all present in the Standard Model. However, no SM mechanism generating a large enough baryon asymmetry has been found.

Simple and elegant explanation of the cosmological matter-antimatter asy

- Naturally satisfies the Sakharov conditions
- \checkmark L violation due to the Majorana nature of heavy RH neutrinos. L \rightarrow B through sphaleron interactions.
- ✓ New source of CP violation in the leptonic sector (through complex Dirac Yukawa couplings and/or PMNS CP phases).
- \checkmark Departure from thermal equilibrium when $\Gamma_N < H$.
- Provides a common link between neutrino mass and baryon asymmetry

A cosmological consequence of the seesaw mechanism

[Fukugita, Yanagida '86]

Leptogenesis Landscape

Leptogenesis Resonant Intermediate-scale High-scale Leptogenesis via oscillations Leptogenesis Leptogenesis O (1 GeV) (10⁶ GeV) O (10¹² GeV) M_{RH} O (10³ GeV) Pilaftis & Underwood Nucl.Phys. B692 303-345 (2004) Abada, Aissaoui, Losada Nucl.Phys. B728 Racker, Rius & Pena JCAP 1207 Fukugida & Yanagida Phys.Lett. B17 55-66 (2005).... 030 (2013) Moffat, Petcov, Pascoli, 45-47 (1986) Buchmuller, Di Bari & Schulz & Turner Phys.Rev. D98 Plumacher New J.Phys. 6 105 (2004) no.1, 015036 (2018) ... Barbieri, Creminelli, Strumia & Tetradis Nucl. Phys. B575 61-77 Akhmedov, Rubakov & Smirnov (2000)...

 Phys.Rev.Lett. 81 1359-1362 (1998)

 Asaka & Shaposhnikov Phys.Lett.

 B620 17-26 (2005) Asaka, Eijima &

 Ishida JHEP 1104 011(2011)...

Interesting reviews: W. Buchmuller et al. hep-ph/0401240; Sheng Fong et al. 1301.3062; Davidson et al. 0802.2962;

Leptogenesis Landscape

Leptogenesis
via oscillationsResonant
LeptogenesisIntermediate-scale
LeptogenesisHigh-scale
LeptogenesisO (1 GeV)O (103 GeV)O (106 GeV)O (1012 GeV)MrmPilafits & Underwood Nucl.Phys.
B523 03-345 (2004) Abada,
Aissaoni, Losada Nucl.Phys. B728
5-66 (2005)...Packer, Rius & Pena JCAP 1207
03 (2013) Moffut, Petcov, Pascoli,Fukugida & Yanagida Phys.Lett. B17
4547 (1986) Buchmuller, Di Bari &

Akhmedov, Rubakov & Smirnov Phys.Rev.Lett. 81 1359-1362 (1998) Asaka & Shaposhnikov Phys.Lett. B620 17-26 (2005) Asaka, Eijima & Ishida JHEP 1104 011(2011)... Fukugida & Yanagida Phys.Lett. B17 45-47 (1986) Buchmuller, Di Bari & Plumacher New J.Phys. 6 105 (2004) Barbieri, Creminelli, Strumia & Tetradis Nucl.Phys. B575 61-77 (2000)...

Basic steps of Leptogenesis

 $N \to LH / N \to \bar{L}H$

CP asymmetry results from the interference between tree and 1-loop wave and vertex diagrams.

Partial washout of the asymmetry due to inverse decay and scatterings:

Conversion of the left-over L asymmetry to B asymmetry at $T > T_{sph}$: B - L conserved

Our model: HS Thermal Leptogenesis

Fype I seesaw:
$$\mathcal{L} = i\overline{N}_i\partial N_i - Y_{\alpha i}\overline{L}_{\alpha}N_i\tilde{\phi} - \frac{1}{2}\overline{N^c}_i\hat{M}_{ij}N_j + h.c., \longrightarrow m_{\nu} \simeq -v^2Y\frac{1}{M}Y^T$$

Casas-Ibarra parametrization for the Yukawa couplings: $Y = \frac{1}{v_{EW}} \sqrt{\hat{M}} \cdot R \cdot \sqrt{\hat{m}_{\nu}} \cdot U_{PMNS}^{\dagger}$

R complex orthogonal matrix satisfying $R^T R = RR^T = 1$

• High Scale $[10^{10} \le M_1 \le 10^{16}]$ GeV

For a detailed treatment see Hambye et al, Nuclear Physics B 695 (2004) 169–191

- Thermal letogenesis era: $z = M_1/T \sim O(1)$ in which L=2 scatterings are relevant
- Hierarchical heavy neutrino spectrum $M_1 \ll M_{2,3}$
- Neglect the decays of $N_{2,3}$

• $m_1 = m_2$ since $\Delta m_{sun}^2 \ll \Delta m_{atm}^2$ \longrightarrow the only phase in R is $z_{13} = x + iy$

• Boltzmann equations: $\frac{dY_{N_1}}{dz} = -D_1(Y_{N_1} - Y_{N_1}^{eq}),$ $\frac{dY_{\Delta L}}{dz} = \epsilon_1 D_1(Y_{N_1} - Y_{N_1}^{eq}) - W_1 Y_{\Delta L}$ Washout

The CP asymmetry parameter ε_1 can be expressed in terms of only four parameters {x, y, m_h, M₁}

Parameter space of thermal leptogenis

R. Calabrese, M. Chianese, J. Gunn, G. Miele, S. Morisi, 2304.XXXX

Leptogenesis & PBH

PBH can affect the leptogenesis in different ways depending on the mass M_{PBH} and abundance (β ')

In particular we can have:

• an additional (non-thermal) source for the HRN

$$aH\frac{dn_{N_1}}{da} = -(n_{N_1} - n_{N_1}^{\text{eq}})\Gamma_{N_1}^T + n_{\text{BH}}\widetilde{\Gamma}_{N_1}^{\text{BH}},$$

contribution from thermal plasmacontribution to RHN populationStudied for $M_{PBH} < 10^5 g$ infrom PBH evaporationPerez-Gonzalez & Turner 2010.03565; Bernal et al. 2203.08823

Entropy injection in the primordial plasma (reheating)
 Studied for 10⁵ g < MPBH < 10⁹g in this work

 $10^{-15} < \beta' < 0.1$

Entropy injection by PBH

PBH by evaporating injects standard model particles in the thermal plasma —> entropy increasing

R. Calabrese, M. Chianese, J. Gunn, G. Miele, S. Morisi, 2304.XXXX

PBHConstraints by leptogenesis

R. Calabrese, M. Chianese, J. Gunn, G. Miele, S. Morisi, 2304.XXXX

NEHOP New Horizons in Primordial Black Hole physics

Naples, Italy June 19th to June 21st 2023

Scientific Committee

Andrew Cheek, Astrocent, NCAC Marco Chianese, UniNA Federico II Lucien Heurtier, IPPP, Durham University Stefano Morisi, UniNA Federico II (Chair) Ninetta Saviano, INFN Napoli Jessica Turner, IPPP, Durham University (Chair) Local Organising Commitee Antonio Cerbone, UniNA Federico II Marco Chianese, UniNA Federico II Alessandro Corridore, UniNA Federico II Stefano Morisi, UniNA Federico II Ninetta Saviano, INFN Napoli

https://conference.ippp.dur.ac.uk/event/1130/

Durham

University

1.5-200

Thank you