

Boosting **A**ccelerator-SMES for **E**nhancing their **E**nergy-consumption **E**fficiency

PARTNERS

FAST

CIEMAT (Lead Organization and IFast Member, *R&D Institute*) **CYCLOMED Technologies** (Industrial and iFast Member, *Start-up company*) **ANTEC Magnets** (Industrial Partner, *SME company*)

Luis Garcia-Tabarés, CIEMAT Carlos Hernando, CYCLOMED Technologies

IFAST IIF PITCH CERN, GENEVA NOVEMBER 16th 2022

Content

2. Our Proposal: Concept & Background. The Preferable Choices

- 3. Project Phases and Workplan
- 4. Resources and Budget
- 5. Risk Analysis
- 6. Application and Impact
- 7. Business Plan and Commercialization Phases

Introduction: The Problem

A ROUND-TRIP PROBLEM

- 1) The pulsed operation of some accelerators components (cycled magnets, special power supplies, etc) may have and impact on the grid stability inducing voltage drops or frequency fluctuations.
- 2) A lack of quality of the power grid like voltage drops & sags or frequency excursions may affect the operation of the Accelerator.

THE GENERAL SOLUTION: USING AN ENERGY STORAGE SYSTEM AS A POWER FILTER

The solution to the above mentioned problem is to use a fast energy storage system which will act as a filter to smooth the power taken from the grid. Eventually it will also act as an Uninterruptible Power Supply.

FAST

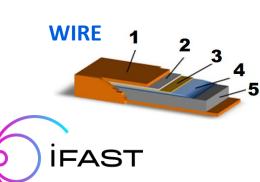
Device	Characteristics	Results – Real installations (examples)
Device	Characteristics	Facility (energy/power)
KESS	 > 90% Efficiency > Fast response > Infinite Nº of Cycles > Maintenance Req. COMMERCIAL 	 Fusion JT-60 (1300 MJ) Accelerator J-PARC (original design) (51 MVA)
ESS Super-Caps	 > 95% Efficiency > Fast response > Degradation > Repetitive life (~100.000) MEDIUM-HIGH TRL 	• Accelerators: BNL-AGS; CERN-PS (12 MJ)
SMES	 > 95% Efficiency > Fast response > Infinite № of Cycles > Maintenance Req. > AC Losses limitation LOW TRL (HTS) 	 Accelerator BNL NSLS (2.4 MJ) Accelerator J-PARC (enhanced design) (90MVA)

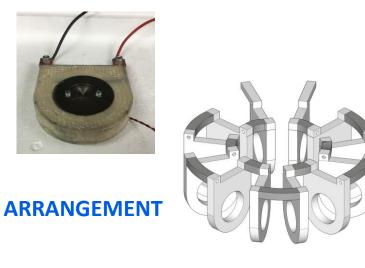
IFAST IIF PITCH CERN, GENEVA NOVEMBER 16 2022 ³

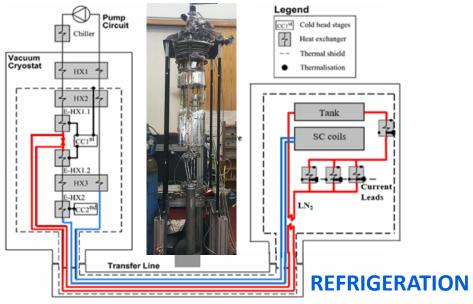
Our Proposal (I): Concept & Background

A modular SMES based on HTS and a He gas cooling system to guarantee an optimum refrigeration to the magnet

	General SMES Pros			ecific BASE3 SN	IES Pros		SMES Cons				
 * No moving parts * Fast response time * High Power Density * Infinite Charge/Discharge cycles * Low Environmental Impact 			electrical req * Refrigerat	v allowing to be uirements tion system ain the heat produced	ned at efficie	ntly * Require	 * Low energy density * Presently, high CAPEX * Dependence of HTS wire development * Requirements of technically advanced operation personnel 				
				0		0		POwer StoragE In D OceaN			
1984	1997	1999	2003	2006	2008	2009	2022	2022			
SMES based on NbTi installed at the Tacoma Substation 10 MW, 30 MJ.	CIEMAT & ANTEC collaborated in the AMAS 500 SMES for improving grid power quality 500 kVA, 1 MJ,	Toroidal SMES, based on NbTi, for grid stabilization 1 MW, 3.6 MJ	HTS SMES UPS system 20 kVA, 150 kJ	SMES installed at the Electra Synchrotron Light facility as protecting device 1.2 MW, 2.6 MJ	SMES, based on Bi2212 for a power pulse source. <i>814 kJ, 315 A</i>	SMES based on YBCO wire for 100 MVA/2 GJ class load fluctuation compensating 100 MVA, 2.4 GJ	YBCO tape based SMES for fluctuation suppression and energy compensation of the power system of a particle accelerator 1MJ	H2020 Project granted to a consortium in which CIEMAT, CYCLOMED & ANTEC are included to analyse maritime applications of SMES & other Energy Storage Systems			


Our Proposal (II): The Preferable Choices

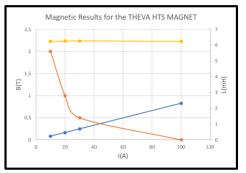


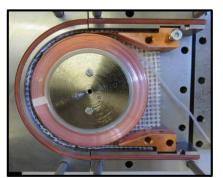

	Туре	Description	Advantages	Disadvantages
Material	Conventional HTS tape	REBCO tapes as a first choice. BiSCCO 2212 and BiSCCO 2223 will also be considered.	High critical temperature Less power required by the refrigeration system. Easier to remove AC losses.	Currently expensive. High AC losses which must be reduced.
Тороlоду	MODULAR TOROIDAL	Toroidal arrangement of individual double-pancake solenoids . Solenoids made from double-pancake coils will also be considered.	Very low leakage flux. Easy to assemble from individual magnets easy to fabricate. Easy scalability and adaptation to different applications (modularity).	Lower magnetic energy density (J/Kg).
Refrigeration	CSS	Forced-flow configuration with the Cryogenic Supply System, where helium gas is circulated through the magnet and cooled down with a cryocooler.	Released heat is extracted very close to where it is produced (the wire) since the gas is circulated through the magnet and not removed from conduction.	More complex system than other solutions like conduction cooled devices.

- 1. CU stabilisation (opt.)
- 2. Ag cao layer
- 3. REBCO layer
- 4. Buffer layer stack
- 5. Substrate

IFAST IIF PITCH CERN, GENEVA NOVEMBER 16 2022 ⁵

Project Phases




Design of the magnet and the cryostat as well as the adaptation of the CSS. The system will be modelled and simulated, especially for calculation of AC losses

The magnet will be made from a commercial HTS coil. The CSS will be adapted from an existing unit and the cryostat will be done ad hoc

Static & Dynamic tests will be performed. The first to characterise the magnet critical current vs temperature and the second to evaluate AC losses when ramping the magnet.

FAST

Cryogenic Syst	: Supply em	Power Convert
		<u> </u>
	SC MAGNET	

The project includes a specific work package (WP7) about business development in order to create new market opportunities and benefits to society, disseminate and exploit the project results, including management of IPR.

Reminders:

TRL3: Critical Function, i.e., Proof of Concept Established. Applied research continues and early stage development begins. Includes studies and initial laboratory measurements to validate analytical predictions of separate elements of the technology. Examples include research on materials, components, or processes that are not yet integrated.

TRL4: Laboratory Testing/Validation of Alpha Prototype Component/Process. Design, development and lab testing of technological components are performed. Results provide evidence that applicable component/process performance targets may be attainable based on projected or modelled systems.

Work Plan

									M	onth	hs						
	Work Packages and Tasks	Lead	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	5			P1	(50%	payme	ent)					P	2	(50% p	aymen	t)	
WP1	PROJECT MANAGEMENT & COORDINATION	CYCLOMED															
T1.1	General project management. Coordination and Communication	CYCLOMED						M1			M2				М3		
T1.2	Quality assurance and risk management	CYCLOMED															
T1.3	Data management	CYCLOMED						D1						D2			D3
WP2	PROTOTYPE MODELING & CALCULATION	CIEMAT															
T2.1	Overall system definition & specifications	CIEMAT				_											
T2.2	Subsystem definition & specifications	CYCLOMED															
T2.3	Model preparation for computing a.c. losses	CIEMAT															
WP3	HTS-SMES DEVELOPMENT – CRYO-SYSTEMS	CYCLOMED															
T3.1	Adaptation of the present CSS	CYCLOMED															
T3.2	Design & Fabrication of a magnet cryostat	ANTEC									-						
WP4	HTS-SMES PROTOTYPE DEVELOPMENT - MAGNET	ANTEC															
T4.1	Design & Fabrication of a SMES magnet	ANTEC															
WP5	HTS-SMES PROTOTYPE DEVELOPMENT - POWER SUPPLY	CIEMAT															
T5.1	Power Converter design and fabrication	CIEMAT															
WP6	MODEL TESTING, VALIDATION & PROJECTION	CIEMAT															
T6.1	Prototype integration & static testing	CIEMAT															
T6.2	Dynamic testing and thermal balance	CYCLOMED															
T6.3	Case study for Accelerator application	CYCLOMED							-								
WP7	BUSINESS DEVELOPMENT: BUSINESS MODEL VALIDATION, IMPACT & OUTREACH	CYCLOMED															
T.7.1	Plan for the dissemination and exploitation including communication activities	CIEMAT															
T.7.2	Dissemination, Communication, Exploitation activities. Business plan	CYCLOMED															
MS#	M: Milestone, D: Deliverable		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Deliverables:	Milestones:	Consortium Background:	CYCLOMED:
D1 System Design Report (M7)	M1 System Designed	CIEMAT:	- Cryosystem
D2 SMES System: D2.1 Magnet / D2.2 Cryostat / D2.3 CSS	M2 Magnet Fabricated in Its Cryostat	- SC Laboratory	- SC Accelerators Magnets
D3 Laboratory Tests Results Report	M3 Experimental facility ready Incl.	- Manufacturing of SC Accelerator	ANTEC:
	Cooling System & Power Supply	- Magnets Power Converters.	- SC & Resistive Magnets

IFAST

Resources and budget

CIEMAT is a public research institute depending on the Ministry of Science and Innovation. The Technology Department is one of the five Departments in which CIEMAT is organized and it is where the Electrical Engineering Division belongs. The division has more than 30 years of experience in superconducting magnets, cryogenics and power electronics

CYCLOMED Technologies is a Spanish company specialized in superconductivity and cryogenics. Founded in 2019 for the development and commercial exploitation of a superconducting particle accelerator aimed at radioisotope production

ANTEC Magnets designs and manufactures state-of-the-art magnetic systems and components for all types of applications. It is specialized in the manufacture of electromagnets (resistive and superconducting) and permanent magnets special configurations (Halbach etc.).

FAST

Team and organizational expertise fully dedicated to the project

CIEMAT: Electric Eng. Division (Accelerator Unit & Power Systems): 1,5 FTE (Full-time equivalent)

CMT: 2 FTE

Industry participation and involvement

ANTEC : 1 FTE

Budget and resources provided by the consortium and IIF

	Personnel	Goods & Services	Travels	Total Project	Funding	Subsidy ratio
CIEMAT	60.000€	38.000€	2.000€	100.000 €	50.000€	50%
CYCLOMED	88.000€	20.500€	2.500€	111.000 €	100.000 €	90%
ANTEC	37.500€	22.500 €	2.500€	62.500 €	50.000 €	80%
			Total	273.500 €	200.000 €	73%

Budget breakdown

PARTNER	CIEMAT	CYCLOMED	ANTEC
PM Rate	2667	2933	2500
Total PMs	22,50	30,00	15,00
A. Personnel costs	60.000 €	88.000 €	37.500 €
B. Subcontracting	- €	- €	- €
Travel and subsistence	2.000 €	2.500 €	2.500 €
Travel for Physical Project Meetings	2.000 €	2.500 €	2.500 €
Equipment and Consumables	38.000 €	20.500 €	22.500 €
Equipment for Living Labs, trials, pilots			
Consumables for Living Labs, trials, pilots	38.000 €	20.500€	22.500 €

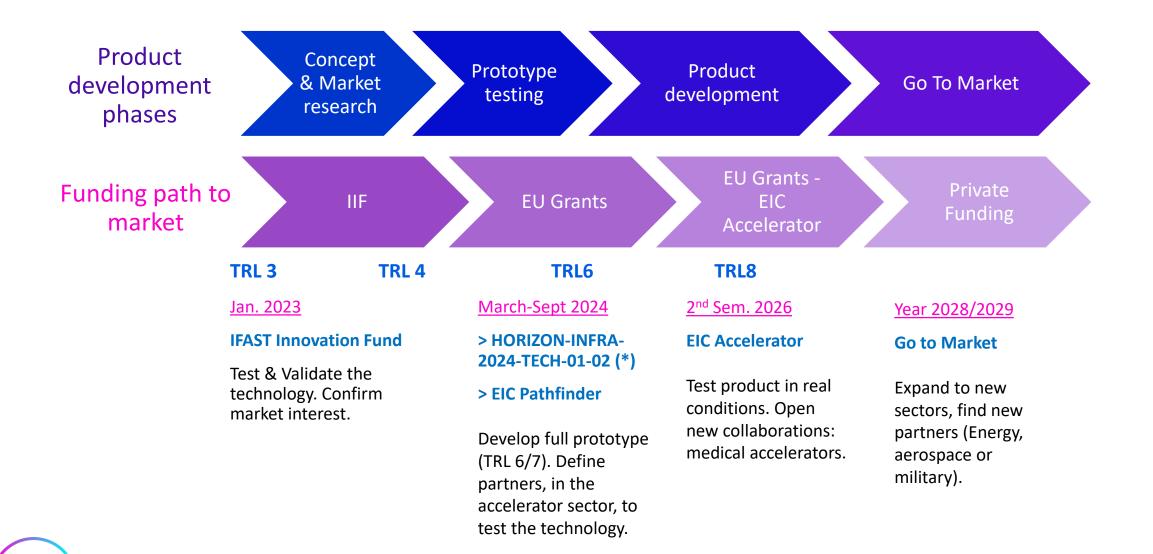
Risk Analysis

Description of risk	Impact & Likelihood	Proposed risk-mitigation measures
* Partner fails to perform committed tasks	I: High L: Low	 > The consortium is relatively redundant. One partner can undertake the tasks of the others > Externalization of tasks
* Conflicts or disagreements in the consortium	I: High L: Low	> Establishing a management structure and a clear assignment of responsibilities
 * Delays in critical path deliverables * Non-compliance with specifications 	I: High L: Low	 > A back-up provider will be always consider (especially for HTS coils) > A small safety margin has been considered for integration in the project schedulle
* System is unable to achieve nominal temperature	l: Low L: Medium	> Coils will be designed to work with a safe temperature margin to allow extracting more power with the refrigerator working at higher temperatures
* AC losses above expected	I: Medium L: High	 > Increasing working temperature to increase power extraction capacity (see previous point) > A.C Losses Model reconfiguration & analysis of other future wire alternatives.

Selected Applications and Impact

ТҮРЕ	APPLICATION	DESCRIPTION	ΙΜΡΑϹΤ
	Cycled Magnet Power Management	Power recovery of cycled magnets	> Reduction of size and cost of
	Powering of Pulsed Power Supplies for Accelerator Components	Powering of modulators for klystrons	electrical protection systems > Reduction of the electricity bill
ACCELERATORS & SCIENTIFIC FACILITIES	Grid Power Filters for Pulsed Facilities	Reduction of power peaks to the grid for experimental facilities running in pulsed mode (Fusion, Ultra High Field pulsed magnets, Hyperloop,)	 More energy efficient accelerators (less reactive power consumption)
	UPS for Grid Disturbances Load Protection	Fast protection of high power loads and safe shutdown of the accelerator	> More reliable accelerators with less impact of shutdowns
	UPS for Grid Disturbances Critical Load Protection	Fast protection of high power loads in delicate fabrication processes	> Reduction of costs due to unexpected grid disturbances
SOCIAL APPLICATIONS	Fast Cycling Load Levelling	Short period peak shaving. Part of load levelling hybrid systems in combination with batteries or fuel cells and microgrids or for renewable energies applications.	> More efficient grids with more penetration of renewables in the overall context of energy storage
	Hybrid Vessels	Peak support to Electric & Hybrid vessel (ships) for manouvring and harbour operation	> Substitution of fossil fuel based vessel with hybrid o full electric sustainable ships

IFAST


Business Plan

	DESCRIPTION
Hadron Therapy	 <u>Sustainable medical accelerators</u> Advanced medical equipment to treat cancer. Local control of tumors and lower toxicity to healthy tissue Requires accelerators with large load consumptions.
Business model	 <u>Market & Revenue:</u> 5 P-HT centers in 2009, 15 in 2017, and 33 in 2021 just in Europe with expected double digit CAGR for the next decade for the HT sector worldwide. Sector growth, and need for sustainability will drive demand for Energy Storage solutions in the accelerator area, in which our proposed solution will thrive due to its key competitive advantages: high nº of duty cycles, and low specific cost per kW. Proposed direct sales business model since partners has established connections in the medical accelerator area
Use case	 CNAO: a multi-modal European clinical center (protons and carbon ions to 250 MeV and 4800 MeV respectively) *Support letter CNAO director. Power consumption: Est. consumption of 100 kW for the dipole magnets with a deceleration period of 0.5s in pulsed mode. Advantages: Incorporating a 100 kW SMES (Est. CAPEX: 80-100k€). Energy savings: Energy can be recovered in the deceleration phase / 90% efficiency 45kJ could de recuperated per cycle, which with a 200€/MWh electricity cost yields 0.25c€ savings per cycle. Est. nº of cycles per year are about 3M, thus 7.5k€ savings per year. Pay-back of 11 years. Grid stability: SMES can provide dynamic stability during voltage sags or act as a UPS to assure correct the operation of the facility.
IPR Status	 <u>Current status</u>: There is no existing patent to protect the proposed solution and results on the CSS have been published <u>IP Strategy</u>: The consortium will adopt a mixed IP strategy, combining industrial secret with dedicated patents on specific subsystems

The commercialization

FAST

IFAST

Contact information

NAME: Luis Garcia-Tabarés

PHONE: +34 913 357 196 MOBILE: +34 629 211 247 E-MAIL: luis.garcia@ciemat.es WEBSITE: https://www.ciemat.es

NAME: Carlos Hernando

PHONE: +34 675 419 755 E-MAIL: c.hernando@cyclomed.tech WEBSITE: http://cyclomed.tech

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.

Back up Slide

(*) Preliminary information for the HORIZON-INFRA-2024-TECH-01-02: New technologies and solutions for reducing the environmental and climate footprint of RIs

Scope: The aim of this topic is to **deliver innovative technologies and solutions which reduce the environmental and climate footprint of RIs** through the full life cycle of research infrastructures. Proposals should **identify common methodologies, among the concerned RIs**, to assess environmental impact and strategies to reduce it.

Proposals should address the following aspects, as relevant:

 new technologies and solutions for research infrastructures enabling transformative resource efficiency (e.g. energy consumption) and reduction of environmental (including climate-related) impacts, including, when relevant, more sustainable and efficient ways of collecting, processing and providing access to data;
 validation and prototyping;

•training of RI staff for the operation and use of the new solutions;

•action plans to deploy the new developments at wider scale and ensure their sustainability;
•measures to ensure an environmentally effective integration of the solutions in the local contexts;
•societal engagement to foster acceptance of the solutions in the local and regional communities.

