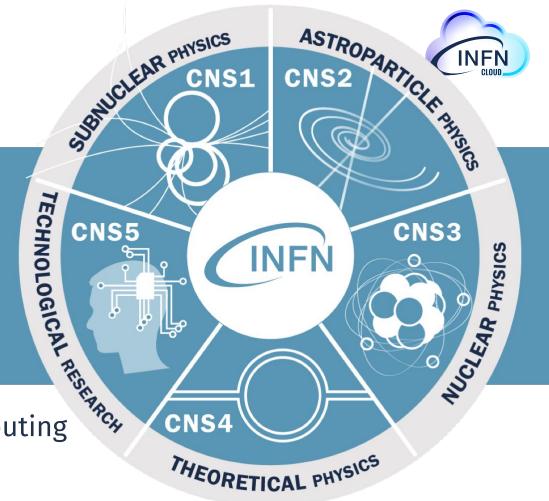


On behalf of the **INFNCloud team**

Outline



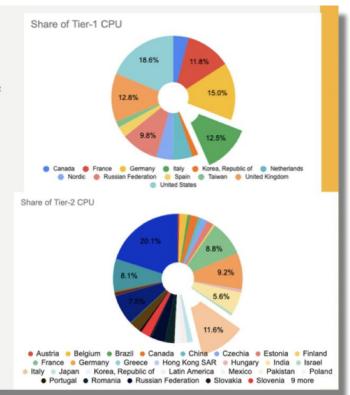
- What is INFN Cloud?
- An on-demand ecosystem for interactive analysis
- Implementations

Italian Institute for Nuclear Physics INFN

The **5 research lines**and the INFN National Scientific Committees

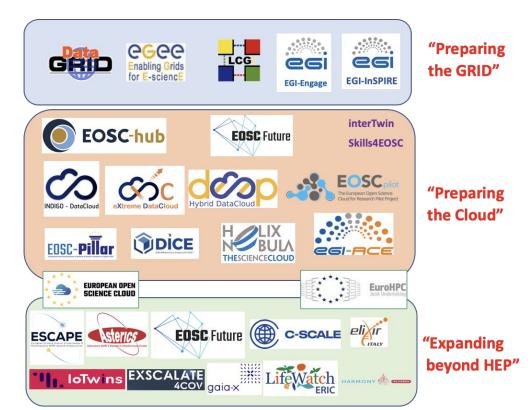
And we learnt early that computing is a transversal need....

The INFN **Facilities**


■ 20 Divisions

Not only LHC... Regardless, a long time experience

- INFN Distributed Computing federation delivers the LHC experiments O(7-20)% of their computing budgets
- "non LHC" (VIRGO, Astro, Nuclear, ...) is ~ 10-20% of the total
- Stesare of top quality among their peers, and have worked uninterruptedly for the last ~15 years
- In many cases, the infrastructures are close to those deployed in 2005 or slightly after
 - They could be bigger (CNAF uses ~1 MW, more recent centers are leaning towards ~10 MW)
 - They could be "greener"
 - · Free cooling, direct cooling, ...
 - They could use more recent technologies, hardware and software
 - Go towards a national cloud, implement a datalake model for storage, ...



An ever growing asset

- Gradually shifting from "driven by in-home communities" to interdisciplinary projects
- One main goal: explore and adopt the most effective tools for our users to work with

Of course, at this point, cloud computing could not be left behind.

And then, the challenge

Extrapolations for High-Luminosity LHC (INFN)

- A 20% yearly increase in performance from 2021 to ~2028 gives us a speed-up factor from technology advancements of $(1.2)^7 \sim 3.6x$.
- Back-of-the-envelope linear estimates foresee increased needs for computing at High-Luminosity LHC of \sim **75x** (box on the right).
- Therefore, we miss a factor 20x!
- How can we cope with this?
 - Get 20x more money from the Funding Agencies (unrealistic, the ballpark figure would be >> 1 BEur/y)
 - Find ways to reduce the needs...

1 LHC Experiment ~2020: ~200.000 CPU Cores; ~200 PB disk; ~350 PB tape

1 HL-LHC Experiment ~2028: ~15M CPU Cores; ~15 EB disk; ~26 EB tape

And then, the challenge(s)

Extranolations for High-Luminosity LHC (INFN

- DUNE: ProtoDUNE in 2019 collected 3 GB/s (same as CMS at the same time); real DUNE expected 80x at the end of the 2020s.
- SKA: up to 2 PB/day (CMS ~3), to be collected and processed at "complex" locations.
- Genomics: a single genome ~100 GB. Any population study (>1M people) over 100 PB.
 - CTA: ~ 10 PB/y in 2025+.
 - Virgo: ~10% of a LHC experiment.
 - ET aiming at being ~10% of a HL-LHC experiment.

One umbrella to collect the answers....

INFN Cloud, https://www.cloud.infn.it/

- In **production** since March 2021.
- The initial seed of a National Datalake for research and beyond, building on (existing | renewed | new) e-Infrastructures.
- The base of the evolution of the INFN Distributed Computing vision.
- Built on a thin middleware layer running on top of federated clouds, decoupling physical and logical views via a service composition mechanism.
- The INFN foundation for the NRRP computing-related initiatives

What is INFN Cloud

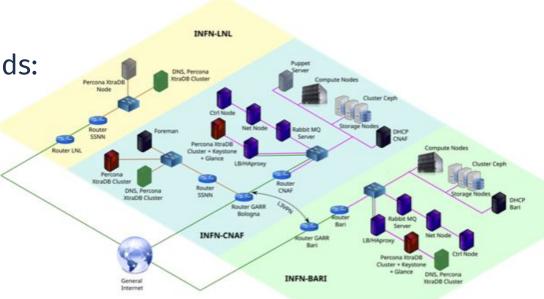
A production-quality set of resources and solutions providing:

- A core backbone, with ancillary and special-purpose services.
- A multi-site, federated Cloud infrastructure.
 - INFN Cloud can transparently federate INFN sites as well as public or private Clouds (e.g.: AWS, Google Compute Cloud, Microsoft Azure, and others)
- A customizable portfolio of services accessible via web interfaces, terminal or API.
- A fully distributed organization for the support and management of both infrastructure and services.
- A set of rules that define access resources and **policies**, according to INFN, national and European laws.

The INFN Cloud portfolio, available via an easy-to-use web interface but also exploitable via command-line interfaces, is defined upon clear user requirements. It is based on composable, scalable, open-source solutions and can be easily

extended either by the INFN Cloud support team or directly by end users.

"A backbone to serve them all"

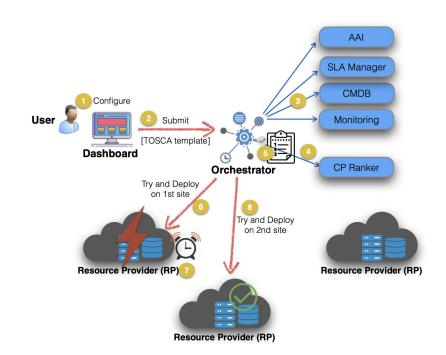

A multi site cloud infrastructure to host the core services

- Geographical HA / failover

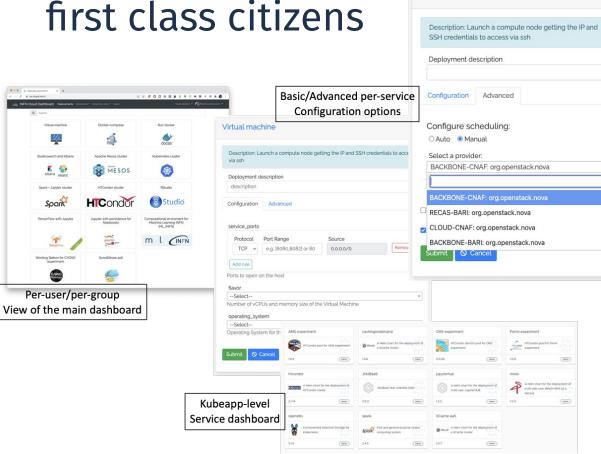
- Automation

The idea of federated clouds:

 Resource will be attached to the backbone and made available seamlessly



INDIGO PaaS



The INDIGO-DataCloud PaaS is rooted on:

- A distributed resource orchestration framework
- A standard—based federated solution for identity access management (INDIGO-IAM)

User interfaces first class citizens

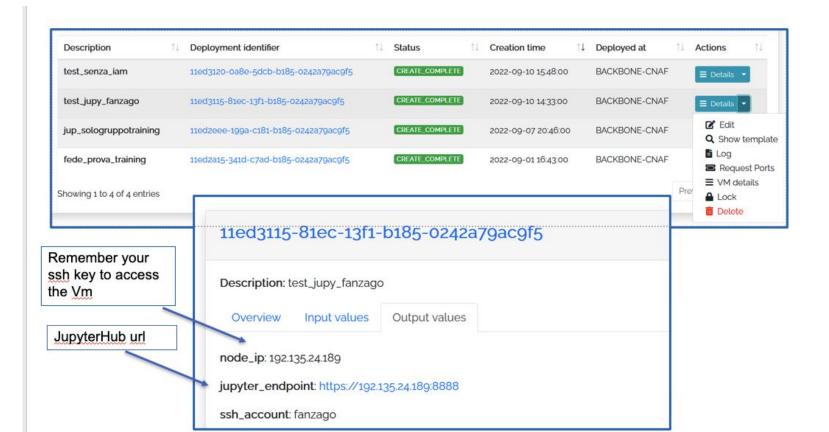
Virtual machine

INFN Cloud Status This page shows the high level status of the INFN Cloud services. 2022-03-25 -> 2022-03-28 - Power shutdown @ CLOUD-VENETO Maintenance due to start in about 17 hours Object Storage ③ Operational Backbone - Cloud Compute (Bari) ③ Operational Backbone - Cloud Compute (CNAF) ③ Operational Authentication ① Operational CloudVeneto - Cloud Compute Derational RECAS-BARI - Cloud Compute Operational Cloud@CNAF - Cloud Compute Infrastructure Manager ③ Operational Orchestrator ① Operational CPR 3 Operational CMDB ③ Operational 13 Dashboard 3 Operational

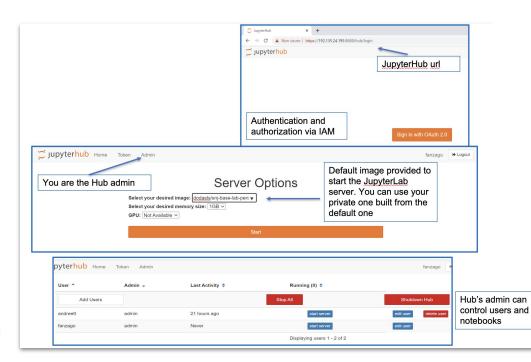
What is a user looking for?

Currently two main use cases have been raised from many fronts:

- 1. Interactive and graphical analysis environment
 - a. colab-like, swan@cern like, in a word JupyterLab(++)
- 2. An easy to use storage system
 - a. for data analysis (e.g. input, config reading)
 - b. for sync&share (see dedicated <u>talk on this later</u>)
 - c. Very often Posix-like access is an hard requirement


Different implementations Slightly different needs

Deploy your service



AuthN/Z: OIDC leads the integration

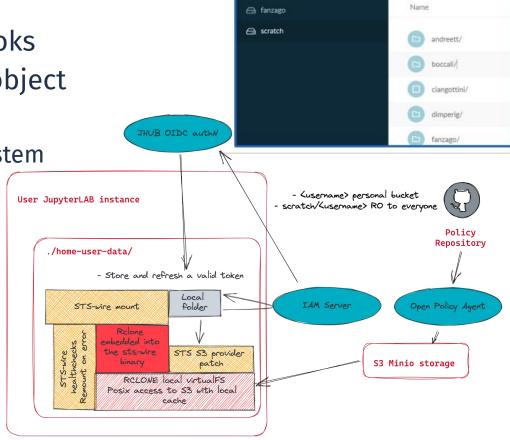
The entry point is a customized JupyterHUB instance integrated with INDIGO IAM:

- 1. Authenticate the user and forward the identity to the spawning jupyterlab instance
- 2. Authorize different flavor of instances based on the group membership
 - a. E.g. different cpus/ram or GPU
 - b. Administration rights

Then we needed a shareable and scalable storage...

INFN Cloud provides object storage based on Openstack Swift, as centrally managed service.

- The object storage is replicated in the two sites of backbone, Bari and CNAF
 - It guarantees the redundancy of data
- INFN Cloud is using the Minio-gateway software on Swift
 - Indigo-IAM OIDC authentication has been integrated and authorization policies are currently managed via OpenPolicyAgent
 - Ceph migration is under evaluation
 - Difficult to find good alternatives for Minio's WebUI tough
- Service URL https://minio.cloud.infn.it


Store JupyterLab persistent data

 All the services running notebooks mount user areas store on the object storage backend

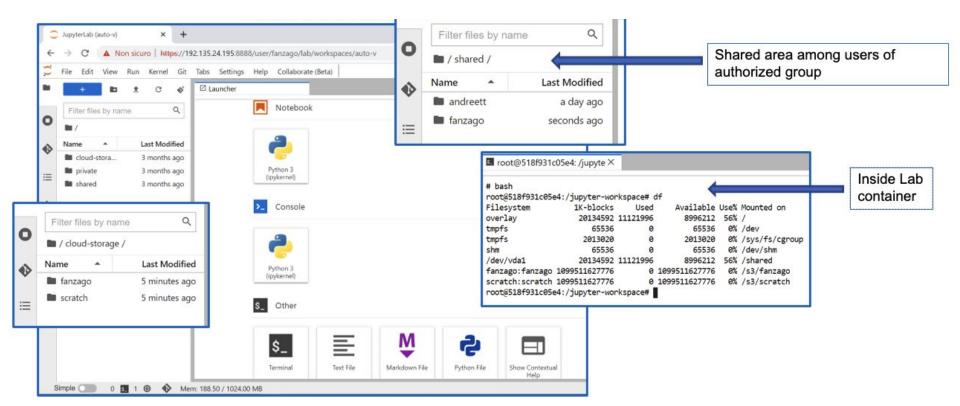
E.g. they are visible in the file system

as posix directories.

 <u>STS-wire</u>: rclone mount+oidc shim library as been developed for the purpose

MinIO Browser

Q Smarch Buckets.


scratch / E3

Q Search Objects...

All in all, this is what you get

You login with your credentials, select your docker image and...

Not only on-demand...

Also a a SaaS managed service available for every INFN Cloud user. Hosted on the INFN Cloud Backbone (HA/failover on the two sites) Enabling a quick evaluation for new use cases

П	https://hub-cnaf.cloud.infn.it/hub/l

Server Options

You are logged in as default user. If you want to enl	nance your quota please contact us at
Select your desired image:	
Select your desired number of cores: 1 >	
Select your desired memory size: 2GB >	

Conclusions

- INFN Cloud focus is on enabling users to perform their analysis work in a intuitive and easy to use fashion
- If you want to do data-science like experience with JupyterLab you can now:
 - Instantiate your own JupyterHub instance to share with your collaborators
 - Get access to the SaaS-level, for a ready to use environment
- At all the implementation you will be able to store and access data on the same object storage backend

More is yet to come:

- Swift to Ceph migration for S3-compatible object storage backend
- Managing data at different sites
 - data-lake approach, RUCIO-FTS under study
- Exploiting ML specific setups for the whole pipeline
 - A first functional setup already available under ML-INFN project activity
 - Preprocessing, training, inference...
 - putting it all together in a cloud-native way is the main challenge now