
TOM WEZEPOEL - SURF

BACK TO THE BEGINNING..

So you take two web applications.

Both actually do GET, PUT , POST, DELETE

1 + 1 =

Connect them together with some magic

EVERYTHING WORKS
Performance is fine

Users get busy, number of files grows.

So time to sit back, for a cup of coffee!

HAVE A
BETTER LOOK
AT THE
SYSTEM
• Filescans are not possible. Annoying, but oh well..
• How does it actually work with File Versions ?

FILE VERSIONS

Each file is uploaded twice
• As File
• As Version Size of files Percentage

< 500kb 87,43%

500k - 1M 2,20%

1 - 10M 3,02%

10-100M 4,85%

100M - 1G 2,31%

> 1G 0,16%

FILE VERSIONS
Each version has a certain lifetime

and have to be cleaned up later on
But.. Each cleanup job keeps running for days..

FILE VERSIONS
Why not using bucket versioning ?

IMPACT
1. Versions were cleaned up quickly enough.
2. Performance of system deteriorates rapidly
3. Own created clean-up scripts cause issues with storage usage calculation

MIGRATION TO POSIX

S3

WHICH POSIX SOLUTION
?

GOAL

1. Current amount of storage in use
• Research Drive in total reported by the filecache = 955TB

• Research Drive files only in filecache = 404TB

• Research Drive trashbin and versions = 551TB

2. Architecture.
• Our service is spread over 3 datacenters arround Amsterdam

TEST -
ARCHITECTURE
Ceph Cluster over 3 datacenters in VMs
- Each zone contains 5 nodes
- Each node contains 5 drives of 5 GB
- Meta & Data on same drives

IBM Spectrum Scale Cluster over 3 datacenters in VMs
- Each zone contains 4 nodes
- Each node contains 3 data drives of 5GB & 1 meta drive

Scality Ring 8 over 3 datacenters on physical hardware
- Each zone contains 4 nodes
- Each node contains 10 data drives of 5.5 TB and 2 metadata SSDs

TEST – READ/WRITE

Write

• dd if=/dev/zero of=test1M bs=1K count=1024 conv=fdatasync

• dd if=/dev/zero of=test1G bs=1M count=1024 conv=fdatasync

• dd if=/dev/zero of=test10G bs=10M count=1024 conv=fdatasync

Read

• dd if=test1M of=/dev/null bs=1K count=1024 oflag=sync

• dd if=test1G of=/dev/null bs=1M count=1024 oflag=sync

• dd if=test10G of=/dev/null bs=10M count=1024 oflag=sync

TEST – RESULTS

TEST – RESULTS

0

50

100

150

200

250

Ceph Replica 3 Ceph EC 3+3 Scality ARC7+5 IBM SS Replica 2

1M file via DD

1M Write 1M Read

Ceph Replica 3 15 48,3

Ceph EC 3+3 27,3 37

Scality ARC7+5 2,4 66,1

IBM SS Replica 2 57,2 228

MB/s

TEST – RESULTS

0

200

400

600

800

1000

1200

1400

1600

1800

Ceph Replica 3 Ceph EC 3+3 Scality ARC7+5 IBM SS Replica 2

1G file via DD

1G Write 1G Read

MB/s

Ceph Replica 3 109 481

Ceph EC 3+3 484 565

Scality ARC7+5 170 270

IBM SS Replica 2 1400 1600

TEST – RESULTS
Ceph Replica 3 443 505

Ceph EC 3+3 635 535

Scality ARC7+5 232 332

IBM SS Replica 2 1500 1700

0

200

400

600

800

1000

1200

1400

1600

1800

Ceph Replica 3 Ceph EC 3+3 Scality ARC7+5 IBM SS Replica 2

10G file via DD

10G Write 10G Read

MB/s

TEST - IBM SS
EXPLANATION
It’s not normal replication..

[root@ibmss-tst-b-01 ~]# /usr/lpp/mmfs/samples/fpo/mmgetlocation -f /mnt/gpfs/ubuntu-20.04.4-

live-server-amd64.iso

[FILE: /mnt/gpfs/ubuntu-20.04.4-live-server-amd64.iso SUMMARY INFO]

replica1: replica2:

ibmss-tst-c-04: 27 chunk(s) ibmss-tst-b-01: 24 chunk(s)

ibmss-tst-a-02: 26 chunk(s) ibmss-tst-b-02: 29 chunk(s)

ibmss-tst-b-04: 25 chunk(s) ibmss-tst-c-02: 29 chunk(s)

.. ..

ibmss-tst-c-01: 28 chunk(s) ibmss-tst-b-04: 29 chunk(s)

ibmss-tst-b-02: 26 chunk(s) ibmss-tst-b-03: 22 chunk(s)

TEST – CONCLUSION

1. IBM was clearly the winner
2. CephFS with other settings performed better than these charts
3. But of course, the price of a solution also has a big role too..

The price for the IBM SS solution over 3 DC was so many times more
expensive than the solutions with Ceph & Scality.

Which was then unfortunately a bummer, despite of the nice performance
and options.

NEXT STEPS – SETUP CEPHFS

1. Hardware has been ordered & is being racked.
2. Installing the hardware with AlmaLinux
3. Setup CephFS
4. Do some performances tests.

5. Then.. The migration..

NEXT STEPS - MIGRATE FROM S3

SURFdrive migration from POSIX GlusterFS to POSIX Scality was easier..

while true
do

rsync_userfile_to_new_storage()

lock_user()

rename_old_user_homestore_on_glusterfs()

create_symlink_to_new_scality_homestore()

unlock_user()
done

NEXT STEPS - MIGRATE FROM S3

Reconstruct filecache table user by user

1. Get bucket of an user
2. Create all folders by forehand
3. Save current timestamp
4. Sync file by file
5. Sync file by file starting from last saved timestamp
6. Remove objectstore from database and move to posix structure

Footnote: Objectstore S3 only contains the files with the fileid as name.
Folders doesn’t exists on S3

NEXT YEAR ON CS3

HORROR STORIES OF MIGRATE FROM S3

Tom Wezepoel
tom.wezepoel@surf.nl

