

ISOLDE Technical Report

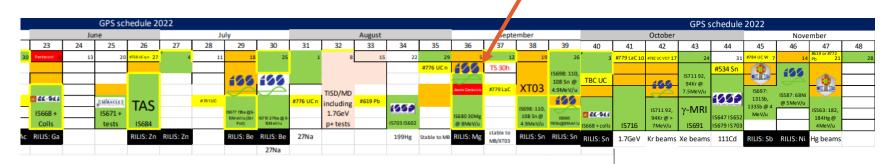
71st Meeting of the INTC – 8th November 2022

Joachim Vollaire (Technical Coordinator) on behalf of ISOLDE Technical Teams

Outline

- **Restart of REX/HIE Linac / Status of the facility(update since June)**
- Machine Development: 1.7 GeV proton beam to GPS
- Update on target lifecycle
- **Conclusions and Perspectives**

08/11/2022


SY

ISOLDE 2022 Schedule

Last INTC Meeting

																			1							
			HRS sch	hedule 2	022																HRS s	chedule	2022			
		Jun	1e			l	uly				August				Septe	mber				October				Nove	mber	
	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
30	6	#752 LIST 13	20	27	4	#654 UC W 11	15687 18	25	1	8	15	22	29	5	12	19	26	3	10	17	W781 UC VADUS 24	31	7	14	21	28
									1		#757 UC n			#774 LaC	TS 30h											
		TA1				1.10			твс																#751 UC VD5	
		CRIS			TRAP	¥							TBC IDS	Jeune Genevola	LIOL]											CRIS
_		LIRIS		#757 UC n	THOMP	T					1991.84	UC	development? Else	2	TRAP			#751 UC VD5			TISD	15702:	#754 UC	¥		
à.		IS456 &				0							preference for early start of	r								1305n @		0		IS706
		LOI225			15704	IS666				TISD/MD	15622		15680		15718				TISD			4.4MeV/u		IS666		(Winter)
٨g	RILIS: Ag	RILIS: Po	RILIS: Po		RILIS: Sb	49K					RILIS: Cu				RILIS: Sn	RILIS: Sn						Sn beam		37K		AcF beams

- Target
changeCERN
holidaySetting
up/proton
scan/yieldPhysics
HPSPhysics
GRSRILIS
run
KJ: 29.07.22
- Physics with protons not impacted by CERN decision to anticipate the start of the YETS (energy saving measure)
- One week of winter physics being discussed

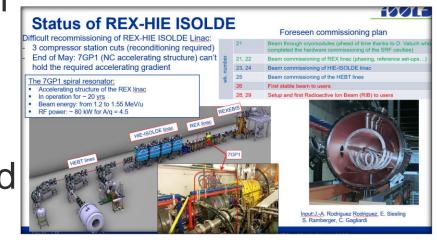
rotons for physics: 28 March ons for physics: 28 November

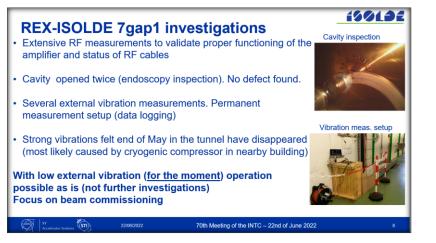
(STI)

08/11/2022

71st Meeting of the INTC – 8th of November 2022

REX-HIE ISOLDE Linac restart


- Recommissioning of the REX-HIE Linac was on the critical path end of June (7Gap1 cavity)
- Beginning July (04/07), increase of the RF amplifiers temperature for REX
- Investigations by EN-CV: RF amplifiers clogged by dirt (suspended matter found in water)
- Follow-up (mitigation of the pollution) and cleaning led to another 2 weeks "delay"



Reminder end of June report

199192

SY MC Accelerator Systems

08/11/2022

71st Meeting of the INTC – 8th of November 2022

REX-HIE ISOLDE Linac restart and operation

- Despite all technical problems encountered and with a reduced program (OP measurements, stable beams to experiment) HE physics could restart as per schedule (week 29)
- Problems REX-EBIS solenoid magnet (1997):
 - Two unexplained rapid Lhe boil-off since July
 - Quenches at higher field, so operating at 1.5 T (2 T nominal)
 - LHe level probe has stopped working

Action Plan for the EBIS solenoid magnet:

- Repair of TwinEBIS ongoing (Lhe consumption x3)
- Investigation of REXEBIS solenoid in Dec/Jan
- Decision (repair in situ/exchange)
- Technical support from TE-MSC for activities (repair of the TwinEBIS and future work on the EBIS solenoid)

+ Long term consolidation plan for REX-EBIS and REX-TRAP initiated (BE-ABP-HSL)

From F. Wenander presentation (Mini-consolidation and improvement workshop)

199192

charge breeding

SY

Accelerator Systems

to LINAC

ISOLDE

vibrations, Lhe pressure variations...) and loss

- of available accelerating gradient after the winter thermal cycle
- Issue being closely followed by RF expert in ${}^{\bullet}$ collaboration with TE-CRG (change in operating parameters of the cryo-plant)
- RF optimized the cavity sequencer to restart the cavity faster after a trip to reduce downtime.

REX-HIE ISOLDE Linac restart and operation 01.Aug.22 07:17 - 13:17 Ð 1 ends > 10:56:28 Frequent SRF cavities trips (high sensitivity to 10:17:28 Trips of the SRF cavities during the last 88 hours. CM1: no trips CM2: SRF07 36 trips SRF09 17 trips

SRF10 1 trip

SRF15: 1 trip

SRF18: 57 trips

SRF20: 4 trips

82 trips

CM3:

CM4:

SRF19:

D. Valuch | REX HIE issues: SRF cavities trips report

199132

Machine Development: 1.7 GeV beam test (GPS)

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Proposal to the ISOLDE and Neutron Time-of-Flight Committee

Determination of radioactive ion beam production yields using 1.4- and 1.7-GeV protons

May 13, 2022

Simon Stegemann¹, Jose-Luis Sanchez Alvarez¹, Mia Au^{1,2}, Elodie Aubert¹, Ana-Paula Bernardes¹, Cyril Bernerd¹, Edouard Grenier-Boley¹, Marco Calviani¹, Francesco Cerutti¹, Katerina Chrysalidis¹, Thomas Elias Cocolios³, Gian Piero Di Giovanni¹, Alexandre Dorsival¹, Charlotte Duchemin, Sean Freeman^{1,4}, Matthew Fraser¹, Simone Gilardoni¹, Reinhard Heinke¹, Karl Johnston¹, Ulli Köster⁵, Giuseppe Lerner¹, Bruce Marsh¹, Fabio Pozzi¹, Francesc Salvat Pujol¹, João Pedro Ramos⁶, Edgar Reis¹, Jose Alberto Rodriguez Rodriguez¹, Ralf Erik Rossel¹, Sebastian Rothe¹, Jose Maria Martin Ruiz¹, Maximilian Schütt¹, Erwin Siesling¹, Piotr Krzysztof Skowronski¹, Thierry Stora¹, Joachim Vollaire¹

¹CERN, Switzerland
²Johannes Gutenberg-Universität Mainz, Germany
³KU Leuven, Institute for Nuclear and Radiation Physics, Heverlee, Belgium
⁴The University of Manchester, Manchester, UK
⁵Institut Laue-Langevin, Grenoble, France
⁶Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium

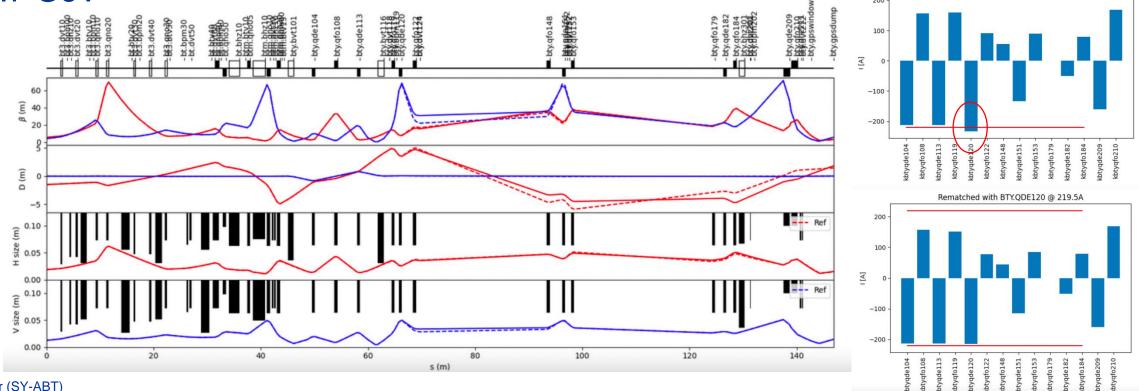
ISOLDE could receive 2.0 GeV from the PS Booster with infrastructure (dumps) and proton beam line upgrades

08/11/2022

S. Stegemann & al

SY

Accelerator Systems



		Ratio: UC _x -1.7/	'1.4 GeV	
95 90 85 80 75 70 65 60 55 55 40 45 40 35 30 25 20 15 10 5 5		n-deficient rare earths n-deficient Ba, Cs, etc Low-Z Al, Mg, Na	FLUKA (MC	n-rich Pb, Bi Hg, Tl, etc
		Proton beam tuning PSB-GPS		
		Stray radiation measurements		
		Beam scattering measurements		
		Isotopes	Target	Ion source
		^{6,8} He	UC _X /Ta	VD7
	(a)	^{-8,9} Li	UC_X/Ta	MK1
		¹¹ Be	UC_X/Ta	RILIS
		x _{Ne}	UC _X	VD7
	(b)	x _{Na}	UCX	MK1
	()	×Mg	UC _X	RILIS
		^{- x} Al ²³⁰ Fr, ²³¹ Ra	UC _X	RILIS
	(-)	- xFr, XRa	ThC _X	MK1 MK1
	(c)	-x _{Rn}	$\frac{UC_X + ThC_X}{UC_X + ThC_X}$	VD7
		xXe	$UC_X + CeO_X \text{ or } LaC_X$	VD7
	(d)/(e)	-x _{Cs} , x _{Ba}	$UC_X + CeO_X \text{ or } LaC_X$ $UC_X + CeO_X \text{ or } LaC_X$	MK1
	(4)/(3)	-XAg, XCd, XIn, XSn	$UC_X + CeO_X \text{ or } LaC_X$ $UC_X + CeO_X \text{ or } LaC_X$	RILIS

Machine Development: 1.7 GeV beam test (GPS)

- Rematched BTY-line optics at 1.7 GeV (possible for GPS only)
- Limited to 1.7 GeV by power converter current in BTY vertical dipoles
- Optics rematched to keep all quadrupole settings within power converter limits for 1.7 GeV

M. Fraser (SY-ABT)

(STI)

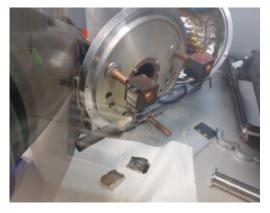
Machine Development: 1.7 GeV beam test (GPS)

- Measurements in August: UCx target + Ta-surface (MK1) ion source. Many surface ionized species of interest (large mass range). Four different laser ionization schemes
- Measurements in October: LaCx target + Ta-surface (MK1) ion source + Sn laser ionization)
- Analysis ongoing (lot of data collected) but preliminary results confirm the gains using 1.7 GeV for several isotopes of interest
- Results agree well with MC calculations (extrapolations for 2.0 GeV)
- Future:
 - Data analysis from present beamtime
 - Explore other regions of the nuclear chart
 - Further study proton beam transport to ISOLDE

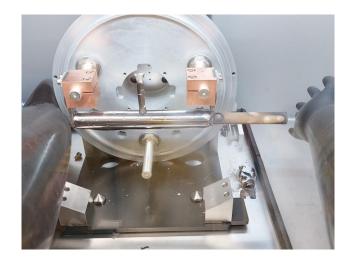
Presentation in the ISOLDE Users Workshop end of the year

SY

Accelerator Systems


Update on target production

LaCx production and charge transfer (very reactive target material)



- Storage of pressed uncarburized La(OH)₃+C pills
- Storage of carburized LaC_x

- Inerted GB5: Transfer of carburized charge into storage capsule
- \blacktriangleright PPM levels of O₂
- Batch production

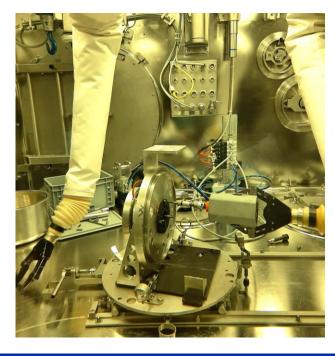
- Inerted GB5: Transfer of carburized charge from storage capsule into ISOLDE target.
- Fast transfer to ISOLDE front-end
- Minimized risk of material re-oxidation

One of the new nano-laboratory glove box

S. Stegemann, E. Reis & Target team courtesy

SY

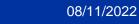
Accelerator Systems



08/11/2022

Closing the target lifecycle (disposal)

Two tantalum targets dismantled inside the ISOLDE Hot Cell (very important milestone)


(STI)

S. De Man & B. Fost courtesy

Conclusions and Perspectives

- Challenging run but very successful overall run: several problems encountered but solved thanks to the effort and commitment of all teams supporting the facility
- First run above 1.4 GeV ! Very important milestone to pave the way to an energy increase (excellent synergy between different teams)
- Dismantling of 2 radioactive targets (ISOLDE Hot Cell Commissioning)
- For the coming YETS:
 - Finalization of control and electrical supply of the primary areas ventilation system (started during LS2)
 - Standard YETS intervention in the target and separator areas will start after the ventilation is operational again (end of February). Normal maintenance and investigations of technical problems (target clamping on HRS)
 - EBIS solenoid magnet repair

Accelerator Systems

home.cern