Laser spectroscopy of neutron-rich indium isotopes beyond N=82

Shane Wilkins on behalf of the CRIS collaboration

Motivation

Indium isotopes (Z=49) encompass huge range of neutron numbers spanning entire major neutron shell between N=50 and N=82.

Proton hole in $g_{9/2}$ orbital can couple to valence neutrons in many different ways.

Opportunity to test multiple aspects in our understanding of nuclear structure.

Motivation - single-particle behaviour in even-N ground states

Long, uninterrupted chain of $9/2^+$ ground states in even-N isotopes of indium across entire major neutron shell.

K. Heyde, The Nuclear Shell Model (1994)

Motivation - single-particle behaviour in even-N ground states

Textbook example of single-particle behaviour in complex nuclei - identity of nucleus predominantly determined by $g_{9/2}$ proton.

K. Heyde, The Nuclear Shell Model (1994)

Motivation - complex magnetic behaviour of $p_{1/2}$ isomers

Long chains of 1/2- isomeric states in even-N isotopes.

K. Heyde, The Nuclear Shell Model (1994)

Motivation - complex magnetic behaviour of $p_{1/2}$ isomers

Complex behaviour of magnetic moments of $p_{1/2}$ isomers - long-standing puzzle in region.

K. Heyde, The Nuclear Shell Model (1994)

Motivation - rich isomerism in odd-N isotopes

A. Vernon, PhD thesis (2020) Odd-N isotopes exhibit rich isomerism from coupling between unpaired proton and neutrons can test p-n interaction.

Motivation - high-spin isomers close to N=82

High-spin isomers from coupling between broken neutron pairs.

A. Vernon *et al.*, In preparation

Motivation - abrupt change of nuclear moments at N=82

Motivation - developments in nuclear theory

¹⁰ M. Mougeot *et al.*, Nat. Phys. **17** 1099–1103 (2021), A. Vernon *et al.*, Nature **607** 260-265 (2022)

Proposal aims

Aim to perform the furthest laser spectroscopy measurements beyond N=82 in vicinity of Z=50.

Measure up to 4 properties of ground states and isomers of 131 m^2 -134In!

Test predictions from Density Functional Theory and *ab initio* Valence Space In-Medium Similarity Renormalization Group.

New observables measured by this proposal: $\frac{131m^2 \ln (21/2^+)}{ \ln \ln (2^+)}$: μ, Q_s, δ $\langle r^2 \rangle$ $\frac{132}{\ln (7)}$: μ, Q_s, δ $\langle r^2 \rangle$ ^{133g}In (9/2⁺): μ, Q_s, δ $\langle r^2 \rangle$ ^{133m}In (1/2[−]): Ι, μ, δ $\langle r^2 \rangle$ ¹³⁴ln (7⁻): μ, Q_s, δ $\langle r^2 \rangle$.

Progress around 132Sn so far

Measured

Published

Progress around 132Sn so far

Measured

Published

Proposed

The CRIS technique

Indium is a very well-known atomic system at CRIS with extensive off-line developments and 2 on-line experiments performed to date.

> 15 R. Garcia Ruiz, Phys. Rev. X **8** 041005 (2018)

Many resonant transitions tested.

16 R. Garcia Ruiz, Phys. Rev. X **8** 041005 (2018)

Two transitions employed possess excellent sensitivity to observables of interest and allow combined use helps assign hyperfine components to nuclear states.

A. Vernon *et al.*, In preparation ₁₇

Two successful previous experiments on indium isotopes at CRIS:

- $1S639$ neutron-rich up to 131 In (N=82).
- IS639A neutron-deficient down to 101 In (N=52).

IS639 run compromised by target being vented at high temperature significantly reduced indium yield.

Plethora of new isotopes and observables measured.

2 articles so far in Nature and New J of Physics (1 in Phys. Rev. X for off-line developments).

Multiple additional articles in progress (2 in advanced stage).

Shift request

Table 1: Isotopes of interest, their spins and half-lives 31, 19, 13, 14, yields and shifts requested. The quoted yields for the ground states are taken from the ISOLDE Yield Database where a UC_x target with neutron converter is used in combination with RILIS. The yield of 131m,133m In was estimated using experimentally observed ratios in 129,131 In during the IS639 experiment. The requested shifts include the time needed for regular calibration measurements with the reference isotope 115 In, however 3 shifts (without protons) preceding the experiment are requested for beam tuning, charge-exchange cell heating and laser/atom interaction optimization.

Total: 16 shifts with protons (+3 without)

Experimental setup - field ionization

More sensitive ionization scheme through field ionization of high-lying Rydberg states [1].

Funding for OPO laser system to use technique from 8s ${}^{2}S_{1/2}$, 9s ${}^{2}S_{1/2}$ states successfully acquired.

Reduce non-resonant laser and collisional background from intense expected Cs/Ba contamination.

Background ions

(before grids)

Acceleration lenses

Field-ionization wires

 $a)$

Seamented deflection

29

28

27

25

24

23 22 21

keV 26

²⁰ A. Vernon *et al.*, Sci. Rep. **10** 12306 (2020)

Experimental setup - nuclear decay detection

Short half-lives and large Q_β (>14 MeV) compared to stable or long-lived contaminants (<3 MeV) open up possibility to use emitted betas for ion detection.

Scenario 1: Simple implantation onto thick window like used for 52K and utilize difference in $\mathsf{Q}_{\mathsf{g}}^{}$ [1].

Experimental setup - nuclear decay detection

Development of new tape station for decay spectroscopy studies at CRIS - under construction at KU Leuven.

Final critical parts to be delivered by Christmas 2022.

To be employed on-line during Zn and Cr runs in 2023.

Scenario 2: Use new CRIS tape station. Able to do more than just beta-counting.

Scenario 3: ILL neutron detector can be added for additional physics and potentially cleaner detection (not needed for this proposal).

TAC comments

Use of LIST for neutron-rich indium its current form results in large 35-50 loss even when compared to on-converter yields [1].

Provisional: UC_x + neutron converter, RILIS and quartz line requested. Can TAC quantify efficacy of quartz line on Cs/Ba contamination reduction?

Possible: Use of LIST may be requested in future if developments significantly reduce this laser ion loss factor.

Narrowband RILIS **not** required as the atomic transitions employed by CRIS for indium have excellent nuclear-state separation. The broadest possible linewidth is requested for RILIS lasers such that entire hyperfine structure of all nuclear states is covered.

R. Heinke, Private communication (2022)

Summary

We propose to extend measurements of neutron-rich indium ($Z=49$) up to 134 In at N=85.

Measurements will provide complementary insights into how multiple facets of nuclear structure evolve beyond N=82.

Indium is a well-known and benchmarked system at CRIS.

More sensitive ionization schemes and/or decay detection methods will enable us to overcome challenges associated with isobaric background.

Acknowledgements

M. Athanasakis-Kaklamanakis^{1,2}, S. Bai³, Y. Balasmeh², A. Candiello², T. E. Cocolios², J. Dobaczewski⁴, R. P. de Groote², A. Dorne², K. T. Flanagan^{5,6}, C. Fajardo², R. F. Garcia Ruiz⁷, G. Georgiev⁸, D. Hanstorp⁹, J. D. Holt¹⁰, J. Karthein⁷, U. Köster¹¹, **Á. Koszorús¹, L.** Lalanne², R. Lica¹², Y. Liu³, K. M. Lynch⁵, A. McGlone⁵, T. Miyagi¹³, G. Neyens², M. Nichols⁹, **F. C. Pastrana Cruz⁷, S. Pelonis², H. Perrett⁵, J. R. Reilly⁵, J. Trujillo², B. van den** Borne², A. R. Vernon⁷, S. Wang³, J. Wessolek^{5,14}, X. F. Yang³

¹EP Department, CERN, Switzerland, ²KU Leuven, Belgium, ³Peking University, China, ⁴The University of York, United Kingdom, ⁵The University of Manchester, United Kingdom, ⁶Photon Science Institute, University of Manchester, United Kingdom, ⁷Massachusetts Institute of Technology, USA, ¹⁵University of Gothenburg, Sweden, ⁵TRIUMF, Canada, ¹⁸M-Squared Lasers, United Kingdom.

