

Studies of the structures of ^{118,120} Cd using ^{118,120}Ag β-decay of laser-selected isomers

Paul Garrett^{1,2}, Thomas Cocolios², Adriana Nannini³, Magda Zielinska⁴ ¹University of Guelph ²KU Leuven ³INFN Firenze <u>4CEA Saclay</u>

KULEUVEN The "evolution" of the structure of the Cd isotopes

The presumed shapes are based on systematics and similarities of decay properties – but become increasingly uncertain towards the neutron rich isotopes

What is happening with the 0_2^+ state in ¹²⁰Cd? If the recent measurement is correct, it undergoes a significant drop in energy in ¹²⁰Cd.

There is no good candidate for the 2^+ state built on the 0_2^+ state in ¹¹⁸Cd, implying that it remains unobserved, or other states must be re-interpreted.

Just off stability, and we do not have a good understanding of the structure

KU LEUNEN – a "nearly harmonic nucleus", or multiple shape coexistence?

- Knowledge of ¹¹⁸Cd has not substantially improved since the 1980s, when it was assigned as a "nearly harmonic" vibrational nucleus
- ¹²⁰Cd recently studied at ORNL refuted the previous 0₂⁺ state at 1339 keV, and suggested a new 0⁺ state at 1136 keV

- Knowledge of ¹¹⁸Cd has not substantially improved since the 1980s, when it was assigned as a "nearly harmonic" vibrational nucleus
- ¹²⁰Cd recently studied at ORNL refuted the previous 0_2^+ state at 1339 keV, and suggested a new 0^+ state at 1136 keV

- Knowledge of ¹¹⁸Cd has not substantially improved since the 1980s, when it was assigned as a "nearly harmonic" vibrational nucleus
- ¹²⁰Cd recently studied at ORNL refuted the previous 0_2^+ state at 1339 keV, and suggested a new 0^+ state at 1136 keV

- Knowledge of ¹¹⁸Cd has not substantially improved since the 1980s, when it was assigned as a "nearly harmonic" vibrational nucleus
- ¹²⁰Cd recently studied at ORNL refuted the previous 0₂⁺ state at 1339 keV, and suggested a new 0⁺ state at 1136 keV

- Knowledge of ¹¹⁸Cd has not substantially improved since the 1980s, when it was assigned as a "nearly harmonic" vibrational nucleus
- ¹²⁰Cd recently studied at OPNI refuted the provious 0 + state at 1330 keV and suggested a new 0⁺ state at 11 In-band transitions not observed
 - Perhaps the 2⁺ we are currently associating with the 0⁺ intruder band head is incorrect? It would imply a drastic change in structure....

Intensities expected to be <0.1%

Cd daughters long-lived, enabling

KU LEUVEN Use of PI-LIST to achieve separation of isomers

- Use hyperfine structure of m1 (spin 0), m2 (spin 3 or 4), and m3 (spin 6 or 7) states to enhance selectivity
- Compromise between selectivity and beam rate we will sacrifice the separation of *m*2 and *m*3 in order to optimise coincidence rate achieved with 2 GHz resolution
 - Take advantage of proposal I285 approved at JYFL (M. Stryjczyk et al.) using laser and trap purified beams that will unambiguously assign γ -rays to specific isomer decays down to ~1% relative intensity

• Already possible with the 5 clover HPGe detectors in geometry optimized for γ - γ angular correlations

TABLE I. Number of crystal-crystal pairs per 5° angular bin for the asymmetric five-clover detector configuration at IDS, used here for angular correlation measurements. Angles are symmetric around 90° , so, e.g., $0^{\circ}-5^{\circ}$ also includes $175^{\circ}-180^{\circ}$.

Angle	0°-5°	5°-10°	10°–15°	15°-20°	20°-25°	25°-30°
Pairs	0	1	2	1	1	3
	30°-35°	35°-40°	$40^{\circ}-45^{\circ}$	45°-50°	50°-55°	55°-60°
	3	7	10	2	14	12
	60°-65°	65°-70°	70°-75°	75°-80°	$80^{\circ}-85^{\circ}$	85°-90°
	15	8	19	24	18	20

Use of SPEDE for conversion electrons

PhD thesis M. Stryjczyk (KU Leuven, 2021)

Use of LaBr₃ detectors for fast timing (at a further radial distance so as to not

compromise HPGe efficiency, may not provide sufficient statistics)

Angular correlations in ²⁰⁷TI

T.A. Berry et al., PRC 101, 054311 (2020)

IF AN ORDER OF MAGNITUDE LESS

- In ¹¹⁸Ag, observation of 2⁺ → 0⁺ transition in intruder band should still be possible (~500 counts in photopeak) but with considerable uncertainty on intensity
- Seek additional 2⁺ candidates in level scheme
- Perform angular correlation analysis for transitions for transitions at level of few % intensity, e.g., 2₂⁺→2₁⁺ with unknown mixing ratio δ and 4.5% relative intensity – important to extract relative B(E2)
- In ¹²⁰Ag, confirm candidate 0_2^+ level at 1133 keV

IF AN ORDER OF MAGNITUDE MORE

- Extend sensitivity in angular correlation analysis to transitions with 0.01% intensity
 - Obtain mixing ratios for most low-lying transitions
- Extend sensitivity for weaker in-band transitions in higher-lying 0⁺ bands
 - In ¹¹²Cd, $2_5^+ \rightarrow 0_4^+$ transition at level of ~4×10⁻⁷ per decay
- Enhance statistics in conversion electron spectra, permitting a far more accurate extraction of the E0 components of J→J transition (we must subtract the M1+E2 contributions)

Collaboration

P.E. Garrett^{1,2}, T.E. Cocolios², A. Nannini³, M. Zielińska⁴, Z. Ahmed¹, A. Algora⁵, M. Athanasakis-Kaklamanakis², S. Bara², C. Bernerd^{2,6}, H. Bidaman¹, V. Bildstein¹, S. Buck¹, A. Camaiani², A. Ceulemans², K. Chrysalidis⁶, A. Claessens², R. de Groote², H. De Witte², Z. Favier⁶, F. Dunkel⁷, K. Flanagan⁸, L. Fraile⁹, R.F. Garcia Ruiz¹⁰, D. Hanstorp¹1, M. Heines², R. Heinke⁶, J.D. Johnson², J. Jolie⁷, A. Koszorus⁶, S. Kujanpää², L. Lalanne², R. Lica¹², N. Marchini³, K. Mastakov¹, C. Mihai¹², E. Nacher⁵, G. Neyens², B. Olaizola⁶, J. Pakarinen¹³, S. Pannu¹, O. Poleshchuk², R. Raabe², J.-M. Regis⁷, M. Rocchini¹, T. Rodríguez⁹, S. Triambak¹⁴, S. Valbuena¹, B. van den Borne², P. Van Duppen², N. Warr⁷, W. Wojtaczka², K. Wrzosek-Lipska¹⁵, X. Yang¹⁶, A. Youssef²

¹University of Guelph, Guelph, Canada ²KU Leuven, IKS, Leuven, Belgium ³INFN Firenze, Italy ⁴CEA Saclay. France ⁵CSIC, University of Valencia, Valencia, Spain ⁶CERN. Geneva. Switzerland ⁷IKP, Universität zu Köln, Köln, Germany ⁸University of Manchester, Manchester, UK ⁹Universidad Complutense de Madrid, Madrid, Spain ¹⁰Massachusetts Institute of Technology, Cambridge, USA ¹¹University of Gothenburg, Gothenburg, Sweden ¹²IFIN-HH, Bucharest, Romania ¹³University of Jyväskylä, Jyväskylä, Finland ¹⁴University of the Western Cape, Bellville, South Africa ¹⁵HIL, University of Warsaw, Warsaw, Poland ¹⁶Peking University, Beijing, China

Table 1: Tield estimates for Table Ag										
Species	Yield μC^{-1}	current μA	isomer fraction	LIST eff	duty factor	ions s ^{-1}				
$^{118}\mathrm{Ag}^{m1}$	1.7×10^8	1.7	0.1	10^{-3}	0.67	1.94×10^4				
$^{118}\mathrm{Ag}^{m2}$	1.7×10^8	1.7	0.45	10^{-3}	0.67	8.7×10^4				
$^{118}\mathrm{Ag}^{m3}$	1.7×10^8	1.7	0.45	10^{-3}	0.67	8.7×10^4				
$^{120}\mathrm{Ag}^{m1}$	4.3×10^7	1.7	0.1	10^{-3}	0.67	4.9×10^{3}				
$^{120}\mathrm{Ag}^{m2}$	4.3×10^7	1.7	0.45	10^{-3}	0.67	2.2×10^4				
$^{120}\mathrm{Ag}^{m3}$	4.3×10^7	1.7	0.45	10^{-3}	0.67	2.2×10^4				

Table 1. Viold estimates for 118.120 Ar

JYFL (M. STRYJCZYK ET AL.)

- Use of trap and laser purified beams (in flight) at IGISOL to achieve nearly 100% separation of *m1*, *m2*, and *m3*
- Assign γ ray transitions to specific isomers, with β-γ-γ coincidences, for γ-rays down to level of 1% intensity – important for close lying doublets of levels with different spins (appearance of doublets of states within 1 keV in Cd isotopes not uncommon)
- Aim for decay of 2×10^6 ions for each isomer
- Use of BEGe + coaxial HPGe detectors provides superior energy resolution

ISOLDE

- Use of PI-LIST for beam purification, nearly 100% separation of *m1*, little or no separation of *m2* and *m3*
- Rely on coincidences for assignment to specific isomer decays, using knowledge from JYFL data, to level of 0.01 – 0.001% intensity
- Perform γ-γ angular correlation analysis for sufficiently strong cascades (~0.5%)
- Aim for decay of $(1.4 10) \times 10^9$ ions (amount depends on specific goals for each isomer)
- Use of HPGe clover enhances high-energy efficiency, LaBr₃ detectors for timing

Known data of shape-coexisting Cd candidates

- Very similar decay properties observed for lowlying 0⁺ states, until ¹¹⁸Cd
- The BMF
 calculations
 predict multiple
 shape coexistence
 across much of
 the Cd isotopic
 chain

P.E. Garrett et al., PRL 123 (2019) 142502

Recent facilities that have investigated the structure of Cd isotopes

