

The University of Edinburgh

CERN-INTC-2022-047 / INTC-P-645

Measurement of ⁴⁰K(n,p) and ⁴⁰K(n,α) cross sections at n_TOF EAR-2

Claudia Lederer-Woods, Moshe Friedman, Umberto Battino, Ulli Koester, Emilio Maugeri, Michael Bacak, Alberto Mengoni, Thomas E. Cocolios, Sergio Cristallo, Thomas Davinson, Nikolay Sosnin, Philip J Woods, Jozef Andrzejewski, Aleksandra Gawlik-Ramiega, Jaroslaw Perkowski, and the n_TOF Collaboration

Motivation

- ⁴⁰K produced in oxygen burning and in s process environments (massive stars)
- Main destruction reactions in s process: (n,α) , (n,p) and (n,γ)
- ⁴⁰K abundance important for radiogenic heating in earth-like exoplanets, important for e.g. plate tectonics

A radiogenic heating evolution model for cosmochemically Earth-like exoplanets

Elizabeth A. Frank^{a,*}, Bradley S. Meyer^b, Stephen J. Mojzsis^{a,c,d,*}

old planets have lower heat outputs per unit mass than newly formed worlds. The long half-life of ²³²Th allows it to continue providing a small amount of heat in even the most ancient planets, while ⁴⁰K dominates heating in young worlds. Through constraining the age-dependent heat production in exoplanets, we can infer that younger, hotter rocky planets are more likely to be geologically active and therefore able to sustain the crustal recycling (e.g. plate tectonics) that may be a requirement for long-term biosphere habitability. In the search for Earth-like planets, the focus should be made on stars

40 K(n, α) impact on s process abundances in 25 solar mass star

Impact also on abundances of other isotopes from ³⁷Cl up

⁴⁰K(n,p) impact on s process abundances in 25 solar mass star

 40 K(n,p) impacts most 40 Ar abundance (x2 rate \rightarrow ~30% more 40 Ar)

Available Data for Stellar Studies

PHYSICAL REVIEW C 101, 055805 (2020)

Constraining the destruction rate of 40 K in stellar nucleosynthesis through the study of the 40 Ar $(p, n) {}^{40}$ K reaction

P. Gastis®*

Department of Physics, Central Michigan University, Mt. Pleasant, Michigan 48859, USA and Joint Institute for Nuclear Astrophysics - Center for the Evolution of the Elements, East Lansing, Michigan 48824, USA

G. Perdikakis¹

Department of Physics, Central Michigan University, Mt. Pleasant, Michigan 48859, USA; National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA; and Joint Institute for Nuclear Astrophysics - Center for the Evolution of the Elements, East Lansing, Michigan 48824, USA

J. Dissanayake, P. Tsintari ¹, and I. Sultana ¹ Department of Physics, Central Michigan University, Mt. Pleasant, Michigan 48859, USA and Joint Institute for Nuclear Astrophysics - Center for the Evolution of the Elements, East Lansing, Michigan 48824, USA

C. R. Brune, T. N. Massey, Z. Meisel, A. V. Voinov, K. Brandenburg, T. Danley, R. Giri, Y. Jones-Alberty, S. Paneru, D. Soltesz, and S. Subedi Department of Physics & Astronomy, Ohio University, Athens, Ohio 45701, USA and Joint Institute for Nuclear Astrophysics - Center for the Evolution of the Elements, East Lansing, Michigan 48824, USA

- Recent publication of ⁴⁰K(n,p) rate using inverse reaction
- Rate given for T>0.4 GK (s process in massive stars at ~0.3 & 1 GK)

Available Data for Stellar Studies

Nuclear Physics A368 (1981) 117–134 © North-Holland Publishing Company

STUDY OF NEUTRON INDUCED CHARGED PARTICLE REACTIONS ON $^{40}\mathrm{K}$

(II). Resonance neutrons

H. WEIGMANN

Commission of the European Communities, Joint Research Centre. Central Bureau for Nuclear Measurements, B-2440 Geel, Belgium

C. WAGEMANS

SCK/CEN, B-2400 Mol and Nuclear Physics Laboratory, B-9000 Gent, Belgium

A ENACATIONS

- TOF measurement at GELINA
- Summed ${}^{40}K(n,p) + {}^{40}K(n,\alpha)$ cross sections up to 70 keV
- Resonance strengths up to 20 keV
- Resonance energies up to 70 keV

Measurement at EAR-2

⁴⁰K(n,a): Q-value=3.87 MeV $\rightarrow \alpha_0 \sim 3.5$ MeV; $\alpha_1 \sim 1.8$ MeV;

⁴⁰K(n,p): Q-value=2.28 MeV → $p_0 \sim 2.2$ MeV; $p_1 \sim 0.7$ MeV

Setup:

dE –E telescope as used for ²⁶Al experiment (20 um + 300 um)

41K

Sample

- Option 1: base material is 3.15% enriched K which then will be implanted onto C backing and enriched in the process to 80% at KU Leuven, 100 ug should be possible.
- Option 2: Buying higher enriched ⁴⁰KCl (16%) with subsequent deposition on a suitable backing sample (tests of molecular plating at PSI Villigen look encouraging).

Beam Time Request

 Based on 100 ug of 80% enriched ⁴⁰K, preliminary neutron flux, resolution function and beam profile

Beam Time Request

 Based on 100 ug of 80% enriched ⁴⁰K, preliminary neutron flux, resolution function and beam profile

_								
d/	F		1				1	
Counts	E_R (keV)	(n, α) counts	(n, p) counts		E_R (keV)	(n, α) counts	(n, p) counts	_
	1.128	1272	12		10.4	5	5	otons
	2.291	228	4		11.7	14	6	
	3.06	5	63		12.2	9	1	
	5.177	1864	18		12.7	37	4	
	5.98	17	53		15.3	10	2	
	6.21	47	5		17.0	7	0	
	7.87	16	1		19.3	14	1	
	8.1	31	0		20.9	41	4	
	9.42	6	9					_
								-
	10 ³ 10 ⁴ Neutron Energy (eV)						V)	

Beam Time Request

• Based on 100 ug of 80% enriched ⁴⁰K, simulated 2022 flux and beam profile:

Thank you for your attention