Breakup of ⁹Li to study the ⁸Li(n,γ) reaction (INTC-P-639)

Dhruba Gupta Department of Physics, Bose Institute

D Gupta, K Kundalia, Sk M Ali, S Maity, R Mitra, S K Saha Bose Institute, India O Tengblad, V G Tavora, A Perea, M J G Borge CSIC, Madrid, Spain I Martel Bravo Universidad de Huelva, Huelva, Spain J Cederkall, M Chishti Lund University, Sweden J Park Inst for Basic Science, South Korea A Moro Universidad de Sevilla, Spain

71st Meeting of the INTC, CERN, November 8-9, 2022

⁸Li(n,γ)⁹Li provides a leak in the reaction chain of n-rich nucleosynthesis, and also competes with ⁸Li β-decay in the rprocess, thus affecting **primordial abundance and stellar production of heavy elements.**

Depending on its rate, the A > 12 production may be reduced by even 50%

The main products sequence of heavy elements and recommended reaction rates ${}^{1}H(n,\gamma){}^{2}H(n,\gamma){}^{3}H(d,n){}^{4}He(t,\gamma){}^{7}Li(n,\gamma){}^{8}Li(\alpha,n){}^{11}B(n,\gamma){}^{12}B(\beta){}^{12}C(n,\gamma){}^{13}C(n,\gamma){}^{14}C(\beta){}^{14}N$ Malaney and Fowler (1989)

The two branches important for heavy element production are ${}^{7}\text{Li}(n,\gamma){}^{8}\text{Li}(\alpha,n){}^{11}\text{B}$ and a weaker ${}^{7}\text{Li}(\alpha,\gamma){}^{11}\text{B}$. This must compete with ${}^{8}\text{Li}(n,\gamma){}^{9}\text{Li}$ and ${}^{8}\text{Li}(d,n){}^{9}\text{Be}$ which reduce heavy element production, by turning the flow back to ${}^{6}\text{Li}$.

Previous Works 8

⁸ Li	(n .	y)9	Li

Reference	Year of Publication	Reaction Rate $(\text{cm}^3 \text{ mol}^{-1} \text{ s}^{-1})$
Malaney & Fowler	1988	43000
Mao & Champagne	1991	21000
Zecher et al.	1998	<7200
Dubovichenko	2016	5900
Descouvemont	1993	5300
Rauscher et al.	1994	4500
Li et al.	2005	4000
Banerjee et al.	2008	2900
Bertulani	1999	2200
Kobayashi et al.	2003	<790
Dong et al	2022	1720

Theoretical predictions of the reaction rate show huge **differences.** Rate given by M&F is an estimate based on systematics of similar nuclei, other theoretical values based on more microscopic The approaches. from rates experiments correspond to upper limits, obtained using the Coulomb dissociation method combined with the detailed balance theorem.

Rate from GSM-CC approach consistent with the upper limit of Zecher and exceeds by a factor ~ 2 the limit of Kobayashi. One **order of magnitude difference** of rate justifies **re-measurement of this reaction**. GSM-CC (NCSMC) results are lower (higher) by ~ 20% (~ 30%) than the median value of other results. Since the half-life of ⁸Li is **0.178s**, it is impossible to prepare a ⁸Li target and bombard it with neutrons for a direct measurement of the capture cross section.

Coulomb dissociation of ⁹**Li** in the virtual photon field of 208 Pb target, observed counts 29.9 ± 20.0

Thus (n,γ) cross section obtained from ⁹Li(γ ,n)⁸Li inverse reaction. 28.5 MeV/u ⁹Li beam, I ~ 5000 pps. Fragment and neutron detectors at zero degrees w.r.t beam to accommodate forward focusing.

Very small yield from low-Z targets prevented estimate of nuclear contribution. Upper limit of reaction rate

Experiment using more sensitive equipment

39.7 MeV/u ⁹Li beam, I = 10^4 pps. Magnetic deflection ~20° of unreacted projectile and fragments, no discernible ⁸Li peak in coincidence with neutrons. Counts 30 ± 29 .

Interpreted as consistent with zero, with a twostandard-deviation upper limit of 87 counts.

Upper limit of reaction rate order of magnitude less than Zecher

There can be both **direct capture** and **resonant capture** via the 4.296 MeV (5/2⁻) state of ⁹Li. Since neutrons around 0.247 MeV are primarily *s*wave, the **resonance is not expected to contribute much to the cross section**. The ground state of ⁹Li being $3/2^-$, the dominant transition would be *E*2 rather than *E1*, further suppressing its contribution.

Since J^{π} of ⁸Li is 2⁺, capture of an s-wave neutron leads to $3/2^+$ and $5/2^+$ continuum states in ⁹Li, and both can decay via *E1* to the ground state and only the $3/2^+$ can decay via *E1* to the 2.691 MeV (1/2⁻) excited state of ⁹Li.

At the bombarding energies of tens of MeV/nucleon, the E2 virtual photon number is much larger than that of E1. As a consequence, even when the E2 contribution to the radiative capture cross section is small, it may be amplified in Coulomb breakup experiments. This poses an additional experimental problem, since one needs to separate the E1 transition matrix elements from E2.

Importance of *E***2 excitations in the NSCL experiment?** A relatively simple but still realistic nuclear model by Bertulani (1999) yields agreement with data and suggests that *E***2 excitations are negligible** for the kinematical conditions of the experiment.

Radiative capture cross sections for ⁸Li(n, γ)⁹Li in the direct capture model. The solid curve is obtained with s-waves, while the dashed curve includes d-wave transitions.

Angle integrated cross section, as a function of neutron energy relative to ⁹Li. *E2* contribution to the breakup cross section is **at least one order of magnitude smaller** than *E1*, even at the resonance region.

Breakup of ⁷Li near the α -*t* threshold to probe radiative-capture processes

9 MeV/u and 6 MeV/u ⁷Li

H. Utsunomiya, PRL (1990)

Method of Baur, Bertulani, and Rebel reduces the difficulty of direct measurements to the technical problem of observing astrophysical energies in *two-particle correlation experiments*. It requires a clean separation of Coulomb and nuclear contributions.

TABLE I. Various systems chosen for the nuclearastrophysical application of the ⁷Li breakup.

Data set	Targets	Laboratory bombarding energies (MeV)	c.m. angles (deg)
Ι	²⁰⁸ Pb	63	12.4
			15.5
			20.7
			25.8
П	¹⁴⁴ Sm	63	12.6
III	¹²⁰ Sn	63	9.6
			12.7
			15.9
IV	⁵⁸ Ni	42	11.2
			16.9
V	²⁷ Al	42	8.9
			12.7

A modified version of the method is feasible in this energy domain where the Coulomb and the nuclear interactions behave similarly in exciting the α -t continuum states.

α-*t* correlation cross sections for a wide range of impact parameters (detection angles) and different intensities of Coulomb field (targets), two particles emitted in extremely close proximity.

It is remarkable that, for all the systems, the energy dependence of the reduced transition probability is

Observed "universal" energy dependence may be interpreted as a signature that the nuclear and Coulomb interactions excite the continuum with the same relative

1000

Extracted S-factors agreed to those from radiative capture measurements

Projectile breakup **near particle thresholds** may provide indirect access to radiative-capture processes at astrophysical energies.

⁹Li + ²⁰⁸Pb \rightarrow ⁸Li + n + ²⁰⁸Pb E = 7 MeV/u (τ = 2.5 mg/cm²)

Beam intensity $I \sim 10^5$ pps

Charge particle detector setup (Pentagon)

1 x S3 annular DSSD (24 x 32 strips, 1000 μ m) covering front angles 8° – 25° 5 x W1 DSSD (16 x 16 strips, 60 μ m) in pentagon geometry covering angles 40° – 80° 2 x BB7 DSSD (32 x 32 strips, 60 μ m and 140 μ m) at backward angles 127° – 165° The W1 and BB7 DSSDs are backed by 1500 μ m thick unsegmented pads

Neutron detector setup (SAND)

30 modules each a $10 \times 10 \times 10$ cm³ plastic scintillator equipped with fast PM tubes. Intrinsic efficiency of the detectors for neutron energy range 3–10 MeV is about 30%, slightly depending on energy. Timing resolution is about 0.3 ns. Distance of the neutron detectors to target is 300 cm resulting in a total neutron detection efficiency of ~ 0.1%.

CDCC calculations ${}^{9}\text{Li} + {}^{208}\text{Pb} \rightarrow {}^{8}\text{Li} + n + {}^{208}\text{Pb} = 7 \text{ MeV/u}$

Relative energy distribution (n + ⁸Li relative energy following ⁹Li breakup)

⁸Li and n angular distributions

Narrow peak at low excitation energies comes from the 5/2- resonance, which is modeled with a p1/2 configuration. Considering experimental energy resolution, this peak will be completely washed out.

Calculated elastic breakup (*breakup in which the neutron is not absorbed by the target*) cross section is **5.8 mb. Nuclear breakup is significant** (~ 50% of the breakup cross section).

Monte Carlo simulations for the energy spectrum of the scattered ⁹Li at $\theta_{lab} = 52^{\circ}$ (Pentagon). The breakup threshold of ⁹Li is 4.063 MeV. The ⁸Li from both **direct** and **sequential breakup** from the 4.296 MeV (5/2-) state of ⁹Li is also shown.

⁸Li : $E \sim 50 - 59$ MeV (8° - 60°) n: $E \sim 0 - 13$ MeV (5° - 50°)

⁹Li - 10⁶ pps, ²⁰⁸Pb τ -1 mg/cm², ⁸Li + n breakup cross section - 1 mb/sr, count rate of produced ⁸Li ~ 9×10⁻³ s⁻¹ which corresponds to about 260 counts per shift.

Breakup of 9Li to study the 8Li(n,y) reaction					
CDS#	Proposal #	IS #	Setup	Shifts	Isotopes
CERN-INTC-2022-037	INTC-P-639		SEC	18	9Li
	The requested yield at the experiment is 1e6pps. This does not appear to be feasible. Recent yields are of the order of 2e5pps at the experimental line in XT03. Previous yields were with 2um Ta foils which are no longer available, and were not long lasting. Only 25um Ta foils are currently available.				
Beam intensity/purity,					
targets-ion sources	Can these yield estimates be addressed and confirmed?				
	UC with a surface ion sourc development.	e has been shown to produc	ce 1e5 pps/uC. Nano-structu	ired UC may help, but this wo	uld require some
General implantation and					
setup					
HIE ISOLDE	The beams have been deliv 9Li (t1/2=178 ms) 1E6 pps at the experiment i The energy of 7 MeV/u is fe acceleration will reduce the	ered before may not be feasible (see abc asible. With a chosen A/q o ir intensities by factors 5×10	ove). f 9/3, contaminations 12C4- D–5 and 6×10–4 respectively	+ and 18O6+ will be expected. /.	. A stripper foil after
General Comments					
Safety	ISIEC to be provided (online) and inspection on site to b	e organised before the star	t of operations.	
TAC recommendation	The TAC is mostly concerne The yield of 9Li is expected shift request be reconsider	ed with the production of the to be at around 5-10 times ed?	ne primary beam. The quote magnitude lower Is the ex	ed yield at the experiment se periment still feasible in the	ems to be unreasonable. se conditions? Or should the

1) Increase **target thickness** from 1.0 to 2.5 mg/cm²

2) TOF: if time resolution 1 ns and considering 10 MeV neutrons

Distance	of SAND from target centre	SAND solid angle	
3 m :	gamma (10 ns) n(70 ns)	0.09% of 4pi	Effectively
2 m :	gamma (7 ns) n(50 ns)	0.26% of 4pi	$2.5 \times 20 \times 2 - 100$
1 m :	gamma (3.5 ns) n(25 ns)	0.91% of 4pi	$2.3\lambda 20\lambda 2 = 100$
0.6 m :	gamma (2 ns) n(14 ns)	2.08% of 4pi	Tota increase in yield
We can n	nove SAND to 0.6 m from target co	entre to gain ~ 20 times.	• •

2600 counts per shift

3) Can use **double number of n-detectors** to gain factor of 2.

Beamtime Request

The requested beamtime is 15 shifts of ⁹Li at 7 MeV/u on ²⁰⁸Pb target, and 3 shifts for preparation. We request a beam intensity of 10⁵ pps, and plan to run on fully ionized ⁹Li so that A/q = 3. The contaminants that might appear are ¹²C⁴⁺ and ¹⁸O⁶⁺. A stripper foil after acceleration will reduce their intensities by factors 5×10⁻⁵ and 6×10⁻⁴ respectively, which is expected to give an **acceptable background**. The levels of radiation from the beam and its decay (and any reaction-induced activity) will be sufficiently low and will not cause any problems. The Si detectors for detection of charged particles and plastic detectors for detection of neutrons do not pose any safety risks.

Order of magnitude difference of rate between NSCL (1998, 2003) experiments justify **re-measurement of this reaction**. Theoretical calculations (1999, 2022) consistent with upper limit of 1998 data and exceeds 2003 data by a factor ~ 2. GSM-CC (NCSMC) results are lower (higher) by ~ 20% (~ 30%) than the median value of other calculations. Indirect measurements through ⁸Li(d,p)⁹Li reaction at ~ 5 MeV/u to determine (n, γ) reaction rates, yielded values in between NSCL measurements.

This necessitates a new experiment to study the $^{8}Li(n,\gamma)^{9}Li$ reaction in the context of A>12 production.

References

- [1] H. Kobayashi et al, Phys. Rev. C 67, 015806 (2003); see references therein
- [2] Malaney and Fowler, Astrophys. J. 345, L5 (1989)
- [3] P.D. Zecher et al, Phys. Rev. C 57, 959 (1998)
- [4] Z. H. Li et al, Phys. Rev. C 71, 052801 (R) (2005)
- [5] H. Utsunomiya et al, Phys. Rev. Lett. 65, 847 (1990)
- [6] G. Baur, C. A. Bertulani, and H. Rebel, Nucl. Phys. A458, 188 (1986)
- [7] Sk M. Ali et al, Phys. Rev. Lett. 128, 252701 (2022)
- [8] C. A. Bertulani, J. Phys. G: Nucl. Part. Phys. 25 (1999) 1959
- [9] G. X. Dong et al, Phys. Rev. C 105, 064608 (2022)

Thank You

