Transition probabilities of low-lying excited states in ²¹⁰Po and ²¹⁰Pb

<u>G. Georgiev¹, G. Rainovski², A.E. Stuchbery³, Zs. Podolyák⁴</u>, A. Andreyev⁵, D.L. Balabanski⁶, A. Blazhev⁷, F. Browne⁸, F. Dunkel⁷, L.M. Fraile⁹, L. Gaffney¹⁰, K. Gladnishki², J. Jolie⁷, T. Kibedi³, D. Kocheva², A. Kusoglu^{6,13}, G. J. Lane³, J. Ljungvall¹, V. Manov², AJ Mitchel³, N. Pietralla¹¹, M. Scheck¹², M. Stoyanova², K. Stoychev¹, N. Warr⁷, V. Werner¹¹

¹ IJCLab, Orsay, France; ² Faculty of Physics, Sofia University St. Kl. Ohridski, Bulgaria; ³ The Australian National University, Canberra, Australia; ⁴ University of Surrey, Guildford, UK; ⁵ University of York, York, UK; ⁶ ELI-NP, IFIN, Bucharest, Romania; ⁷ IKP, University of Cologne, Germany; ⁸ ISOLDE, CERN, Geneva, Switzerland; ⁹ Universidad Complutense, Madrid, Spain; ¹⁰ University of Liverpool, Liverpool, UK; ¹¹ TU Darmstadt, Darmstadt, Germany; ¹² University of the West of Scotland, Paisley, UK; ¹³ University of Istanbul, Istanbul, Turkey

How magic are the doubly magic nuclei?

 $K^{\pi} = 0^{+}$

A.E. Stuchbery and J.L. Wood, *Physics* **2022**, *4*(3), 697-773

 $K^{\pi} = 0^{+}$

 $K^{\pi}=2^{+}$

 $K^{\pi}=0^{+}$

N=Z doubly magic nuclei (¹⁶O and ⁴⁰Ca) → examples of *shape coexistence* at the level of fist excited states

 $K^{\pi} = 2^{+}$

 $K^{\pi} = 0^{-}$

N > Z doubly magic nuclei (^{48}Ca , ^{132}Sn , ^{208}Pb) \rightarrow octupole correlations at the (very) low excitation energies

Do we understand the structure of ²⁰⁸Pb and its vicinity???

Properties of the 2-particle configurations above ²⁰⁸Pb

increasing spin;

nuclei:

Properties of the 2 – particle configurations above ²⁰⁸Pb Shell model calculations

Kuo-Herling interaction (E. K. Warburton and B. A. Brown, Phys. Rev. C 43, 602 (1991)).

2 protons in $(2p_{1/2}, 2p_{3/2}, 1f_{5/2}, 1f_{7/2}, 0h_{9/2}, 0i_{13/2})$ and 2 neutrons in $(3s_{1/2}, 2d_{3/2}, 2d_{5/2}, 1g_{7/2}, 1g_{9/2}, 0h_{11/2}, 0j_{15/2})$

 $(e_{\pi}, e_{\nu}) = (1.44e, 0.91e)$ fixed to the B(E2;8⁺₁ \rightarrow 6⁺₁) values in ²¹⁰Po and ²¹⁰Pb, respectively

Results:

- Almost perfect reproductions of the energies of the yrast states;
- Good agreement between the experimental and the calculated static moments;
- Good agreement between all experimental and theoretical B(*E*2) but the B(*E*2; $2^+_1 \rightarrow 0^+_1$) values (and B(*E*2; $4^+_1 \rightarrow 2^+_1$) in ²¹⁰Pb)

The problem is present in all shell model calculations available in this mass region (CD Bonn potential, H208 interaction) but also appears in QPM calculations.

Properties of the 2 – particle configurations above ²⁰⁸Pb?

Two hypothesis:

- 1) There are some **<u>deficiencies</u>** in the shell model
- 2) The experimental results for the lifetimes of the 2⁺₁ states of ²¹⁰Pb and ²¹⁰Po contain systematic errors.

PHYSICAL REVIEW C 67, 054310 (2003)

Large-scale shell model calculations for the N=126 isotones Po-Pu

E. Caurier,¹ M. Rejmund,² and H. Grawe³

particle units (W.u.). The agreement for the two- and threeparticle nuclei ²¹⁰Po and ²¹¹At is noteworthy and corroborates the choice of the polarization charge. The deviation observed for the $2^+ \rightarrow 0^+$ transition in ²¹⁰Po can be ascribed both to a systematic uncertainty in the experimental data as deduced from (d,d') inelastic scattering [33], and to the neglect of ²⁰⁸Pb *ph* excitations in the shell model, which enter most sensitively the $I^{\pi} = 2^+$ states [34] (see footnote in Table

M.S.M. Gerathy et al., Phys. Lett. **B823**, 136738 (2021).

²¹⁰Po: B(E2; $2^{+}_{1} \rightarrow 0^{+}_{1}$)

C. Ellegaard *et al.*, Nucl. Phys. **A206**, 83 (1973) (d,d') & (p,p') **42(9) e²fm⁴**

The same technique used for the B(E2; $2^+_1 \rightarrow 0^+_1$) of ²¹⁰Pb

D. Kocheva *et al.*, Eur. Phys. J. **A53**, 175 (2017) *DSAM in a transfer reaction* **136(21)** e²fm⁴

Shell model gives 241 e²fm⁴

Possible impact of the long-lived states feeding the level of interest - is it correctly accounted for?

A. E. Stuchbery and J. L. Wood, Physics 4, 697 (2022).

.... The discrepancy between theory and experiment for the 2⁺ state in ²¹⁰Po (1.8(3)W.u. cf. 3.4W.u.) is well known and has been attributed to a lack of particle-hole excitations in the theoretical calculations [31,36,37]. However<u>, it should</u> also be recognized that the data evaluators for the A=210 mass chain [38] note that the 2⁺ lifetime measurement in ²¹⁰Po should be tested, so excessive interpretation of this potential discrepancy is not warranted. ...

Properties of the 2 – particle configurations above ²⁰⁸Pb?

It is necessary to <u>remeasure/test/verify</u> the B(E2; $2^+_1 \rightarrow 0^+_1$) values in ²¹⁰Po and ²¹⁰Pb and eventually the B(E2; $4^+_1 \rightarrow 2^+_1$) value in ²¹⁰Pb by using <u>alternative experimental methods</u>!

To understand the structures of the "open shell" nuclei north-east of ²⁰⁸Pb we have to understand completely the properties of the simplest 2-particle configurations above ²⁰⁸Pb.

RIB production from ISOLDE and experimental details

- ²¹⁰Pb produced in UC_x target as a daughter of ²³⁰U (20.8 d) not released during target irradiation
 - (conservative) in-target production estimate ~1x10⁷ p/μC
- ²¹⁰Po considering only ²¹⁰At decay (8.3h) **cold target irradiation**
 - (conservative) in-target production estimate ~1x10⁸ p/μC

RILIS Ionization efficiencies, corrected (B. Marsh, private communication):

- ~5 % for Po (estimated, no mass marker available)
- ~25 % for Pb (using the new ionization scheme)

Charge breeding and low-energy transport (F. Wenander) \rightarrow ~5%

Post-acceleration (J.A. Rodriguez) \rightarrow 75%

Beam intensity on Miniball target – *at least 2x10⁵ pps* for 1 day of beam on target

Considering all of the above efficiencies those intensities should be achievable after:

- 1 week irradiation of UCx target (@ 1 μ A) in the ²¹⁰Pb case
- 1.5 days of a cold target irradiation (@ 1 $\mu A)$ in the ^{210}Po case

αAt210 8.1 h	At211 7.214 h	At212 0.314 s	At213 125 Ns
(5)+ EC,	9/2- EC,	(1-) * EC, - _{α,}	9/2- α
αPo209	α Po210 138.376 d	βPo211 0.516 s 9/2+	Po212 0.299 Us
EC,	α	α *	α *
Bi208 3.68E+5 y	Bi209	Bi210 5.013 d	Bi211 2.14 m
EC *	9/2- * 100	β.α *	β.α
Pb207	Pb208	Pb209 3.253 h	Pb210 22.3 y
1/2- *	0+ *	9/2+	0+
22.1	52.4	B	Bra

Coulomb excitation using Miniball @ 4.5 MeV/u

- Heavy beam (²¹⁰Po/²¹⁰Pb) @ 4.5 MeV on
- Light target ⁵⁸Ni of 2 mg/cm²

- **912** γ 's per day in the $2^+_1 \rightarrow 0^+_1$ in ²¹⁰Po (3% statistical uncertainty).
- **2352** γ 's per day in the $2^+_1 \rightarrow 0^+_1$ in ²¹⁰Pb (2% statistical uncertainty).
 - **55** γ 's per day in the $4^+_1 \rightarrow 2^+_1$ in ²¹⁰Pb (13% statistical uncertainty).

Beam-time request

Summary of requested shifts (modified):

- 3 shifts (1 day) with $2x10^5$ pps 210 Po beam at 4.5 MeV/u on a 58 Ni target;
 - from a "cold irradiated" UC_x target
 - a total of **10¹⁰**²¹⁰**Po ions** @ Miniball target
- 3 shifts (1 day) with $2x10^5$ pps 210 Pb beam at 4.5 MeV/u on a 58 Ni target
 - from (any) already used UC_x (RILIS) target
- 2 x 1 shift for tuning/calibrations with beam (at lower beam intensity)

→ A total of 8 shifts (without protons) requested

Yield estimates, Thierry Stora and Simon Stegemann

	In-target prod 210At [/muC]	Comment		Eff. Cascade [%]	Comment	
FLUKA	1.00E+08	> taking pessimistic one	production	93.75%	build-up for irrad time (4*Thalf)	
ABRABLA	2.00E+08		release	100.00%	long-lived-> assume all is released	
			ionization	40.00%	https://doi.org/10.1016/j.nimb.2008	.05.142
			transport	5.00%		
			post-acc	80.00%		
			Post acquield 210De [/muC]			
			1.502+06			

	In-target prod 230U [/muC]	Comment		Eff. Cascade [%]	Comment
FLUKA	6.00E+08		production	21.54%	build-up for irrad time (7d)
ABRABLA	8.00E+07	> taking pessimistic one	release	100.00%	long-lived-> assume all is released
			ionization	30.00%	RILIS improved scheme x10
			transport	5.00%	
			post-acc	80.00%	
			Post-acc vield 210Pb [/muC]		
			,		
			2.075±05		
			2.07 E+03		