n_TOF Physics Report

71st INTC meeting, CERN, 08/11/2022

Nikolas Patronis n_TOF Physics Coordinator CERN & Univ. of Ioannina

The n_TOF facility: EAR1 + EAR2 + NEAR

Highlights of the 2022 n_TOF campaign

EAR1	EAR2	NEAR
 ⁷⁹Se(n,γ) ¹⁶⁰Gd(n,γ) ^{94,95,96}Mo(n,γ) ^{50,53}Cr(n,γ) ²³⁹Pu(n,γ)(n,f)(a-ratio) DDX det. dev. HPGe test (postponed) 	 ⁷⁹Se(n,γ) ⁹⁴Nb(n,γ) ¹⁶⁰Gd(n,γ) ^{94,95,96}Mo(n,γ) X17 detector test nn scattering det. test neutron imaging diamond det. test (pending) BKG and other commissioning actions 	 ¹⁹⁷Au(n,γ) ¹⁴⁰Ce(n,γ) ⁷⁶Ge(n,γ) ⁹⁴Zr(n,γ) ⁸⁹Y(n,γ)

- 9 neutron capture reactions have been studied (2 of the for the first time)
- 5 neutron capture reactions have been studied at NEAR with different B4C filter configurations; Activation technique; MACS for different stellar temperatures; Some irradiations will continue on 2023
- 3 detector development projects have been accomplished
- 3 new detector setups have been successfully applied (iTED, sTED and beta-detection for NEAR)
- Diamond detector test (EAR2) is scheduled on week 47
- ²³⁹Pu fission tagging measurement is ongoing (had to be extended in time) - EAR1
- neutron imaging is ongoing EAR2

PoT status

- We are receiving the expected number of protons
- The ²³⁹Pu campaign had to be prolonged as to get the approved # protons.
- Many thanks to the PS teams!

²³⁹Pu(n, **y**) with fission tagging

- ²³⁹Pu plays a central role in the operation of fast reactors and ADS systems
- More accurate ²³⁹Pu capture and fission cross section data are needed
- The goal is to measure simultaneously the neutron-induced capture and fission rates with fission tagging
- fission events recorded with ~92% efficiency in the fission chamber
- Recording singles, coincidence and anticoincidence events between TAC and fission chamber we can determine the α -ratio = (n, γ) and (n,f) cross section ratio
- challenging measurement: ~2MBq/mg, data flow: 1TB/h
- Two targets 330 MBq and 33 MBq

Many thanks to CIEMAT group: Adrian Sanchez Caballero, Victor Alcayne, Daniel Cano Ott,...

²³⁹Pu(n,γ) with fission tagging

PE-Li neutron absorber

Many thanks to CIEMAT group: Adrian Sanchez Caballero, Victor Alcayne, Daniel Cano Ott,...

²³⁹Pu(n,γ) with fission tagging

Final setup: TAC closed

Many thanks to CIEMAT group: Adrian Sanchez Caballero, Victor Alcayne, Daniel Cano Ott,...

²³⁹Pu(n,γ) with fission tagging

Deviations between JEFF-3.3 and ENDF/B-VIII can be nicely resolved through n_TOF data

Many thanks to CIEMAT group: Adrian Sanchez Caballero, Victor Alcayne, Daniel Cano Ott,...

Conclusions

- So far we had a smooth 2022 n_TOF campaign
- 9 neutron capture reactions were studied (astrophysics & energy applications); two of them for the first time
- Measurements with low mass samples (mg) can be performed thanks to the development of new detection setups and thanks to neutron beam improvements is EAR2
- Several detector tests were successfully performed. From first results we are confident that n_TOF is ready to launch new type of measurements in the near future
- The n_TOF target works nicely and smoothly. We can even go from 165E10pps to 220E10 pps (many thanks to SY-STI group!)
- The delivered protons are following our expectations (many thanks to PS teams!)
- A lot of data have to be analysed. Thankfully our enthusiastic young colleagues are there (Jose, Francisko, Elisso, Riccardo, Stella, Pablo, Adrian,...)

Many thanks to the n_TOF local team!

Alberto Mengoni, Michael Bacak, Alice Manna, Simone Amaducci, Adria Casanovas, Victor Alcayne, Francisco Garcia, Jose Antonio Pavon Rodriguez, Elisso Stamati, Stella Goula, Roberto Zarrella, Jorge Lerendegui, ...

Thank you so much for attention!

²³⁹Pu(n, **y**) with fission tagging

Motivation

- 239Pu plays a central role in the operation of fast reactors
- More accurate 239Pu capture and fission cross section data are needed
- The goal is to measure simultaneously the neutron-induced capture and fission rates

Details of the experiment

- **Objective**: measuring the 239 Pu (n, γ) and (n,f) cross section (α -ratio).
- NEW fission chamber (University of Lodz) with ~10 x 1mg ²³⁹Pu targets (JRC-Geel).
- NEW thick ²³⁹Pu (100 mg) encapsulated sample (JRC-Geel)
- **NEW neutron absorber** (designed by CIEMAT and fabricated by CERN)
- NEW pipes and structure material for the fission chamber inside the TAC (made by O. Aberle and O. Fjeld)
- **NEW pulse shape analysis routine** for both Fission Chamber and Total Absorption Calorimeter

3 x 10⁸ Fission Chamber configuration

• Total protons: 5 x 10⁸

2 x 10⁸ thick sample configuration

⁷⁹Se(n,γ) @ EAR1 & EAR2

⁷⁹Se(n,γ) @ EAR1 & EAR2

5 resonances below the first large resonance of Se-78 at 400 eV

Thanks to Jorge Lerendegui, Cesar Domingo et al. (IFIC)

⁹⁴Nb(n,γ) XS @ EAR2

- Physics motivation:
 - The predicted s-process abundance of Mo-94 is five times less than the observed (SiC grains from Murchison met.)
 - No exp. data in the resolved and un-resolved resonance energy region
 - Nuclear waste disposal and transmutation
- Sample: ⁹³Nb irr. @ ILL, PSI preparation & characterization
- sTED n_TOF detector development segmented TED detector – for high rates (EAR2)
 - C₆D₆ liquid scintillators (future: investigating inorganic scint.)
 - 1/20 smaller volume (to resolve rate & γ -flash issues @ EAR2)
 - SiPMs smaller volume/mass for interaction with γ -flash

⁹⁴Nb(n,γ): Some of the identified resonances

Multiple resonances contaminants in Nb93-spiral (as expected)

Experimental method and setup

Reactions

- ¹⁹⁷Au(n,γ)
- $^{140}Ce(n,\gamma)$
- ⁷⁶Ge(n,γ)
- ⁹⁴Zr(n,γ) ⁸⁹Y(n,γ)

B4C filters

- 2.5, 5.0, 7.5, 10 mm thickness on both sides
- 60 mm in diameter
- 30 mm inner hole

Experimental method and setup

Irradiations @ 20 cm with respect the collimator exit

γ-ray measurement using 60% rel. eff HPGe, shielded by 20 cm lead barrel, el. cooled

Analysis & SACS estimation

Experimental method and setup: irradiations

Irradiations @ 20 cm with respect the collimator exit

Beam spatial profile at the irradiation position

19

Experimental method and setup: y spectroscopy

GEAR station

γ-ray measurement using 60% rel. eff HPGe, shielded by 20 cm lead barrel, el. cooled

Experimental method and setup: y spectroscopy

GEANT4 characterization

21

Experimental method and setup

Reactions

B4C filters

• 2.5, 5.0, 7.5, 10 mm thickness on both sides

^{50,53}Cr(n,γ)

Mo-nat contamination

First estimations: ~1300ppm

X17 test @ EAR2

X17 detection setup:

- TPC
- LYSO
- Plastic

Objectives:

- gamma flash response
- Mechanical structure test, alignment and compatibility
- Maximum energy we can go

Thanks to Carlo Gustavino, Evaristo Cisbani, Alice Manna, Roberto Zarella et al. (INFN)

X17 test1 @ EAR1

DDX:

Double-Differential Charged-Particle detection setup for XS measurements from 20 to 200 MeV

Objectives:

- gamma flash response
- Necessity for a switcher circuit
- Mechanical structure test, alignment and compatibility
- Maximum energy we can go
- Particle identification and energy resolution

Setup:

- Telescope 1: DE2-507 μm Si
 - E3 -100 mm plastic scint.
- Telescope 2: DE1 51 μm Si
 - DE2 1043 μm Si E3 CeBr₃ scint.
- Test using ${}^{12}C(n,cp)$; $cp^{3} = p,d,a,...$

n bearr

3.7 mSv/h in contact 120 uSv/h at 10 cm

~3mg of Se-79 produce via 78 Se(n, γ)

Figure 1 79Se sample in alloy of PbSe (sideview)

Co-60 contamination on the Al casing RP-veto mandatory

Origin: most likely external contamination in ILL Hot cell

Isotope	Mass (g)	Figure 2 79Se sample in alloy of PbSe (top view)
Se-78	1.064	
Se-79	0.003	
Pb-208	2.838	
AI-27	1.0244	Se-79 sample
	Isotope	Activity (Mbq)
	Se-79	4.33E-01
	Se-75	5.66E+00
gamma	Ag-110m	2.04E-01
ommitors	Zn-65	2.33E-01
emmiters	Co-60	1.40E+00

Same samples with i-TED + C_6D_6 at EAR1 and s-TED + C_6D_6 & EAR2 to have systematic uncertainties under control

304 mg hyper-pure ⁹³Nb+⁹⁴Nb material (47+45 mm wires)

⁹⁴Nb/⁹³Nb ~ 1% (1.5×10^{19 94}Nb atoms)

10.1 MBq (only ⁹⁴Nb) [e- (200 keV) + ɣ(702+871 keV)]

The NEAR station

