

Università degli Studi

DI PADOVA

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

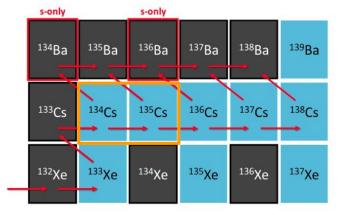
Proposal to the ISOLDE and Neutron Time-of-Flight Committee

Production of a 135 Cs sample at ISOLDE for (n, γ) activation measurements at **n_TOF-NEAR**

J. Lerendegui-Marco, S. Carollo, C. Domingo-Pardo, F. Recchia, U. Köster, V. Babiano, M. Bacak, J. Balibrea-Correa, A. Casanovas, F. Calviño, S. Cristallo, C. Guerrero, C. Lederer, C. Massimi, P. Milazzo, N. Patronis, S. Rothe, A. Tarifeño-Saldivia,E. Stamati, S. Stegemann, D. Vescovi

Outline

- Motivation: ¹³⁵Cs(n,γ) cross section for nucleosynthesis & transmutation
- $^{135}Cs(n, \gamma)$ activation measurement at NEAR
- ¹³⁵Cs sample production at ISOLDE
- Summary and outlook

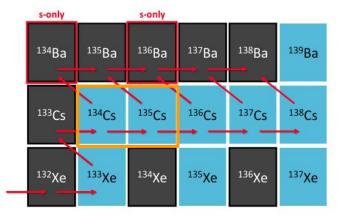


Motivation: s-process

REVIEW OF MODERN PHYSICS, VOLUME 83, JANUARY-MARCH 2011

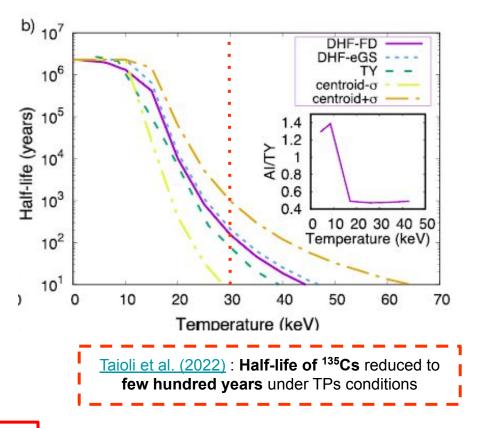
The s process: Nuclear physics, stellar models, and observations

S-process branchings at ¹³⁴Cs and ¹³⁵Cs: Fix the abundance ratio of the s-only ^{134,136}Ba. Accurately measured from SiC from presolar grains of AGB origin


Sample	Half-life (yr)	Q value (MeV)	Comment
⁶³ Ni	100.1	$\beta^{-}, 0.066$	TOF work in progress (Couture, 2009), sample with low enrichment
⁷⁹ Se	2.95×10^{5}	$\beta^{-}, 0.159$	Important branching, constrains s-process temperature in massive stars
⁸¹ Kr	2.29×10^{5}	EC, 0.322	Part of ⁷⁹ Se branching
⁸⁵ Kr	10.73	$\beta^{-}, 0.687$	Important branching, constrains neutron density in massive stars
⁹⁵ Zr	64.02 d	$\beta^{-}, 1.125$	Not feasible in near future, but important for neutron density low-mass
¹³⁴ Cs	2.0652	β^{-} , 2.059	Important branching at $A = 134, 135$, sensitive to <i>s</i> -process temperature in low-mass AGB stars, measurement not feasible in near future
135 Cs	2.3×10^{6}	$\beta^{-}, 0.269$	So far only activation measurement at $kT = 25$ keV by Patronis <i>et al.</i> (2004)
¹⁴⁷ Nd	10.981 d	$\beta^{-}, 0.896$	Important branching at $A = 147/148$, constrains neutron density in low-mass AGB stars
¹⁴⁷ Pm	2.6234	$\beta^{-}, 0.225$	Part of branching at $A = 147/148$
¹⁴⁸ Pm	5.368 d	$\beta^{-}, 2.464$	Not feasible in the near future
¹⁵¹ Sm	90	$\beta^{-}, 0.076$	Existing TOF measurements, full set of MACS data available (Abbondanno et al., 2004a; Wisshak et al., 2006c)
¹⁵⁴ Eu	8.593	$\beta^{-}, 1.978$	Complex branching at $A = 154, 155$, sensitive to temperature and neutron density
¹⁵⁵ Eu	4.753	$\beta^{-}, 0.246$	So far only activation measurement at $kT = 25$ keV by Jaag and Käppeler (1995)
153 Gd	0.658	EC, 0.244	Part of branching at $A = 154, 155$
160 Tb	0.198	$\beta^{-}, 1.833$	Weak temperature-sensitive branching, very challenging experiment
¹⁶³ Ho	4570	EC, 0.0026	Branching at $A = 163$ sensitive to mass density during s process, so far only activation measurement at $kT = 25$ keV by Jaag and Käppeler (1996b)
¹⁷⁰ Tm	0.352	$\beta^{-}, 0.968$	Important branching, constrains neutron density in low-mass AGB stars
¹⁷¹ Tm	1.921	$\beta^{-}, 0.098$	Part of branching at $A = 170, 171$
¹⁷⁹ Ta	1.82	EC, 0.115	Crucial for s-process contribution to ¹⁸⁰ Ta, nature's rarest stable isotope
¹⁸⁵ W	0.206	$\beta^{-}, 0.432$	Important branching, sensitive to neutron density and s-process temperature in low-mass AGB stars
²⁰⁴ Tl	3.78	$\beta^{-}, 0.763$	Determines ²⁰⁵ Pb/ ²⁰⁵ Tl clock for dating of early Solar System

^{134,135}Cs \rightarrow Among the **21 key s-nuclei** listed in Kaeppeler, <u>*Rev. Mod. Phys* 83, 157 (2011)</u>

Motivation: s-process

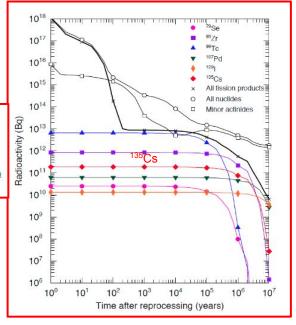


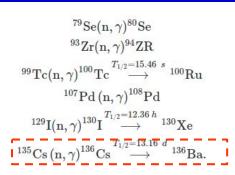
S-process branchings at ¹³⁴Cs and ¹³⁵Cs: Fix the abundance ratio of the s-only ^{134,136}Ba. Accurately measured from SiC from presolar grains of AGB origin

Palmerini et al. (2021).: Ba isotopic ratios sensitive to the (n,γ) CS of ¹³⁴Cs and ¹³⁵Cs + Temperature dependence of the β-decay rates

Accurate (n,g) cross section \rightarrow Stellar thermometer

CSIC Motivation: transmutation of LLFPs


¹³⁵Cs (2.3×10⁶ y): among LLFPs with largest contribution to long-term radiotoxicity


Article Open Access Published: 24 October 2017

Method to Reduce Long-lived Fission Products by Nuclear Transmutations with Fast Spectrum Reactors

Satoshi Chiba 🖂, Toshio Wakabayashi, Yoshiaki Tachi, Naoyuki Takaki, Atsunori Terashima, Shin Okumura & <u>Tadashi Yoshida</u>

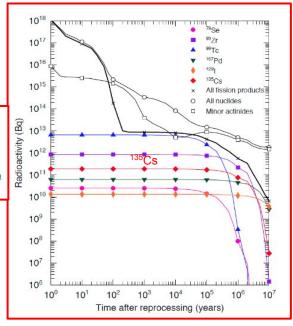
Handbook of advanced radioactive waste conditioning technologies

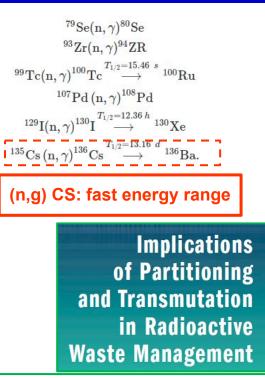
Implications of Partitioning and Transmutation in Radioactive Waste Management

In terms of long-term radiotoxicity, however, long-lived fission products like Tc-99 and I-129, together with Se-79 and Cs-135, are the main contributors in addition to the above-mentioned actinides, and dominate the potential hazard in the case of HLW not containing actinides. Figure 13.2 compares

In the context of radiological risk reduction (concerning a deep geologic repository), the water soluble fission products ¹²⁹I, ¹³⁷Cs, ¹³⁵Cs, ⁷⁹Se and ¹²⁶Sn are the most important radionuclides, due to a combination of toxicity, half-life and concentration.

CSIC Motivation: transmutation of LLFPs

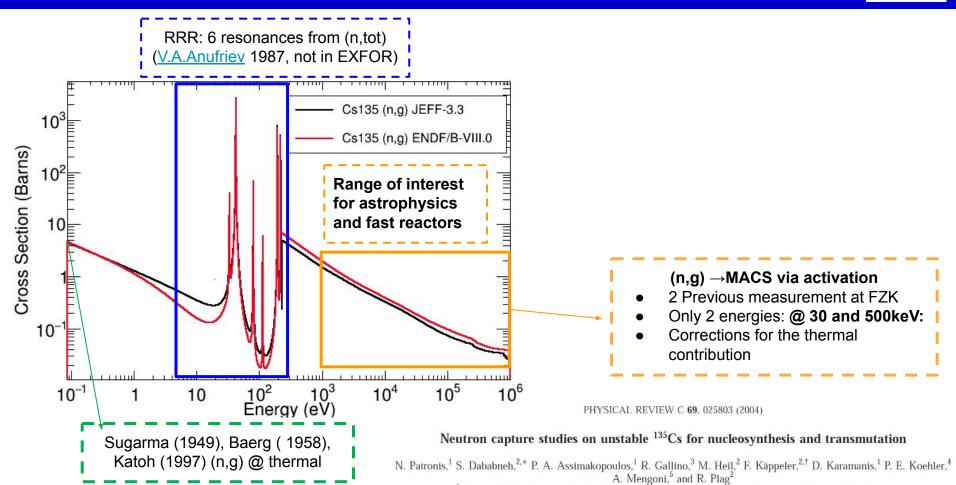

¹³⁵Cs (2.3×10⁶ y): among LLFPs with largest contribution to long-term radiotoxicity


Article Open Access Published: 24 October 2017

Method to Reduce Long-lived Fission Products by Nuclear Transmutations with Fast Spectrum Reactors

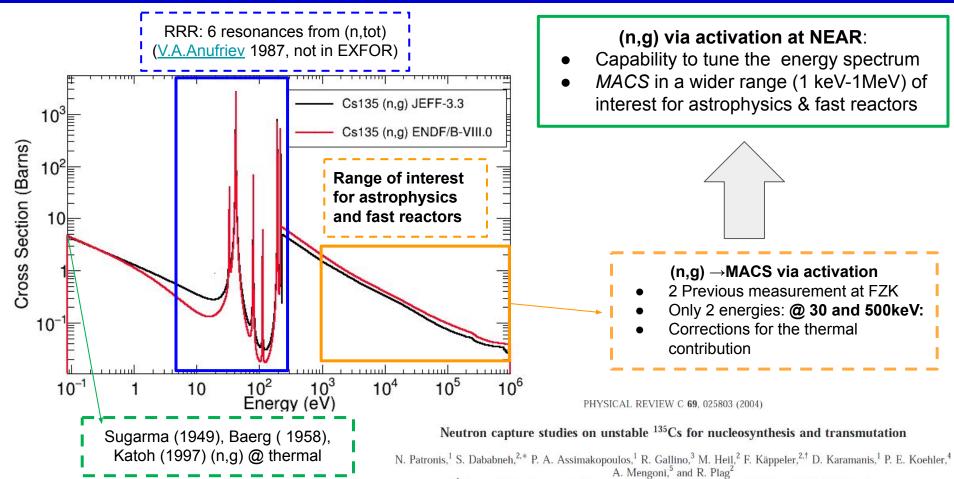
Satoshi Chiba 🖂, Toshio Wakabayashi, Yoshiaki Tachi, Naoyuki Takaki, Atsunori Terashima, Shin Okumura & <u>Tadashi Yoshida</u>

Handbook of advanced radioactive waste conditioning technologies



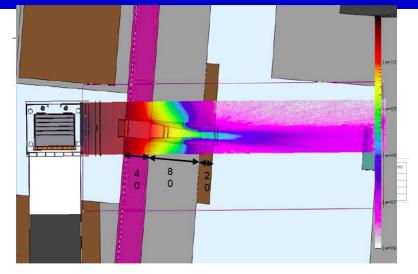
In terms of long-term radiotoxicity, however, long-lived fission products like Tc-99 and I-129, together with Se-79 and Cs-135, are the main contributors in addition to the above-mentioned actinides, and dominate the potential hazard in the case of HLW not containing actinides. Figure 13.2 compares

In the context of radiological risk reduction (concerning a deep geologic repository), the water soluble fission products ¹²⁹I, ¹³⁷Cs, ¹³⁵Cs, ⁷⁹Se and ¹²⁶Sn are the most important radionuclides, due to a combination of toxicity, half-life and concentration.


¹³⁵Cs(n, y): Status of the data

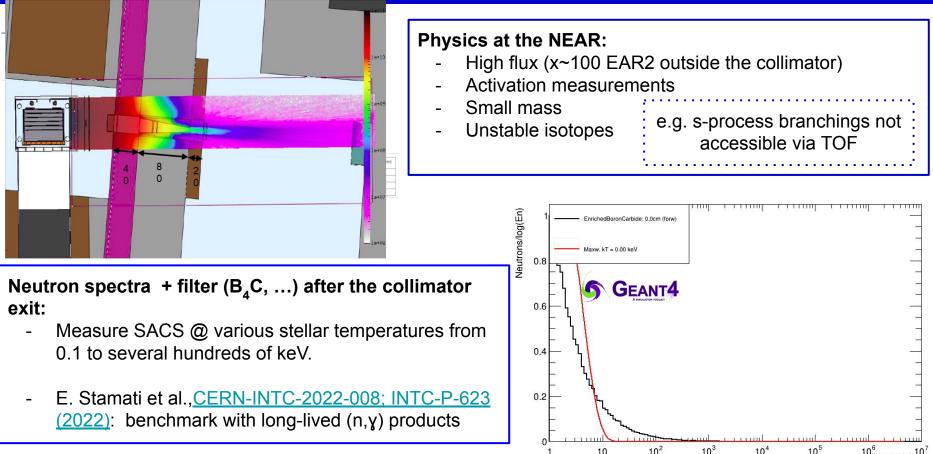
¹³⁵Cs(n, y): Status of the data

Outline

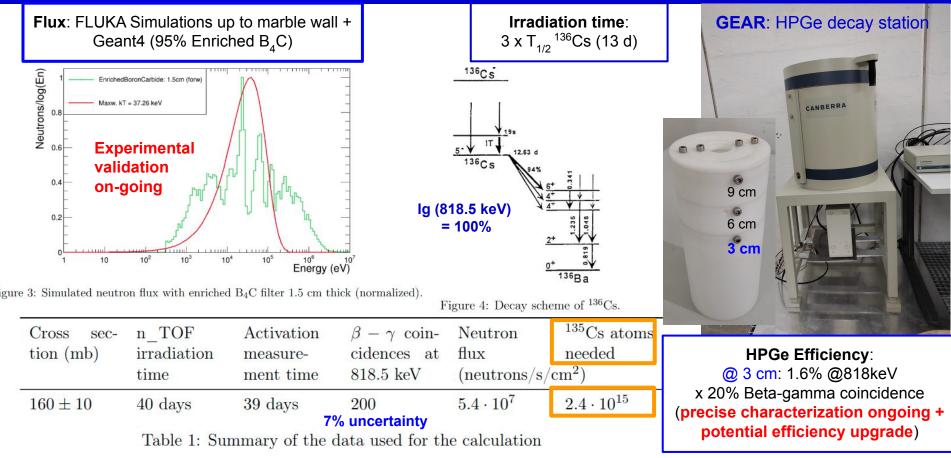


- Motivation: $^{135}Cs(n, \gamma)$ cross section for nucleosynthesis and transmutation
- ¹³⁵Cs(n,y) activation measurement at NEAR
- ¹³⁵Cs sample production at ISOLDE
- Summary and outlook

135 Cs(n, γ) at NEAR + GEAR


Physics at the NEAR:

- High flux (x~100 EAR2 outside the collimator)
- Activation measurements
- Small mass
- Unstable isotopes
- e.g. s-process branchings not accessible via TOF


135 Cs(n, γ) at NEAR + GEAR

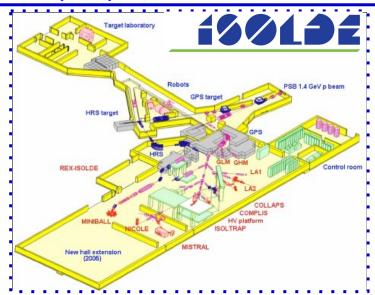
¹³⁵Cs(n, γ) at NEAR: minimum ¹³⁵Cs mass?

Calculations: Sara Carollo

GEAR info: E. Stamati, N. Patronis

Outline

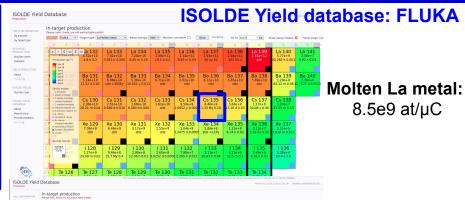
- Motivation: $^{135}Cs(n, \gamma)$ cross section for nucleosynthesis and transmutation
- $^{135}Cs(n,\gamma)$ activation measurement at NEAR
- ¹³⁵Cs sample production at ISOLDE
- Summary and outlook

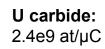


¹³⁵Cs sample production

Why at ISOLDE?

- Yields 1 x 10^9 1 x 10^{10} at/uC $\rightarrow 10^{15}$ at ¹³⁵Cs in several days to weeks
- Separation: GPS → neighbouring masses <0.1% + ¹³⁶Cs decays in few months (Ba isotopes stable)
- Foster ISOLDE-n_TOF synergy: radioactive samples production + measurement at NEAR


¹³⁵Cs sample production: yields



Why at ISOLDE?

- Yields 1 x 10^9 1 x 10^{10} at/uC \rightarrow 10¹⁵ at ¹³⁵Cs in several days to weeks
- Separation: GPS → neighbouring masses <0.1% + ¹³⁶Cs decays in few months (Ba isotopes stable)
- Foster ISOLDE-n_TOF synergy: radioactive samples production + measurement at NEAR

La carbide: 1.3e9 at/µC

ISOLDE \ FLUKA	/ields:	1.5 uA (avg) protons		ct eff. 50%	To implant 2.4e15 at	
Target	${ m In-target}\ { m (at/\mu C)}$	${ m In-target}\ { m (at/s)}$	$\begin{array}{c} \text{Implanted} \\ (\text{at/s}) \end{array}$	$\begin{array}{c} \text{Implanted} \\ \text{(at/day)} \end{array}$	Required $Days^a$	Beam moode
Molten La U carbide La carbide	$8.50 \cdot 10^9$ 2.40 \cdot 10^9 1.30 \cdot 10^9	$\begin{array}{c} 1.28{\cdot}10^{10}\\ 3.60{\cdot}10^{9}\\ 1.95{\cdot}10^{9}\end{array}$	$6.38 \cdot 10^9$ $1.80 \cdot 10^9$ $9.75 \cdot 10^8$	$\begin{array}{c} 5.51 \cdot 10^{14} \\ 1.56 \cdot 10^{14} \\ 8.42 \cdot 10^{13} \end{array}$	4.4 15.4 28.5	Exclusive Parasitic Parasitic

CONSE.IO SUPERIOR D

ISOLDE Y FLUKA	/ields:	1.5 uA (avg) protons		ct eff. 50%	To implant 2.4e15 at	
 Target	${ m In-target}\ { m (at/\mu C)}$	${ m In-target}\ { m (at/s)}$	$\begin{array}{c} \text{Implanted} \\ (\text{at/s}) \end{array}$	$\begin{array}{c} \text{Implanted} \\ \text{(at/day)} \end{array}$	Required $Days^a$	Beam moode
Molten La	$8.50 \cdot 10^{9}$	$1.28 \cdot 10^{10}$	$6.38 \cdot 10^{9}$	$5.51 \cdot 10^{14}$	4.4	Exclusive
U carbide	$2.40 \cdot 10^9$	$3.60 \cdot 10^9$	$1.80 \cdot 10^9$	$1.56 \cdot 10^{14}$	15.4	Parasitic
La carbide	$1.30 \cdot 10^9$	$1.95 \cdot 10^9$	$9.75 \cdot 10^8$	$8.42 \cdot 10^{13}$	28.5	Parasitic

Proposed production alternatives:

- 1) **U Carbide target "parasitic mode"** : in parallel to other running experiments one could collect in the SSP collection chamber (@ GLM or GHM beamlines). **15 days required for 2.4 x 10¹⁵ atoms.**
- 2) U carbide target "parasitic mode" + offline GPS: Old U Carbide target @ ISIS irradiation point at GPS until sufficient ¹³⁵Cs → GPS (when available) & collection @ GLM or GHM. Advantages: irradiation and collection separated in time → scheduling could be facilitated + ion beam would be optimized for the collection.

ISOLDE \ FLUKA	/ields:	1.5 uA (avg) protons		ct eff. 50%	To implant 2.4e15 at	
Target	${ m In-target}\ { m (at/\mu C)}$	${ m In-target}\ { m (at/s)}$	$\begin{array}{c} \text{Implanted} \\ (\text{at/s}) \end{array}$	$\begin{array}{c} \text{Implanted} \\ \text{(at/day)} \end{array}$	Required $Days^a$	Beam moode
Molten La	$8.50 \cdot 10^{9}$	$1.28 \cdot 10^{10}$	$6.38 \cdot 10^{9}$	$5.51 \cdot 10^{14}$	4.4	Exclusive
U carbide	$2.40 \cdot 10^9$	$3.60 \cdot 10^9$	$1.80 \cdot 10^9$	$1.56 \cdot 10^{14}$	15.4	Parasitic
La carbide	$1.30 \cdot 10^9$	$1.95 \cdot 10^9$	$9.75 \cdot 10^8$	$8.42 \cdot 10^{13}$	28.5	Parasitic

Proposed production alternatives:

- U Carbide target "parasitic mode" : in parallel to other running experiments one could collect in the SSP collection chamber (@ GLM or GHM beamlines). 15 days required for 2.4 x 10¹⁵ atoms.
- 2) U carbide target "parasitic mode" + offline GPS: Old U Carbide target @ ISIS irradiation point at GPS until sufficient ¹³⁵Cs → GPS (when available) & collection @ GLM or GHM. Advantages: irradiation and collection separated in time → scheduling could be facilitated + ion beam would be optimized for the collection.

3) Molten La target: Highest yield but less/not compatible to other experiments \rightarrow exclusive shifts.

ISOLDE Y FLUKA	/ields:	1.5 uA (avg) protons		ct eff. 50%	To implant 2.4e15 at	
Target	${ m In-target}\ { m (at/\mu C)}$	${ m In-target}\ { m (at/s)}$	$\begin{array}{c} \text{Implanted} \\ (\text{at/s}) \end{array}$	$\begin{array}{c} \text{Implanted} \\ \text{(at/day)} \end{array}$	$\begin{array}{c} \operatorname{Required} \\ \operatorname{Days}^a \end{array}$	Beam moode
Molten La	$8.50 \cdot 10^9$	$1.28 \cdot 10^{10}$	$6.38 \cdot 10^9$	$5.51 \cdot 10^{14}$	4.4	Exclusive
U carbide	$2.40 \cdot 10^9$	$3.60 \cdot 10^9$	$1.80 \cdot 10^9$	$1.56 \cdot 10^{14}$	15.4	Parasitic
La carbide	$1.30 \cdot 10^9$	$1.95 \cdot 10^9$	$9.75 \cdot 10^8$	$8.42 \cdot 10^{13}$	28.5	Parasitic

Proposed production alternatives:

- 1) **U Carbide target "parasitic mode"** : in parallel to other running experiments one could collect in the SSP collection chamber (@ GLM or GHM beamlines). **15 days required for 2.4 x 10¹⁵ atoms.**
 - 2) U carbide target "parasitic mode" + offline GPS: Old U Carbide target @ ISIS irradiation point at GPS until sufficient ¹³⁵Cs → GPS (when available) & collection @ GLM or GHM. Advantages: irradiation and collection separated in time → scheduling could be facilitated + ion beam would be optimized for the collection.

3) Molten La target: Highest yield but less/not compatible to other experiments \rightarrow exclusive shifts.

Sample production at ISOLDE: + Details

TECHNICAL DETAILS:

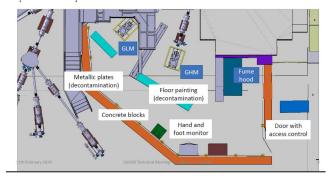
Information: Ulli Köster

- **Beam-lines**
 - Low mass (GLM) or high mass (GHM) beam lines parasitic to HIE- ISOLDE experiments with In, Sn, Sb, Te, Cs or Ba beams in the central beamline

Implantation matrix

• Should be conductive (e.g. Be, Al, C or metallized mylar, etc.)

Sample size


- Small diameter (about 3 mm without much losses) possible.
- Limit self-sputtering of the sample \rightarrow spread the beam over an area of (cm2)+ adapt to n_TOF optimum size

Isotopic purity

- GPS mass separator: <0.1% of neighbouring masses
- ¹³⁶Cs: Sample cooled for > 10 x $T_{1/2}(13 \text{ d}) \rightarrow$ remove ¹³⁶Cs
- ¹³⁴Cs: kBq activities but strongest gamma lines of ¹³⁴Cs decay are below those of ¹³⁶Cs
- Cleaner spectrum with β - γ coincidences: ¹³⁶Cs decay g-rays emitted delayed (^{136m}Ba isomer with T_{1/2}=0.3s)

¹³⁵Cs mass characterization

- Preliminary estimation: Beam current (upper limit for the ¹³⁵Cs content due to the presence of isobaric ¹³⁵Ba)
- Final determination: After the n_TOF experiment by dissolving the target + ICP-MS.

Outline

- Motivation: $^{135}Cs(n, \gamma)$ cross section for nucleosynthesis and transmutation
- Project: Combining direct & surrogate reactions to measure ^{134,135}Cs(n,γ)
- $^{135}Cs(n,\gamma)$ activation measurement at NEAR
- ¹³⁵Cs sample production at ISOLDE
- Summary and outlook

Summary & outlook

Motivation

- ¹³⁴Cs & ¹³⁵Cs(n, γ): relevant s-process branching \rightarrow s-only ^{134,136}Ba (SiC presolar grains)
- $^{135}Cs(n,\gamma)$ (T_{1/2} = 2e6 y) \rightarrow also relevant for transmutation of LLFP

¹³⁵Cs(n,γ): NEAR + GEAR

- Previous MACS @ 30 and 500 keV (N. Patronis, FZK, 2004).
- Aim of the experiment at NEAR: Covering a wider energy range thank to the spectrum-shaping capability.
- Preliminary study: neutron spectra from MC simulations & experimental efficiency of the GEAR setup.
- Estimated minimum required mass of ¹³⁵Cs: 2.4 x 10¹⁵ atoms

Aim of the Proposal: ¹³⁵Cs sample production at ISOLDE

- Strengthen collaboration ISOLDE/MEDICIS for the production of future samples of interest for (n,g) at NEAR.
- Technical feasibility and details have been discussed with ISOLDE experts.
- Options for production:
- 1. Parasitic production/implantation (I): U carbide target while other experiments running → 15 days for the aimed number of atoms
- 2. Alternative Parasitic approach (II): ¹³⁵Cs in Old U carbide + offline extraction when GPS available
- 3. Alternative exclusive shifts (III): 4 days with Molten metallic La target

Outlook towards the $^{135}Cs(n, \gamma)$ at NEAR + GEAR

- Experimental characterization / validation of the NEAR "quasi-estelar" beams + upgrade of the GEAR setup
- Final beam-time estimation for the $^{135}Cs(n,g)$ via activation at NEAR + GEAR \rightarrow **INTC Proposal**

Grant FJC2020-044688-I funded by:

THANK YOU FOR YOUR ATTENTION!

71st Meeting of the INTC, 8th-9th November 2022

AGENCIA ESTATAL DE INVESTIGACIÓN