

0.) Few General Statements

The Main Parts of Beam Dynamics in JUAS

** Lectures "Transverse Beam Dynamics" —> listen and ask intelligent questions*

** Tutorials —> think about interesting (!) questions from real life … and from typical exams ;-)*

** Accelerator Design (Bastian) —> learn how to build a real accelerator*

** Mini-Workshop (Adrian) —> and actually do it !!*

Luminosity Run of a typical storage ring:

LHC Storage Ring: Protons accelerated and stored for 12 hours distance of particles travelling at about v \approx *c L = 1010-1011 km*

 ... several times Sun - Pluto and back

intensity (1011)

B. J. Holzer, CERN JUAS 2023, Transverse Beam Dynamics 1 3 \rightarrow guide the particles on a well defined orbit (n , design orbit") à *focus the particles to keep each single particle trajectory within the vacuum chamber of the storage ring, i.e. close to the design orbit.*

I.) Introduction and Basic Ideas: The Bending Fields

" ... in the end and after all it should be a kind of circular machine" —> need transverse deflecting force

Lorentz force
$$
\vec{F} = q^* \times \vec{+} \vec{v} \times \vec{B}
$$

typical velocity in high energy machines:

$$
v \approx c \approx 3*10^8 m/s
$$

Example:

$$
B = 1 T \rightarrow F = q * 3 * 10^8 \frac{m}{s} * 1 \frac{Vs}{m^2}
$$

$$
F = q * 300 \frac{MV}{m}
$$

equivalent el. field ... E

technical limit for el. field

$$
E \le 1 \frac{MV}{m}
$$

old greek dictum of wisdom: if you are clever, you use magnetic fields in an accelerator wherever it is possible.

The ideal circular orbit

y

circular coordinate system

condition for circular orbit:

Lorentz force

 $F_L = e v B$

centrifugal force

B ρ *e p* =

 $B \rho =$ "beam rigidity"

1.) The Magnetic Guide Field

Dipole Magnets:

define the ideal orbit homogeneous field created by two flat pole shoes

$$
B = \frac{\mu_0 n I}{h}
$$

Normalise magnetic field to momentum:

$$
\frac{p}{e} = B \rho \qquad \longrightarrow \qquad \frac{1}{\rho} = \frac{eB}{p}
$$

Example LHC:

$$
B = 8.33 T
$$

\n $p = 7000 \frac{GeV}{c}$
\n $1/\rho = e$
\n $1/\rho = 0$
\n $\rho = 2.8$

convenient units:

$$
B = [T] = \left[\frac{Vs}{m^2}\right] \qquad p = \left[\frac{GeV}{c}\right]
$$

$$
1/\rho = e \frac{8.33 \text{ Vs/m}^2}{7000 \cdot 10^9 \text{ eV/c}} = \frac{8.33 \cdot 3 \cdot 10^8 \text{ m}}{7000 \cdot 10^9 \text{ m}^2}
$$

$$
1/\rho = 0.000353 \text{ 1/m}
$$

$$
\rho = 2.83 \text{ km}
$$

Dipole Magnets:

homogeneous field created by two flat pole shoes

Field Calculation:

 3 rd Maxwell equation for a static field: $\vec{\nabla} \times \vec{H} = \vec{j}$

according to Stokes theorem:

$$
\int_{S} (\vec{\nabla} \times \vec{H}) \vec{n} \, da = \oint \vec{H} \, d\vec{l} = \int_{S} \vec{j} \cdot \vec{n} \, da = N \cdot I
$$

$$
\oint \vec{H} \, d\vec{l} = H_0 \cdot h + H_{Fe} \cdot h_{Fe}
$$

in matter we get with $\mu_r \approx 1000$ $\oint \vec{H} \ d\vec{l} = H_0 * h + \frac{H_0}{L}$

$$
\oint \vec{H} \, d\vec{l} = H_0 * h + \frac{H_0}{\mu_r} \times F_e \approx H_0 * h
$$

Magnetic field of a dipole magnet:

$$
H_0 = \frac{B_0}{\mu_0}
$$

 $\cot \frac{\pi}{2}$ I

 $\cot \frac{4}{3}$

The dipole strength depends on the gap height h , aka aperture "r0" of the magnet.

—> keep the beam dimensions small !!

Example:

Heavy ion storage ring TSR 8 dipole magnets α *of equal bending strength ds dl*

$$
\alpha = \frac{ds}{\rho} \approx \frac{dl}{\rho} \qquad \alpha = \frac{B * dl}{B * \rho}
$$

The B fields integrated over the path-length of the beam through all dipole magnets has to add up to give an overall angle of

 $\alpha = 2\pi$

B. J. Holzer, CERN JUAS 2023, Transverse Beam Dynamics 1 9 field map of a storage ring dipole magnet

Bending Angle ds dl

ated fi *"integrated field strength"*

The angle swept out in one revolution must be 2π, so

$$
\alpha = \frac{\int B dl}{B * \rho} = 2\pi \qquad \longrightarrow \qquad \int B dl = 2\pi * \frac{p}{q} \qquad \dots \text{ for a full circle}
$$

 $\frac{B}{2} \approx 10^{-4}$ *B Nota bene:* $\frac{\Delta B}{D} \approx 10^{-4}$ *is usually required !!*

The Magnetic Guide Field

 $\rho = 2.83 \ km \longrightarrow 2\pi\rho = 17.6 \ km$ $\approx 66\%$

field map of a storage ring dipole magnet

 $B \approx 1...8$ *T*

 "normalised bending strength"

$$
\frac{1}{\rho} = \frac{eB}{p}
$$

rule of thumb:

$$
\frac{1}{\rho} \approx 0.3 \frac{B[T]}{p[GeV/c]}
$$

The integrated dipole strength (along "s") defines the momentum of the particle beam.

$$
\alpha = \frac{\int B dl}{B * \rho} = 2\pi \qquad \longrightarrow \qquad \int B dl = 2\pi * \frac{p}{q}
$$

A Tandem "Van de Graaf" Accelerator

12 MV Voltage DC over 25 m linear accelerating structure, no dipoles, no focusing, just straight onto the target.

2.)Particles in Quadrupole Fields:

Focusing Properties of a magnet lattice

Classical Mechanics: pendulum

 $-2000 -$

there is a restoring force, proportional to the elongation x:

$$
F = m \cdot \frac{d^2x}{dt^2} = -k \cdot x
$$

Ansatz $x(t) = A \cdot cos(\omega t + \varphi)$.
X $\dot{x}(t) = -A \omega \cdot \sin(\omega t + \varphi)$ $\ddot{x}(t) = -A \omega^2 \cdot cos(\omega t + \varphi)$

general solution: free harmonic oscillation

Solution
$$
\omega = \sqrt{k/m}
$$
 $x(t) = x_0 \cdot cos(\sqrt{\frac{k}{m}} t + \varphi)$

Apply this concept to magnetic forces: we need a Lorentz force that rises as a function of the distance to the design orbit

 $F(x) = q^*v^*B(x)$

2.)Focusing Forces: Quadrupole Fields

Apply this concept to magnetic forces: we need a Lorentz force that rises as a function of the distance to ... … the design orbit

 $F(x) = q^*v^*B(x)$

Dipoles: Create a constant field

 $B_{y} = const$

Quadrupoles: Create a linear increasing magnetic field: $B_y(x) = g \cdot x$, $B_x(y) = g \cdot y$

Quadrupole Magnets:

required: focusing forces to keep trajectories in vicinity of the ideal orbit linear increasing Lorentz force linear increasing magnetic field

 normalised quadrupole field:

gradient of a quadrupole magnet:

normalised gradient

p e $k = \frac{g}{g}$ $=\frac{8}{p}$ $g =$ *dBy dx*

LHC main quadrupole magnet $g \approx 25 ... 220$ *T* / *m*

 $B_y = g x$ $B_x = g y$

$$
\frac{B}{p/q} = \frac{B}{B\rho} = \frac{1}{\rho} \quad k := \frac{g}{p/q}
$$

what about the vertical plane: ... Maxwell

$$
\vec{\nabla}\times\vec{B} = \cancel{\vec{A}} + \frac{\partial\vec{E}}{\partial t} = 0
$$

$$
\Rightarrow \frac{\partial B_y}{\partial x} = \frac{\partial B_x}{\partial y}
$$

3.) Quadrupole Magnets:

required: focusing forces to keep trajectories in vicinity of the ideal orbit linear increasing Lorentz force linear increasing magnetic field $B_y = g x$ $B_x = g y$

normalised quadrupole field:

gradient of a quadrupole magnet: 2 2μ ₀ *r* $g = \frac{2\mu_0 nI}{r^2}$

$$
k=\frac{g}{p/e}
$$

simple rule:

$$
k = 0.3 \frac{g(T/m)}{p(GeV/c)}
$$

⇒

LHC main quadrupole magnet

 $g \approx 25 ... 220$ *T* / *m*

what about the vertical plane: ... Maxwell

$$
\vec{\nabla} \times \vec{B} = \cancel{\bigtimes} + \frac{\partial \vec{F}}{\partial t} = 0
$$

$$
\frac{\partial \boldsymbol{B}_y}{\partial \boldsymbol{x}} = \frac{\partial \boldsymbol{B}_x}{\partial \boldsymbol{y}}
$$

Quadrupole Magnets:

Calculation of the Quadrupole Field:

 $\oint H ds = N * I$

$$
\oint H ds = \int_0^1 H_0 ds + \int_A dx ds + \int_2^0 H ds = N^* I
$$

 $H_{Fe} = H_0 / \mu_{Fe}$ H^{\perp} ds $\mu_{Fe} \approx 1000$

court. K. Wille

now we know that
$$
H = B
$$

\nand we require $B(r) = -g * r$
$$
\begin{cases}\n\frac{1}{2}H_0 ds = \int_0^a \frac{1}{\mu_0} dr = \int_0^a \frac{g * r}{\mu_0} dr = N * I\n\end{cases}
$$

^g ^µ ⁼ *gradient of a quadrupole field:*

$$
g=\frac{2\mu_0*N*T}{r^2}
$$

Linear Lattice:

Dipoles & Quadrupoles … … and Drifts in between

$$
\frac{B(x)}{p/e} = \frac{1}{\rho} + k x + \frac{1}{2\mu} x^2 + \frac{1}{3!} n x^3 + ...
$$

Magnetic fields used in an accelerator:

 The Equation of Motion:

$$
\frac{B(x)}{p/e} = \frac{1}{\rho} + k x + \frac{1}{2!} x^2 + \frac{1}{3!} x^3 + ...
$$

only terms linear in x, y taken into account dipole fields quadrupole fields

Separate Function Machines:

Split the magnets and optimise them according to their job:

** man sieht nur*

dipole und quads —> linear

bending, focusing etc

Example: heavy ion storage ring TSR *** *Linear Lattice = Dipoles & quads. However linbear also means no prominent multipole contributions !!!*

Taylor Expansion of the B field:

4.) The equation of motion:

 \hat{y}

Linear approximation:

** ideal particle —> design orbit*

** any other particle —> coordinates x, y small quantities x,y << ρ*

** magnetic guide field: only linear terms in x & y of B have to be taken into account*

Equation of Motion:

Consider local segment of a particle trajectory ... and remember the old days: (Goldstein page 27)

radial acceleration:

$$
a_r = \frac{d^2 \rho}{dt^2} - \rho \left(\frac{d\theta}{dt}\right)^2
$$

Ideal orbit:
$$
\rho = const, \quad \frac{d\rho}{dt} = 0
$$

$$
\frac{d\rho}{dt} = 0
$$

 $^2 = mv^2 / \rho$ **centrifugal Force:** $F = m\rho \left(\frac{d\theta}{dt}\right)^2 = m\rho\omega^2$ *dt* θ $\rho\left|\frac{ac}{l}\right| = m\rho\omega$

general trajectory: ρ —> ρ + x

condition for circular orbit:

$$
F_{centrifugal} + F_{Lorentz} = 0
$$

$$
F = m \frac{d^2}{dt^2} (x + \rho) - \frac{mv^2}{x + \rho} = - eB_y v
$$

B. J. Holzer, CERN JUAS 2023, Transverse Beam Dynamics 1 24

*y*ˆ

$$
F = m\frac{d^2}{dt^2}(x+\rho) - \frac{mv^2}{x+\rho} = -eB_yv
$$

1

$$
\frac{d^2}{dt^2}(x+\rho) = \frac{d^2}{dt^2}x \qquad \dots \text{ as } \rho = \text{const}
$$

 $\left(2\right)$

2) *remember:* $x \approx mm$ *,* $\rho \approx m$ *...* \Longrightarrow *develop for small x*

Taylor Expansion

$$
f(x) = f(x_0) + \frac{(x - x_0)}{1!} f'(x_0) + \frac{(x - x_0)^2}{2!} f''(x_0) +
$$

$$
m\frac{d^2x}{dt^2} - \frac{mv^2}{\rho}(1 - \frac{x}{\rho}) = - eB_yv
$$

x

 $\frac{1}{\epsilon} \approx \frac{1}{(1 - \frac{x}{x})}$

 $\frac{1}{x+\rho} \approx \frac{1}{\rho} (1-\frac{1}{\rho})$

ρ ρ ρ

guide field in linear approx.

$$
m\frac{d^2x}{dt^2} - \frac{mv^2}{\rho}(1 - \frac{x}{\rho}) = -ev\{B_0 + x\frac{\partial B_y}{\partial x}\}\
$$

$$
\frac{d^2x}{dt^2} - \frac{v^2}{\rho}(1 - \frac{x}{\rho}) = -\frac{evB_0}{m} - \frac{evxg}{m}
$$

independent variable: $t \rightarrow s$

$$
\frac{dx}{dt} = \frac{dx}{ds} \frac{ds}{dt}
$$
 = angle of the particle trajectory

: m

$$
\frac{d^2x}{dt^2} = \frac{d}{dt}\left(\frac{dx}{ds}\frac{ds}{dt}\right) = \frac{d}{ds}\left(\frac{dx}{ds}\frac{ds}{dt}\right)\frac{ds}{dt}
$$

$$
\frac{d^2x}{dt^2} = x''v^2 + \frac{dx}{ds}\frac{dy}{ds}v
$$

$$
x''v^2 - \frac{v^2}{\rho}(1-\frac{x}{\rho}) = -\frac{evB_0}{m} - \frac{evxg}{m}
$$

Nota bene: Our coordinates are Amplitude and Angle

hor. Amplitude

$$
x \qquad \qquad [m]
$$

$$
x' = \frac{dx}{ds} = \frac{dx}{dt} \frac{dt}{ds} = \frac{V_x}{V_s} = \frac{P_x}{P_s} \approx \frac{P_x}{P_0} \qquad \qquad [rad]
$$

vert. Amplitude y

$$
y' = \frac{dy}{ds} = \frac{dy}{dt} \frac{dt}{ds} = \frac{V_y}{V_s} = \frac{P_y}{P_s} \approx \frac{P_y}{P_0}
$$
 [rad]

 $[m]$

$$
x'' - \frac{1}{\rho}(1 - \frac{x}{\rho}) = -\frac{eB_0}{mv} - \frac{exg}{mv}
$$

\n
$$
x'' - \frac{1}{\rho} + \frac{x}{\rho^2} = -\frac{B_0}{p/e} - \frac{xg}{p/e}
$$

\n
$$
x'' - \frac{1}{\rho} + \frac{x}{\rho^2} = -\frac{1}{\rho} - xk
$$

\n
$$
x'' + x(\frac{1}{\rho^2} + k) = 0
$$

\n
$$
x'' + x(\frac{1}{\rho^2} + k) = 0
$$

\n
$$
x'' + x(\frac{1}{\rho^2} + k) = 0
$$

\n
$$
x'' + x(\frac{1}{\rho^2} + k) = 0
$$

\n
$$
x' + x(\frac{1}{\rho^2} + k) = 0
$$

\n
$$
x' + x(\frac{1}{\rho^2} + k) = 0
$$

normalize to momentum of particle

$$
\frac{B_0}{p/e} = -\frac{1}{\rho}
$$

$$
\frac{g}{p/e} = k
$$

(k > 0 —> foc quad, as defined in MADX)

Equation for the vertical motion: *

$$
\frac{1}{\rho^2} = 0
$$
 no dipoles ... in general ...

 $k \leftrightarrow -k$ *quadrupole field changes sign*

Remarks:

$$
\star \qquad x'' + \left(\frac{1}{\rho^2} - k\right) \cdot x = 0
$$

... there seems to be a focusing even without *a quadrupole gradient*

 "weak focusing of dipole magnets"

$$
k = 0 \qquad \Rightarrow \qquad x'' = -\frac{1}{\rho^2} x
$$

even without quadrupoles there is a retriving force (i.e. focusing) in the bending plane of the dipole magnetics.

… in large machines it is weak. (!)

Mass spectrometer: particles are separated according to their energy and focused due to the 1/ρ effect of the dipole

5.) Solution of Trajectory Equations

Define ... *hor. plane:* $K = 1/\rho^2 - k$ \ldots vert. Plane: $K = k$

$$
x'' + K x = 0
$$

Differential Equation of harmonic oscillator … with spring constant K

Ansatz: $x(s) = a_1 \cdot \cos(\omega s) + a_2 \cdot \sin(\omega s)$

general solution: linear combination of two independent solutions

 $x'(s) = -a_1 \omega \sin(\omega s) + a_2 \omega \cos(\omega s)$ $(s) = -a_1 \omega^2 \cos(\omega s) - a_2 \omega^2 \sin(\omega s) = -\omega^2 x(s)$ $x''(s) = -a_1 \omega^2 \cos(\omega s) - a_2 \omega^2 \sin(\omega s) = -\omega^2 x(s)$ $\longrightarrow \omega = \sqrt{K}$

general solution:

$$
x(s) = a_1 \cos(\sqrt{Ks}) + a_2 \sin(\sqrt{Ks})
$$

determine a_1 , a_2 by boundary conditions:

$$
s = 0 \qquad x(0) = x_0 \qquad a_1 = x_0
$$
\n
$$
x'(0) = x'_0 \qquad a_2 = \frac{x'_0}{\sqrt{K}}
$$

Hor. Focusing Quadrupole K > 0:

$$
x(s) = x_0 \cdot \cos(\sqrt{|K|}s) + x'_0 \cdot \frac{1}{\sqrt{|K|}} \sin(\sqrt{|K|}s)
$$

$$
x'(s) = -x_0 \cdot \sqrt{|K|} \cdot \sin(\sqrt{|K|}s) + x'_0 \cdot \cos(\sqrt{|K|}s)
$$

For convenience expressed in matrix formalism:

$$
M_{foc} = \left(\frac{\cos(\sqrt{|K|}l)}{-\sqrt{|K|}\sin(\sqrt{|K|}l)}\right)^{\frac{1}{\sqrt{|K|}}\sin(\sqrt{|K|}l)}
$$

hor. defocusing quadrupole:

$$
x'' - K x = 0
$$

Remember from school:

 $f(s) = \cosh(s)$, $f'(s) = \sinh(s)$ 1 $=\left(\begin{array}{cc} \cosh\sqrt{|K|}l & \frac{1}{\sqrt{|K|}}\sinh\sqrt{|K|}l \\ \sqrt{|K|}\sinh\sqrt{|K|}l & \cosh\sqrt{|K|}l \end{array}\right)$ $\cosh \sqrt{|K|}l$ $\frac{1}{\sqrt{2}}\sinh$ $K|l$ $\frac{1}{l}$ sinh $\sqrt{|K|l}$ $M_{defoc} =$ $\begin{vmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix} K$ *defoc Ansatz:* $x(s) = a_1 \cdot \cosh(\omega s) + a_2 \cdot \sinh(\omega s)$ $K|\sinh\sqrt{|K|}l$ cosh $\sqrt{|K|}l$ $\sinh \sqrt{|K|}l$ cosh $\cosh(x)$ $\sinh(x)$ *drift space:* $K = 0$ y^5 *sin(x)* $\sqrt{2}$ -7.5 -2.5 2.5 7.5 $\frac{drift}{dt} = \left(\begin{array}{cc} 1 & l \\ 0 & l \end{array}\right)$ 1 *M ! with the assumptions made, the motion in the horizontal and vertical planes are independent* μ , μ *the particle motion in x & y is uncoupled*

One word for the Math Lovers

We talk about a differential equation of second order. … which has two independent solutions.

$$
x'' + K x = 0
$$

e.g. hor. Focusing Quadrupole $K > 0$: $\frac{x}{x}$

$$
x(s) = x_0 \cdot \cos(\sqrt{|K|}s) + x'_0 \cdot \frac{1}{\sqrt{|K|}} \sin(\sqrt{|K|}s)
$$

$$
x'(s) = -x_0 \cdot \underbrace{\sqrt{|K|} \cdot \sin(\sqrt{|K|}s) + x'_0 \cdot \cos(\sqrt{|K|}s)}_{C'}
$$

Wronski tells us:

The two solutions are independent of each other if the Wronski determinant ≠ 0.

Each of the two solutions fulfils

 $C'' + K(s)C = 0$ $S'' + K(s)S = 0$ $W = |$ *C S* $\begin{array}{ccc} \begin{array}{ccc} C' & S' \end{array} & & \longrightarrow & \ \begin{array}{ccc} C' & S' \end{array} & & \longrightarrow & \end{array}$ *d ds* $W = CS'' - SC'' = -K(CS - SC) = 0$

So, W= const. We can choose the initial values at s=0

$$
C_0 = 1
$$
 $S_0 = 0$
\n $C'_0 = 0$ $S'_0 = 1$ \longrightarrow $W=1$ for all linear accelerator element matrices
\n $W = det \begin{pmatrix} C & S \\ C' & S' \end{pmatrix} = 1$

Thin Lens Approximation:

matrix of a quadrupole lens

$$
M = \begin{pmatrix} \cos\sqrt{|k|}l & \frac{1}{\sqrt{|k|}}\sin\sqrt{|k|}l \\ -\sqrt{|k|}\sin\sqrt{|k|}l & \cos\sqrt{|k|}l \end{pmatrix}
$$

in many practical cases we have the situation:

 $=\frac{1}{l-1}$ >> l_q *q* $f = \frac{1}{k l_a} >> l_q \quad ...$ focal length of the lens is much bigger than the length of the magnet

 $\lim_{q \to \infty}$ *l* $\lim_{q \to \infty}$ *(* $\lim_{q \to \infty}$ *b l l q* $\lim_{q \to \infty}$ *const*

$$
\boldsymbol{M}_x = \begin{pmatrix} 1 & 0 \\ \frac{-1}{f} & 1 \end{pmatrix} \qquad \boldsymbol{M}_y = \begin{pmatrix} 1 & 0 \\ \frac{1}{f} & 1 \end{pmatrix}
$$

... useful for fast (and in large machines still quite accurate) "back on the envelope *calculations" ... and for the guided studies !*

Focal Length of a Quadrupole:

matrix of a (thin) quadrupole lens

$$
M_x = \left(\begin{array}{c} 1 & 0 \\ \hline -1 & 1 \\ \hline f & 1 \end{array}\right) \qquad f = \frac{1}{kl_q}
$$

q

Definition of focal length:

a trajectory with amplitude x_0 *parallel to "s" will be focussed to* $x_i = 0$ *within the length f*

$$
x_i - x'_f \cdot f = 0 \qquad x'_f = \frac{l}{\rho} = \frac{Bl}{B \rho}
$$

$$
x'_f = \frac{x_i g l_q}{B \rho} = x_i k l_q
$$

$$
x_i - x_i \cdot k l_q \cdot f = 0 \qquad 1 - k l_q \cdot f = 0 \qquad f = \frac{1}{k l_q}
$$

B. J. Holzer, CERN JUAS 2023, Transverse Beam Dynamics I

,veni vidi vici ...⁶⁶ or in english , we got it !"

** we can calculate the trajectory of a single particle, inside a storage ring magnet (lattice element) * for arbitrary initial conditions x0, x´0*

** we can combine these trajectory parts (also mathematically) and so get the complete transverse trajectory around the storage ring*

$$
M_{total} = M_{QF} * M_{D} * M_{QD} * M_{Bend} * M_{D^*......}
$$

Example: Toy storage ring for the kids (court. K.Wille)

Transformation through a system of lattice elements

combine the single element solutions by multiplication of the matrices

$$
M_{total} = M_{QF} * M_{D} * M_{QD} * M_{Bend} * M_{D^*......}
$$

in each accelerator element the particle trajectory corresponds to the movement of a harmonic oscillator "

Can we understand what the optics code is doing ?

matrices
$$
M_{QF} = \begin{pmatrix} \cos(\sqrt{K} * l_q) & \frac{1}{\sqrt{K}} \sin(\sqrt{K} * l_q) \\ -\sqrt{K} \sin(\sqrt{K} * l_q) & \cos(\sqrt{K} * l_q) \end{pmatrix}, \qquad M_{Drift} = \begin{pmatrix} 1 & l \\ 0 & 1_d \end{pmatrix}
$$

strength and length of the FoDo elements $K = +/-0.54102$ m⁻² $lq = 0.5$ m $ld = 2.5$ m

The matrix for the complete cell is obtained by multiplication of the element matrices

Putting the numbers in and multiplying out ...

$$
M_{FoDo} = \begin{pmatrix} 0.707 & 8.206 \\ -0.061 & 0.707 \end{pmatrix}
$$

6.) Orbit & Tune:

Tune: number of oscillations per turn

 64.31 59.32

Relevant for beam stability: non integer part

LHC revolution frequency: 11.3 kHz 0.31*11.3 = 3.5*kHz*

Ok … ok ... it's a bit complicated and cosh and sinh and all that is a pain. BUT ... compare ...

Weak Focusing / Strong Focusing

weak focusing term = 1/ρ²

$$
x'' + x\left(\frac{1}{\rho^2} + x\right) = 0
$$

Problem: the higher the energy, the larger the machine

The last weak focusing high energy machine … BEVATRON

à *large apertures needed* \rightarrow *very expensive magnets*

Question: what will happen, if the particle performs a second turn ?

... or a third one or ... 1010 turns

Once more … the crucial question is …

Gretchen Frage (J.W. Goethe, Faust)

Do they actually drop ?

???

Résumé:

matrix of a foc. quadrupole: $x_{s2} = M \cdot x_{s1}$

$$
M = \begin{pmatrix} \cos\sqrt{|K|}l & \frac{1}{\sqrt{|K|}}\sin\sqrt{|K|}l \\ -\sqrt{|K|}\sin\sqrt{|K|}l & \cos\sqrt{|K|}l \end{pmatrix}, \qquad M = \begin{pmatrix} 1 & 0 \\ \frac{1}{f} & 1 \end{pmatrix}
$$

6.) Bibliography:

 1.) Edmund Wilson: Introd. to Particle Accelerators Oxford Press, 2001

 2.) Klaus Wille: Physics of Particle Accelerators and Synchrotron Radiation Facilicties, Teubner, Stuttgart 1992

 3.) Peter Schmüser: Basic Course on Accelerator Optics, CERN Acc. School: 5th general acc. phys. course CERN 94-01

 4.) Bernhard Holzer: Lattice Design, CERN Acc. School: Interm.Acc.phys course, <http://cas.web.cern.ch/cas/ZEUTHEN/lectures-zeuthen.htm>

 5.) M.S. Livingston, J.P. Blewett: Particle Accelerators, Mc Graw-Hill, New York,1962

 6.) The CERN Accelerator School (CAS) Proceedings

 7.) Frank Hinterberger: Physik der Teilchenbeschleuniger, Springer Verlag 1997

 8.) Mathew Sands: The Physics of e+ e- Storage Rings, SLAC report 121, 1970

 9.) D. Edwards, M. Syphers : An Introduction to the Physics of Particle Accelerators, SSC Lab 1990