
Solutions for the Tutorial 
on Transverse Beam Dynamics    

Questions to relax

1.) Can you explain in your own words the meaning of …
phase advance

     beam emittance 
     β-function

 … what does it mean, if you are told that the phase advance per cell is 90 degrees in    
       the horizontal and 60 degrees in the vetical plane ?

Concerning the two parameters β-function and beam emittance: they both determine
the beam envelope. Can you explain the difference ?

   
How will the phase space ellipse look like in general ? 

         
Depending on the beta (maximum or minimum) and the α and γ the ellipse will be    

      more or less flat and shaoped & tilted.

General case: 

remember that 
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And how does it look like at an Interaction point … and why ?

At an IP we have usually α = 0 and so we get the following picture: The beam will need 
the largest aperture if the ellipse is flat, or it will have the largest divergence.

2.)  About a real storage ring: 
      LHC: particle momentum, geometry of a storage ring and thin lenses 

   The LHC storage ring  at CERN will collide proton beams with a maximum 
momentum of p=7 TeV/c  per beam. The main parameters of this machine are: 

Calculate the magnetic rigidity of the design beam, the bending radius of the main dipole 
magnets in the arc and determine the number of dipoles that is needed in the machine. 

The beam rigidity is obtained in the usual way by the golden rule:
 

Circumference C0 =26658.9m

particle momentum  p =7 TeV/c

main dipoles B =8.392 T lB =14.2m

main  quadrupoles G =235 T/m lq =5.5m
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and knowing the magnetic dipole field we get 

             

… and determine the number of dipoles that is needed in the machine. 

The bending angle for one LHC dipole magnet:

               

and as we want to have a closed storage ring we require an overall bending angle of 2π:

Calculate the k-strength of the quadrupole magnets and compare its focal length to the 
length of the magnet. Can this magnet be treated as a thin lens?

We can use the beam rigidity (or the particle momentum) to calculate the normalized 
quadrupole strength: 
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The focal length of this magnet is still quite bigger than the magnetic length lq. So it is 
valid to treat that quadrupole in thin lens approximation.

How does the matrix for such a (foc.)  magnet look like? 
How would you establish a description of this magnet in thin lens approximation? 
Compare the matrix elements.
Nota bene: in our notation a foc. magnet has a negative k-value.

The matrix of a focusing quadrupole is given by 

In thin lens approximation we replace the matrix above by the expression

   

with the focal length 

But we should not forget the overall length of the beast: The thin lens description has to 
be completed by the matrix of a drift space of half the quadrupole length in front and 
after the thin lens quadrupole. The appropriate description is therefore 
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Multiplying out we get

With the parameters in the example we get finally

              

which is still quite close to the result of the exact calculation above.

3.) Beam rigidity & particle momentum                       (court. Ted Wilson)
 … or the stupid question: after all we have to deal with a relativistic beam!

   A synchrotron of 25m radius accelerates protons from a kinetic energy of 50 MeV to     
1000 MeV. What is the maximum energy of a deuteron beam (Z=1, A=2) that could 
be accelerated in the machine ?

The beam rigidity relates the magnetic field to the particle momentum:
                        

The momentum is given just by the magnetic dipole field and the bending radius – 
independent of the particle that is stored in the machine !
Calculation of the momentum of a 1000 MeV proton beam:

kinetic energy:                  

rest energy of a proton:
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overall energy = rest energy + kin. energy: 

This is the maximum momentum that can be carried by the machine.

To calculate the kinetic energy for the deuteron we set:

and solve for Tdeut

Nota bene: We do not need the bending radius to obtain this result. But we could use it to 
calculate the magnetic field B that we need in this machine:

          

And as    ρ = 25 m   we get 
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4.) Apertures and Beam Envelopes:

The LHC magnet structure in the arcs consists of a symmetric FoDo with 90° phase 
advance per cell and an aperture radius of r0 =20mm. 
a.) Given the value of β max = 500m in a QF quadrupole lens, what beam emittance would 
just touch the vacuum chamber ? (We call this value the “acceptance” of the machine).

                   

                   
b.) If the typical emittance of a stored beam at 450 GeV injection energy is ε ≈ 7*10-9


rad m, how many σ of beam envelope fit into the vacuum chamber for β=500m ?

      
         

            

            
         the vacuum aperture  corresponds to 10 sigma of the stored  beam ... indeed there is    
         not much space for errors and distortions. 

c) what will happen if – keeping the beam optics constant – you accelerate the beam to 
an energy of E = 7000 GeV ?

The beam emittance will shrink as a function of the relativistic parameters β*γ. In the 
given energy range β ≈ 1 and so we can simplify the scaling and set

The beam dimension will shrink (in both planes) and the beam lifetime and background 
rates will improve.

During luminosity operation at this energy we require at least 14 sigma aperture due to 
background and quench safety reasons.  What is the maximum beta function that can be 
accepted if the aperture of our mini beta quadrupoles is 20mm?
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5.) Question foir the fun of it:

Let’s build a real cheap storage ring. Just put it to the North Pole and use the magnetic 
field of the earth whose field lines are perpendicular to the surface at that nice place.
Forget about focusing … that’s for nitpickers. What will be the size of the ring for a 
10 keV electron beam if the earth magnetic field is about 0.5 Gauß? (1 Gauß = 10 -4 
Tesla).
And in the end, in which direction do you have to circulate the electrons to get stored 
beam?

As we all know it is the momentum that defines the magnetic field:

So we have to calculate the momentum of the electron beam first and – as it is neither 
ultra relativistic nor in the classical energy regime – we have to apply the full relativistic 
stuff. 

Overall energy of a particle:  
                              

rest energy of an electron:               

kinetic energy of the beam:   

calculation of the momentum:
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bending radius: 

           

           à 

It is astonishing: The storage ring is very small, or in other words: the magnetic field of 
the earth is quite strong. Indeed, even in HERA we had to compensate for it !!

And now for the beer: 
10 keV is similar to the energy in our conventional TV screens - those big and heavy 
things, based on a electron beam scaning a fluorescent screen. So - if all these 
considerations are true -  given a length of 30cm (for the distance between the TV gun 
and the screen) the displacement at the screen due to  the earth magnetic field is a few 
millimetres. 
So … turning the TV screen around the colours should change ! 
Do they ??  Or is that all nonsense ???

And finally … in which direction do you have to circulate the electrons to get stored 
beam?

6.) Dispersion and Chromaticity

Can you explain in your own words the meaning of …
     dispersion
      chromaticity

7.) Consider a linear collider: The general structure of such a machine does not differ 
too much from the arc of a storage ring. Clearly – it is not a circular machine but  
concerning the optics it is quite similar …

Does such a Linac have a chromaticity?
And if so how would you correct it ?
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8.) … if not explained already in the lecture.
The beta function in the quadrupoles of a symmetric   FoDo cell (i.e. fqd = -fqf ) 
depends only on the cell length L and the phase advance μ of the cell:

 

a) Establish the matrix of a FoDo in thin lens approximation and proof these 
relations. 
Hint: remember the trigonometric magic tricks

b) Consider a proton beam where in general the emittances are equal in both 
planes:  
Find the optimum phase advance that will give the smallest value for the radius of a 
particle beam in both planes 

.

9.) it is a wild world … 
During the construction phase of a heavy ion storage ring one quadrupole magnet turned 
out to be too short by 1 mm: The one meter long yoke was stapled by steel plates, 1mm in 
thickness each,  and one of them just was forgotten  (this is no joke !).
 
Calculate the tune change in both planes if this error is not compensated and the beta 
functions at the location of the quadrupole are  in the hor. and vert. plane respectively 

The quadrupole strength is .

The tune shift due to a change in the integrated quadrupole field is given by

                                            

which is in our case approximately 
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As the quadrupole magnet was to short we expect a lower tune in the hor. plane of the 
quadrupole (and a higher tune in the vertical one).

                                     

                                     

In the vertical plane using β = 20m instead we get

                                     

Lets assume that the beam will survive this error. (Clearly we corrected the error 
nevertheless). 

Now lets have a look at a typical mini beta insertion:
Given the following parameters:

                                 

                                 

which corresponds to a relative error of 

                                 

A small error in an arc quadrupole (be it the length of the magnet or the gradient) turns 
out to be a severe problem at places where the beta function is high.
Message: At the mini beta insertions you should use the best hard ware that you can get.  
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10.) Tuning Quadrupoles:
The main dipole and quadrupole magnets in a storage ring are often powered in series by 
one power supply. While such a set up facilitates the tracking of the main dipole and 
quadrupole magnets during acceleration it requires special “tuning” quadrupole circuits 
for tune adjustments. Assume your machine has one tuning quadrupole per plane, placed 
at a location where β x = 180m, β y =40m.
If the overall tune is Q=64.28, what is the maximum tuning range of this system if the 
maximum acceptable beta-beat in the machine due to the tuning is limited to10% ?
How can the system described above be improved, to obtain a larger tuning range with a 
beta-beat that is still smaller than 10% ?

Consider the following schematic lattice: 

The position of the tuning quadrupole in the hor. and vertical plane is indicated by the red 
and green spot.

If the working point of the machine is changed we will obtain – due to the corresponding 
change of the quadrupole strength – a beta beat of 

                        

For one single tuning quadrupole per plane we get approximately:

                       

                                                                           = 1 for worst case

Using Q=0.28 and  β=180m

we require: 
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and the resulting limit for the integrated quadrupole strength is 
 
 
The tune change that can be achieved with that quadrupole strength is

 

… indeed not very much.

b.) improved  lattice for tuning quadrupoles

                                            90°

Assume a phase advance of Φ=90°  … as usual.
Consider one cell, starting from the middle of a tuning quadrupole to the next equivalent 
one. If both tuning quadrupoles are powered in series, the beta beat resulting from this 
pair is  
 

 

 
 
                                                                                      
             

 The remaining beta beat from two tuning quadrupoles being 90° apart from each other is 
– very close to – zero. In a real machine in general we will therefore install a large 
number of tuning quadrupoles (e.g. one at each main quad) and arrange this scheme in a 
way that the phase advance between these tuning quadrupole magnets is modulo 90°.
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