LONGITUDINAL BEAM DYNAMICS

JUAS 2023

COURSE 1: THE SCIENCE OF PARTICLE ACCELERATORS

A. Lasheen

LESSON 3: LONGITUDINAL EQUATIONS OF MOTION

JUAS 2023 - Longitudinal Beam Dynamics

MODULE 6: THE NON-SYNCHRONOUS PARTICLES

 \rightarrow Energy gain equation of motion

 \rightarrow Phase slippage equation of motion

JUAS 2023 - Longitudinal Beam Dynamics

NON-SYNCHRONOUS PARTICLE

Accelerator seen from above, along the vertical $ec{Y}$ axis...

- In the last module we considered only the idealized synchronous particle with subscript *s*.
- We will consider from now on the equations for a non-synchronous particle with

$$egin{aligned} E &= E_s + \Delta E \ \omega_0 &= \omega_{0,s} + \Delta \omega_0 \ heta &= heta_s + \Delta heta \
ho \left(z
ight) &=
ho_s \left(z
ight) + x_D \left(z
ight) ext{ (Dispersion)} \end{aligned}$$

JUAS 2023 - Longitudinal Beam Dynamics

. . .

EQUATIONS OF MOTION

Accelerator seen from above, along the vertical $ec{Y}$ axis...

 $oldsymbol{f}$ and $oldsymbol{g}$ arbitrary mathematical functions

 We will describe the evolution of the energy gain of an arbitrary particle arriving at a phase \$\phi\$ in the cavity, compared to the synchronous particle.

$$rac{d\left(\Delta E
ight)}{dt}=f\left(\phi
ight)$$

• We will then derive the evolution of the phase of an arbitrary particle with different energy ΔE with respect to the synchronous particle.

$$rac{d\left(\phi
ight)}{dt}=g\left(\Delta E
ight)$$

JUAS 2023 - Longitudinal Beam Dynamics

In the previous lesson we derived the acceleration rate of the synchronous particle. The acceleration rate is **first approximated to consider only the RF contribution** (no induction force, synchrotron radiation, wakefields...). For the synchronous particle

$$\dot{E}_s pprox rac{\delta E_s}{T_{0,s}} \quad o \quad \dot{E}_s = rac{qV_{
m rf}}{T_{0,s}} \sin{(\phi_s)} = \omega_{0,s} rac{qV_{
m rf}}{2\pi} \sin{(\phi_s)}$$

The acceleration rate for an arbitrary particle is

$$\dot{E}=\omega_{0}rac{qV_{\mathrm{rf}}}{2\pi}\sin\left(\phi
ight)$$

The difference in acceleration rate is

$$rac{\dot{E}}{\omega_{0}}-rac{\dot{E}_{s}}{\omega_{0,s}}=rac{qV_{ ext{rf}}}{2\pi}\left[\sin\left(\phi
ight)-\sin\left(\phi_{s}
ight)
ight]$$

JUAS 2023 - Longitudinal Beam Dynamics

Eqs. of Motion

A. Lasheen

ALL FORCES EXCEPT RF NEGLECTED

From

$$rac{\dot{E}}{\omega_{0}}-rac{\dot{E}_{s}}{\omega_{0,s}}=rac{qV_{ ext{rf}}}{2\pi}\left[\sin\left(\phi
ight)-\sin\left(\phi_{s}
ight)
ight]$$

Re-organizing the term on the left hand side provides us with the following equation of motion

$$rac{d}{dt}\left(rac{\Delta E}{\omega_{0,s}}
ight)+lpha_prac{\dot{\mathcal{B}}_{y,s}}{\mathcal{B}_{y,s}}\left(rac{\Delta E}{\omega_{0,s}}
ight)=rac{qV_{ ext{rf}}}{2\pi}\left[\sin\left(\phi
ight)-\sin\left(\phi_s
ight)
ight]$$

The second term on the left hand side can be obtained after thourough derivations.

Including the induction forces, the equation of motion can actually be made simpler!

DERIVATION

Demonstrate we can write

$$rac{\dot{E}}{\omega_0} - rac{\dot{E}_s}{\omega_{0,s}} = rac{d}{dt} \left(rac{\Delta E}{\omega_{0,s}}
ight) + lpha_p rac{\Delta E}{\omega_{0,s}} rac{\dot{\mathcal{B}}_{y,s}}{\mathcal{B}_{y,s}}$$

NB: Remember that ω_0 and $\omega_{0,s}$ are functions of time.

Hint: It may easier to handle T_0 than ω_0 for the initial derivations.

Hint 2: Keep linear orders in Δ .

JUAS 2023 - Longitudinal Beam Dynamics

Starting from

$$egin{array}{lll} \dot{E} \; T_0 - \dot{E}_s \; T_{0,s} = \dot{E}_s \; T_{0,s} + \Delta \dot{E} \; T_{0,s} + \dot{E}_s \; \Delta T + \Delta \dot{E} \; \Delta T - \dot{E}_s \; T_{0,s} \ = \Delta \dot{E} \; T_{0,s} + \dot{E}_s \; \Delta T + 2 \mathrm{nd \; order} \end{array}$$

replacing T_0 by ω_0 and removing second order terms we get

$$rac{\dot{E}}{\omega_0} - rac{\dot{E}_s}{\omega_{0,s}} pprox rac{\Delta \dot{E}}{\omega_{0,s}} + rac{1}{2\pi} \dot{E}_s \; \Delta T$$

JUAS 2023 - Longitudinal Beam Dynamics

DERIVATION

Including $\omega_{0,s}$ inside the derivative with time

$$egin{aligned} &rac{\Delta \dot{E}}{\omega_{0,s}}+rac{1}{2\pi}\dot{E}_{s}\;\Delta T=rac{d}{dt}\left(rac{\Delta E}{\omega_{0,s}}
ight)-\Delta Erac{d}{dt}\left(rac{1}{\omega_{0,s}}
ight)+rac{1}{2\pi}\dot{E}_{s}\Delta T\ &=rac{d}{dt}\left(rac{\Delta E}{\omega_{0,s}}
ight)+rac{\Delta E}{\omega_{0,s}}rac{\dot{\omega}_{0,s}}{\omega_{0,s}}+rac{1}{2\pi}\dot{E}_{s}\;\Delta T\ &=(1)+(2)+(3) \end{aligned}$$

Expressing (2), using $dE=v~dp=\omega R~dp$ and differentiating $\omega=eta c/R$

$$rac{\Delta E}{\omega_{0,s}}rac{\dot{\omega}_{0,s}}{\omega_{0,s}}=R_s\Delta p\left(rac{\dot{eta}_s}{eta_s}-rac{\dot{R}_s}{R_s}
ight)$$

juas

JUAS 2023 - Longitudinal Beam Dynamics

DERIVATION

Expressing (3), using
$$dE = v \ dp = \omega R \ dp$$
 and
 $\eta = lpha_p - \gamma^{-2} = \left(dT/T \right) / \left(dp/p \right)$
 $rac{1}{2\pi} \dot{E}_s \ \Delta T = rac{1}{2\pi} \omega_{0,s} R_s \ \dot{p}_s \eta rac{\Delta p}{p_s} T_s$
 $= R_s \Delta p \left(lpha_p - rac{1}{\gamma_s^2}
ight) rac{\dot{p}_s}{p_s}$

Summing (2) + (3) and with $deta/eta=\gamma^{-2}dp/p$

$$(2)+(3)=R_s\Delta p\left(lpha_prac{\dot{p}_s}{p_s}-rac{\dot{R}_s}{R_s}
ight)$$

juas

JUAS 2023 - Longitudinal Beam Dynamics

DERIVATION

Using the synchrotron differential equation (1) from Module 5

$$R_s\Delta p\left(lpha_prac{\dot{p}_s}{p_s}-rac{\dot{R}_s}{R_s}
ight)=R_s\Delta plpha_prac{\dot{\mathcal{B}}_{y,s}}{\mathcal{B}_{y,s}}$$

From the relativistic differential relationship dE=eta cdp, eta=P/E and the definition of the angular revolution frequency $\omega=eta c/R$

$$egin{aligned} &... &= R_s rac{\Delta E}{eta_s c} lpha_p rac{\dot{\mathcal{B}}_{y,s}}{\mathcal{B}_{y,s}} \ &= \left(rac{\Delta E}{\omega_{0,s}}
ight) lpha_p rac{\dot{\mathcal{B}}_{y,s}}{\mathcal{B}_{y,s}} \end{aligned}$$

JUAS 2023 - Longitudinal Beam Dynamics

Finally

$$rac{\dot{E}}{\omega_0} - rac{\dot{E}_s}{\omega_{0,s}} = rac{d}{dt} \left(rac{\Delta E}{\omega_{0,s}}
ight) + lpha_p rac{\dot{\mathcal{B}}_{y,s}}{\mathcal{B}_{y,s}} \left(rac{\Delta E}{\omega_{0,s}}
ight)$$

The first equation of motion with only the RF contribution is

$$rac{d}{dt}\left(rac{\Delta E}{\omega_{0,s}}
ight)+lpha_prac{\dot{\mathcal{B}}_{y,s}}{\mathcal{B}_{y,s}}\left(rac{\Delta E}{\omega_{0,s}}
ight)=rac{qV_{ ext{rf}}}{2\pi}\left[\sin\left(\phi
ight)-\sin\left(\phi_s
ight)
ight]$$

JUAS 2023 - Longitudinal Beam Dynamics

WHEN THE BETATRON MEETS THE SYNCHROTRON

- Induction forces were presumed to be negligible in the previous lesson.
- The acceleration of the synchronous particle thanks to induction is indeed very small compared to the acceleration obtained from the RF cavity.
- The difference in acceleration for an **arbitrary particle with respect to synchronous particle** to express ΔE is relevant!

JUAS 2023 - Longitudinal Beam Dynamics

We add the induction contribution on the previous equation of motion to the right hand side

$$egin{aligned} rac{d}{dt}\left(rac{\Delta E}{\omega_{0,s}}
ight) =& rac{qV_{
m rf}}{2\pi}\left[\sin\left(\phi
ight)-\sin\left(\phi_{s}
ight)
ight] & (1) \ & -lpha_{p}rac{\dot{\mathcal{B}}_{y,s}}{\mathcal{\mathcal{B}}_{y,s}}\left(rac{\Delta E}{\omega_{0,s}}
ight) & (2) \ & +rac{q}{2\pi}\int_{0}^{2\pi}rac{\partial\mathcal{B}_{y,s}}{\partial t}
ho_{s}x_{D}d heta & (3) \end{aligned}$$

It can be demonstrated that (3) is equal to (2) to the first order!

JUAS 2023 - Longitudinal Beam Dynamics

DERIVATION

Taking into account the induction force, the acceleration rate for the synchronous particle is

$$egin{aligned} \dot{E}_s &pprox rac{\delta E_{ ext{rf},s} + \delta E_{ ext{b},s}}{T_{0,s}} \ \dot{E}_s &= rac{\omega_{0,s}}{2\pi} \left[q V_{ ext{rf}} \sin{(\phi_s)} + q \int_0^{2\pi} \int_0^{
ho_s} rac{\partial \mathcal{B}_y}{\partial t}
ho' \, d
ho' \, d heta
ight] \end{aligned}$$

The acceleration rate for an arbitary particle is

$$\dot{E} = rac{\omega_0}{2\pi} \left[q V_{
m rf} \sin{(\phi)} + q \int_0^{2\pi} \int_0^
ho rac{\partial \mathcal{B}_y}{\partial t}
ho' \ d
ho' \ d heta
ight]$$

JUAS 2023 - Longitudinal Beam Dynamics

DERIVATION

The difference in the magnetic flux in the surface between the paths of an arbitrary particle and the synchronous one is

$$egin{aligned} &\int_{0}^{2\pi} \int_{
ho_s}^{
ho} rac{\partial \mathcal{B}_y}{\partial t}
ho' \, d
ho' \, d heta &pprox \int_{0}^{2\pi} rac{\partial \mathcal{B}_{y,s}}{\partial t} \int_{
ho_s}^{
ho}
ho' \, d
ho' \, d heta \ &= \int_{0}^{2\pi} rac{\partial \mathcal{B}_{y,s}}{\partial t} rac{
ho^2 -
ho_s^2}{2} \, d heta \ &= \int_{0}^{2\pi} rac{\partial \mathcal{B}_{y,s}}{\partial t} rac{
ho(
ho_s + x_D)^2 -
ho_s^2}{2} \, d heta \ \end{aligned}$$
 $(2 \mathrm{nd \ order \ in \ }
ho \ \mathrm{neglected}) pprox \int_{0}^{2\pi} rac{\partial \mathcal{B}_{y,s}}{\partial t}
ho_s x_D \, d heta \end{aligned}$

JUAS 2023 - Longitudinal Beam Dynamics

DERIVATION

The difference in acceleration rate between an arbitrary and the synchronous particle becomes to the first order

$$rac{\dot{E}}{\omega_{0}}-rac{\dot{E}_{s}}{\omega_{0,s}}=rac{qV_{
m rf}}{2\pi}\left[\sin\left(\phi
ight)-\sin\left(\phi_{s}
ight)
ight]+rac{q}{2\pi}\int_{0}^{2\pi}rac{\partial\mathcal{B}_{y,s}}{\partial t}
ho_{s}x_{D}d heta$$

We now demonstrate that the induction term on the right hand side is equal to

$$rac{q}{2\pi}\int_{0}^{2\pi}rac{\partial\mathcal{B}_{y,s}}{\partial t}
ho_{s}x_{D}d heta=lpha_{p}rac{\dot{\mathcal{B}}_{y,s}}{\mathcal{B}_{y,s}}\left(rac{\Delta E}{\omega_{0,s}}
ight)$$

and hence compensate with the term (2) here.

DERIVATION

Using the definition of the momentum compaction factor (from dispersion)

$$egin{aligned} &rac{q}{2\pi}\int_{0}^{2\pi}rac{\partial\mathcal{B}_{y,s}}{\partial t}
ho_{s}x_{D}d heta&=rac{q}{2\pi}\dot{\mathcal{B}}_{y,s}
ho_{s}\int_{0}^{2\pi}D_{x}rac{\Delta p}{p}d heta\ &=rac{q}{2\pi}\dot{\mathcal{B}}_{y,s}
ho_{s}2\pi R_{s} \ lpha_{p}rac{\Delta p}{p_{s}}\ &=lpha_{p}rac{q
ho_{s}}{p_{s}}\dot{\mathcal{B}}_{y,s}R_{s} \ \Delta p\ &=lpha_{p}rac{\dot{\mathcal{B}}_{y,s}}{\mathcal{B}_{y,s}}R_{s}rac{\Delta E}{eta_{s}c}\ &=lpha_{p}rac{\dot{\mathcal{B}}_{y,s}}{\mathcal{B}_{y,s}}\left(rac{\Delta E}{\omega_{0,s}}
ight) = -\left(2
ight) \end{aligned}$$

juas

JUAS 2023 - Longitudinal Beam Dynamics

FIRST LONGITUDINAL EQUATION OF MOTION

EVOLUTION OF THE RELATIVE ENERGY OF AN ARBITRARY PARTICLE

We obtain finally

$$rac{d}{dt}\left(rac{\Delta E}{\omega_{0,s}}
ight) = rac{qV_{
m rf}}{2\pi}\left[\sin\left(\phi
ight) - \sin\left(\phi_{s}
ight)
ight]$$

This is the first fundamental longitudinal equation of motion

Note that $\omega_{0,s}$ is inside of the time derivative!

JUAS 2023 - Longitudinal Beam Dynamics

PHASE SLIPPAGE

In the previous lesson, we considered the synchronous particle which is by definition always synchronous to the RF and arrives at the phase ϕ_s .

The evolution of the azimuth of an arbitrary particle with time is

$$heta\left(t
ight)=\int\omega_{0}dt$$

The phase of an arbitrary particle with respect to the RF at all time is

$$\phi \left(t
ight) = \int \omega_{r} dt - h heta \left(t
ight) = -h \int \Delta \omega_{0} dt$$

Remember that $\omega_r = h\omega_{s,0}$. Notice the - sign, a particle in front in azimuth (higher θ) will arrive earlier in the cavity (lower ϕ)

FIRST LONGITUDINAL EQUATION OF MOTION

EVOLUTION OF THE PHASE WITH RESPECT TO THE RF OF AN ARBITRARY PARTICLE

By differentiating with time and including the phase slip factor η

$$egin{aligned} rac{d\phi}{dt} &= -h\Delta\omega_0\ &= h\eta\omega_{0,s}rac{\Delta p}{p_s} \end{aligned}$$

Using the differential relationship $dE/E=eta^2 dp/p$

$$rac{d\phi}{dt} = rac{h\eta\omega_{0,s}^2}{eta_s^2 E_s} \left(rac{\Delta E}{\omega_{0,s}}
ight)$$

This is the second fundamental longitudinal equation of motion

JUAS 2023 - Longitudinal Beam Dynamics

LONGITUDINAL EQUATIONS OF MOTION

• From now on we will describe the motion in the longitudinal phase space

 $\left(\phi,rac{\Delta E}{\omega_{0,s}}
ight)$, instead of (z,p_z) .

JUAS 2023 - Longitudinal Beam Dynamics

MODULE 7: INTRODUCTION TO PARTICLE TRACKING

 \rightarrow Defining the accelerator

 \rightarrow Implementing and iterating the equations of motion

 \rightarrow Examples

JUAS 2023 - Longitudinal Beam Dynamics

SYNCHROTRON DEFINITION

Simplest configuration, starting with a single RF system and assuming no longitudinal energy gain/loss in the rest of the ring

• In this part we implement numerically the equations of motion.

• The synchrotron motion can be complex to grasp, a tracking code can help to visualize easily the longitudinal motion in phase space.

• A rather simple tracking code can allow to do very accurate simulations, in a rather small number of code lines!

JUAS 2023 - Longitudinal Beam Dynamics

SYNCHROTRON DEFINITION

Simplest configuration, starting with a single RF system and assuming no longitudinal energy gain/loss in the rest of the ring

• Definition of "design" energy (momentum)

$$p_d = q \mathcal{B}_y
ho_d$$

• Definition of "design" revolution period

$${\cal B}_y, p_d o T_{0,d} = rac{2\pi}{\omega_{0,d}} = rac{C_d}{eta_d c}$$

• Definition of RF parameters

$$\omega_r=h\omega_{0,d}$$

juas

JUAS 2023 - Longitudinal Beam Dynamics

SYNCHROTRON DEFINITION

Simplest configuration, starting with a single RF system and assuming no longitudinal energy gain/loss in the rest of the ring

- In the context of the tracking code, we will use the $(\phi, \Delta E)$ coordinate system
- Relative energy of an arbitrary particle

$$\Delta E = E - E_d$$

• Phase of the particle relative to the RF

ϕ

• NB: $(\phi, \Delta E)$ are not canonical variables, $(au, \Delta E)$ or $(\phi, \Delta E/\omega_{0,s})$ are canonical.

ENERGY GAIN IN RF CAVITY

• The longitudinal equation of motion (continuous in t) is commonly called the "kick" equation (NB: we neglect $\dot{\omega}_{0,d}$ for simplicity)

$$rac{d}{dt}\left(rac{\Delta E}{\omega_{0,d}}
ight) = rac{qV_{
m rf}}{2\pi}\left[\sin\left(\phi
ight) - \sin\left(\phi_{d}
ight)
ight] pprox rac{\Delta E^{n+1} - \Delta E^{n}}{\omega_{0,d}T_{0,d}}$$

- The equation of motion is actually discrete by nature, the relative energy gain every turn ${\cal T}_{0,d}$ is

$$\Delta E^{n+1} = \Delta E^n + qV \sin{(\phi)} - \delta E_d^{n
ightarrow n+1}$$

• The acceleration per turn is

$$\delta E_d^{n
ightarrow n+1} = 2 \pi q
ho_d R_d rac{\mathcal{B}_y^{n+1} - \mathcal{B}_y^n}{T_{0,d}}$$

JUAS 2023 - Longitudinal Beam Dynamics

ENERGY GAIN IN RF CAVITY

- Example for protons passing in RF system with $V=2{
m MV}$, $f_{
m rf}=200{
m MHz}$, $\delta E_d=0.5{
m MeV}$

JUAS 2023 - Longitudinal Beam Dynamics

DRIFT

• The phase slip equation is commonly called the "drift" equation, neglectic any source of change in ΔE along the magnetic elements

$$rac{d\phi}{dt} = rac{h\eta\omega_{0,s}^2}{eta_s^2 E_s}\left(rac{\Delta E}{\omega_{0,s}}
ight) = rac{\phi^{n+1}-\phi^n}{T_{0,d}}$$

• Drift in time of an arbitrary particle with respect to the design particle after $T_{0,d}$

$$\phi^{n+1} = \phi^n + \left(rac{2\pi h\eta_0}{eta^2 E}
ight)_d \Delta E$$

with

$$\eta_{0,d} = rac{1}{\gamma_{ ext{tr}}^2} - rac{1}{\gamma_d^2} = lpha_0 - rac{1}{\gamma_d^2}$$

JUAS 2023 - Longitudinal Beam Dynamics

DRIFT

- Example for protons passing along a ring with $C_d=6911.50{
m m}, E_d=26{
m GeV},$ $\gamma_{
m tr}=18$

JUAS 2023 - Longitudinal Beam Dynamics

The two equations of motion are sufficient to build a simple (**yet very useful**) tracking code

JUAS 2023 - Longitudinal Beam Dynamics

A REALISTIC WORKING CODE IN PYTHON

The present example is using Python, but any language could be used following the pseudo-code layout from the previous slide.

• We import useful libraries

import numpy as np import matplotlib.pyplot as plt from scipy.constants import m_p, c, e

JUAS 2023 - Longitudinal Beam Dynamics

A REALISTIC WORKING CODE IN PYTHON

• Define our machine parameters

```
Ekin = 26e9 # eV

charge = 1

E0 = m_p * c**2. / e

circumference = 6911.5 # m

energy = Ekin + E0

momentum = np.sqrt(energy**2. - E0**2.)

beta = momentum / energy

gamma = energy / E0

t_rev = circumference / (beta * c)

f_rev = 1 / t_rev

harmonic = 4620

voltage = 4.5e6 # V

f_rf = harmonic * f_rev

t_rf = 1 / f_rf

gamma_t = 18

alpha_c = 1 / gamma_t**2.

eta = alpha_c - 1 / gamma**2.
```

• Print the parameters of the machine

print("Beta: " +
<pre>str(beta))</pre>
print("Gamma: " +
<pre>str(gamma))</pre>
<pre>print("Revolution period: " +</pre>
str(t_rev * 1e6) + " mus")
<pre>print("RF frequency: " +</pre>
str(f_rf / 1e6) + " MHz")
<pre>print("RF period: " +</pre>
str(t_rf * 1e9) + " ns")
<pre>print("Momentum compaction factor: " +</pre>
<pre>str(alpha c))</pre>
print("Phase slippage factor: " +
<pre>str(eta))</pre>

JUAS 2023 - Longitudinal Beam Dynamics

A REALISTIC WORKING CODE IN PYTHON (AND NUMPY)

• Define our machine parameters

```
Ekin = 26e9 # eV

charge = 1

E0 = m_p * c**2. / e

circumference = 6911.5 # m

energy = Ekin + E0

momentum = np.sqrt(energy**2. - E0**2.)

beta = momentum / energy

gamma = energy / E0

t_rev = circumference / (beta * c)

f_rev = 1 / t_rev

harmonic = 4620

voltage = 4.5e6 # V

f_rf = harmonic * f_rev

t_rf = 1 / f_rf

gamma_t = 18

alpha_c = 1 / gamma_t**2.

eta = alpha_c - 1 / gamma**2.
```

• Define your tracking functions

```
def drift(dE, harmonic, eta, beta, energy):
    return 2 * np.pi * harmonic * \
        eta * dE / (beta**2 * energy)

def rf_kick(phi, charge, voltage, phi_s=0):
    return charge * voltage * (
        np.sin(phi) - np.sin(phi_s))
```

• Define your initial particle positions (test example)

```
n_particles = 10 # or millions ? :)
phase_coordinates = np.linspace(
    0, 2 * np.pi, n_particles)
dE_coordinates = np.zeros(n_particles)
```


JUAS 2023 - Longitudinal Beam Dynamics

A REALISTIC WORKING CODE IN PYTHON (AND NUMPY)

• Track!!!

JUAS 2023 - Longitudinal Beam Dynamics

A REALISTIC WORKING CODE IN PYTHON (AND NUMPY)

• The particle coordinates can then be monitored at each turn during the tracking.

JUAS 2023 - Longitudinal Beam Dynamics

A REALISTIC WORKING CODE IN PYTHON (AND NUMPY)

• The trajectory of the particles can be visualized

• The final script is less than 100 lines long!

JUAS 2023 - Longitudinal Beam Dynamics

Eqs. of Motion

Phase [rad]

DRIFT ONLY

Only with the drift equation of motion, no RF.

Particles get distant from each other.

JUAS 2023 - Longitudinal Beam Dynamics

RF KICK ONLY

Only RF, no drift.

Particles all get accelerated/decelerated with respect to the synchronous particle.

JUAS 2023 - Longitudinal Beam Dynamics

RF KICK AND DRIFT

Combining RF kick and drift, particles start to oscillate around the synchronous particle.

Linear close to the synchronous particle, non-linear at large amplitude.

JUAS 2023 - Longitudinal Beam Dynamics Eqs. of Motion

AROUND OTHER SYNCHRONOUS PARTICLES

Particles oscillate around one of the h possible synchronous particles.

JUAS 2023 - Longitudinal Beam Dynamics

VERY LARGE AMPLITUDES

If particles have very different energies than the synchronous particle, they don't oscillate around a stable point anymore.

JUAS 2023 - Longitudinal Beam Dynamics

LIMIT OF PHASE STABILITY

A contour of the limit of phase stability is easily obtained with tracking.

It is called the RF bucket.

JUAS 2023 - Longitudinal Beam Dynamics

REALISTIC BUNCH IN THE RF BUCKET

- The only measurable in reality is the line density (top line), corresponding to the histogram in φ.
- Tracking is an essential tool to compare computations with measurements!

JUAS 2023 - Longitudinal Beam Dynamics

TAKE AWAY MESSAGE

LONGITUDINAL EQUATIONS OF MOTION

• Energy

$$rac{d}{dt}\left(rac{\Delta E}{\omega_{0,s}}
ight) = rac{qV_{
m rf}}{2\pi}\left[\sin\left(\phi
ight) - \sin\left(\phi_{s}
ight)
ight]$$

• Phase

$$rac{d\phi}{dt} = rac{h\eta\omega_{0,s}^2}{eta_s^2 E_s} \left(rac{\Delta E}{\omega_{0,s}}
ight)$$

JUAS 2023 - Longitudinal Beam Dynamics

