LONGITUDINAL BEAM DYNAMICS

JUAS 2023

COURSE 1: THE SCIENCE OF PARTICLE ACCELERATORS

JUAS 2023 - Longitudinal Beam Dynamics

Exercises

EXERCISES ON THE EV

- An accelerator has a potential of 20 MV, what is the corresponding energy gain of a particle in Joules?
- What is the total energy of the beam stored in the LHC? (The beam is composed of 2808 bunches of $1.15 imes10^{11}$ protons each at 7 TeV)
- What is the equivalent speed of a high speed train? (Assume a 400 tons (200 m long) TGV train)
- What is the beam power delivered to the LHC beam? (Consider an acceleration from 450 GeV to 7 TeV in 30 minutes)

EXERCISE ON THE EV

CORRECTION

- An accelerator has a potential of 20 MV, what is the corresponding energy gain of the beam in Joules?
 - $20 \cdot 10^6 \cdot 1.609 \cdot 10^{-19} = 3.2 \cdot 10^{-12} \text{ J}$
- What is the total energy of the beam stored in the LHC
 - $2808 \cdot 1.15 \cdot 10^{11} \cdot 7 \cdot 10^{12} \cdot 1.609 \cdot 10^{-19} = 364 \text{ MJ}$
- What is the equivalent speed of a high speed train ($E_{
 m LHC}=E_{
 m kin,train}$)
 - $v_{\text{train}} = \sqrt{2E_{ ext{LHC}}/m_{ ext{train}}} = \sqrt{2 \cdot 364 \cdot 10^6 / (400 \cdot 10^3)} = 154 \text{ km/h}$
- What is the power delivered to the LHC beam (1800 s)
 - $2808 \cdot 1.15 \cdot 10^{11} \cdot (7 0.450) \cdot 10^{12} \cdot 1.609 \cdot 10^{-19} / 1800 = 189 \text{ kW}$

• Show that

$p\left[{ m GeV/c} ight]pprox 0.3~Z~{\cal B}_y\left[{ m T} ight] ho\left[{ m m} ight]$

• Compute the relativistic parameters for the following CERN machines

Machine	E_0 [MeV]	$E_{ m kin}$ [GeV]	E [GeV]	γ	eta	p [GeV/c]	$\mathcal{B}_y ho$ [Tm]
PSB inj (p+)		0.160					
PSB ext (p+)		2					
SPS ($^{208}\mathrm{Pb}^{82+}$)							86.4
LHC (p+)			7000				
LEP (e+/e-)			100				
PSB inj (p+) PSB ext (p+) SPS (²⁰⁸ Pb ⁸²⁺) LHC (p+) LEP (e+/e-)		0.160	7000 100				86.4

 $m_p = 1.6726 imes 10^{-27} ~{
m kg}, m_e = 9.1094 imes 10^{-31} ~{
m kg}, u = 1.661 imes 10^{-27} ~{
m kg}$

JUAS 2023 - Longitudinal Beam Dynamics

Exercises

MACHINE PARAMETERS

Machine	E_0	$E_{ m kin}$	E	γ	eta	p	$\mathcal{B}_y ho$
	[MeV]	[GeV]	[GeV]			[GeV/c]	[Tm]
PSB inj (p+)	938	0.160	1.098	1.17	0.52	0.57	1.90
PSB ext (p+)	938	2	2.938	3.13	0.95	2.78	9.30
SPS ($^{208}\mathrm{Pb}^{82+}$)	193751	1940.50	2134.25	11.0	0.996	2125.44	86.4
LHC (p+)	938	6999	7000	7460	0.999	6999.99	23333
LEP (e+/e-)	0.511	99.99	100	195695	0.999	99.99	333.33

JUAS 2023 - Longitudinal Beam Dynamics

Exercises

FUNDAMENTAL MODE OF A PILLBOX CAVITY

EXERCISES

- Compute the expected radius of the 80 MHz cavity shown in lesson 1, assuming it's a pillbox cavity.
- The animation is a measured bunch profile modulation by a 1.4 GHz wakefield, what is the size of the device responsible for wakefields?

JUAS 2023 - Longitudinal Beam Dynamics

Exercises

FUNDAMENTAL MODE OF A PILLBOX CAVITY

EXERCISES

- Compute the expected radius of the 80 MHz cavity shown in lesson 1, assuming it's a pillbox cavity (Slide 11)
 - $ho_c = 2.405 \cdot 3 \cdot 10^8 / \left(2\pi \ 80 \cdot 10^6
 ight) = 1.4 \ {
 m m}$
- The animation is a measured bunch profile modulation by a 1.4 GHz wakefield, what is the size of the device responsible for wakefields?
 - $ho_c = 2.405 \cdot 3 \cdot 10^8 / \left(2\pi \ 1.4 \cdot 10^9
 ight) = 8.2 \ {
 m cm}$

EXAMPLE PROGRAMS IN THE SPS

EXERCISES

Compute the following parameters for protons in the SPS at injection and extraction energies (momentum 26 GeV/c ightarrow 450 GeV/c)

- Revolution period/frequency of the SPS ($ho_0=741.25$ m, $C_0=6911.50$ m)
- RF frequency of the SPS (h=4620)
- Energy gain per turn in the SPS ($\dot{\mathcal{B}}_y=0.7$ T/s)
- Smallest RF voltage to accelerate the synchronous particle
- Compute the same parameters with Lead ions $m ^{208}Pb^{82+}$

EXAMPLE PROGRAMS IN THE SPS

EXERCISES

Compute the following parameters for protons in the SPS at injection and extraction energies (momentum 26 GeV/c ightarrow 450 GeV/c)

Machine	SPS inj. p+	SPS ext. p+	SPS inj. Pb	SPS ext. Pb
p [GeV/c]	26	450	2132	36900
E [GeV]	26.0169	450.001	2140.786	36900.509
β	0.99935	0.999	0.9959	0.999
$T_0\left[\mu s ight]$	23.0693	23.0543	23.1493	23.0546
f_r [MHz]	200.266	200.396	199.574	200.394

JUAS 2023 - Longitudinal Beam Dynamics

EXAMPLE PROGRAMS IN THE SPS

EXERCISES

- Energy gain per turn in the SPS ($\dot{\mathcal{B}}_y=0.7$ T/s)
 - $6911.50 \cdot 741.35 \cdot 1 \cdot 0.7 = 3.59 \ MeV$ for p+
 - $6911.50 \cdot 741.35 \cdot 82 \cdot 0.7 = 294 \ MeV$ for Pb
- Smallest RF voltage to accelerate the synchronous particle
 - = $3.59~{
 m MeV}$ for p+ and Pb ($\delta E_{
 m rf}/q$)

PARAMETER COMPUTATION

- Fill the table for the SPS ($C_0=6911.50$ m) with $\gamma_t=18$ for a proton beam

Machine	SPS injection	SPS extraction
Momentum [GeV/c]	14	450
E [GeV]		
γ		
$T_0\left[\mu s ight]$		
$lpha_p[10^{-3}]$		
E_t [GeV]		
η [10^{-3}]		

JUAS 2023 - Longitudinal Beam Dynamics

PARAMETER COMPUTATION

- Fill the table for the SPS ($C_0=6911.50$ m) with $\gamma_t=18$ for a proton beam

Machine	SPS injection	SPS extraction
Momentum [GeV/c]	14	450
E [GeV]	14.03	450
γ	14.95	479.6
$T_0 \left[\mu s ight]$	23.11	23.05
$lpha_p[10^{-3}]$	3.086	3.086
$\overline{E_t}$ [GeV]	16.89	16.89
$\eta[10^{-3}]$	-1.385	3.082

JUAS 2023 - Longitudinal Beam Dynamics

PARAMETER COMPUTATION

- Is transition crossed in the SPS during acceleration?
- What is the mean radial offset ΔR of a particle with $\Delta p/p_0 = -10^{-4}$ with a constant \mathcal{B}_y ?
- What is the corresponding change in the revolution period ΔT_0 ? Is the particle delayed or in advance after a turn, with respect to the reference?

PARAMETER COMPUTATION

- Is transition crossed in the SPS during acceleration?
 - Transition is crossed since η changes sign
- What is the mean radial offset ΔR of a particle with $\Delta p/p_0 = -10^{-4}$ with a constant \mathcal{B}_y ?
 - $\Delta R = 3.086 \cdot 10^{-3} \cdot 6911.50/(2 \cdot 3.14) \cdot (-10^{-4}) =$ -0.34 mm
- What is the corresponding change in the revolution period ΔT_0 ? Is the particle delayed or in advance after a turn, with respect to the reference?
 - Low $E:\Delta T_0 = -1.385\cdot 10^{-3}\cdot 23.11\cdot 10^{-6}\cdot \left(-10^{-4}
 ight) =$ 3.2 ps (late)
 - High $E: \Delta T_0 = 3.082 \cdot 10^{-3} \cdot 23.05 \cdot 10^{-6} \cdot \left(-10^{-4}\right) =$ -7.1 ps (early)

JUAS 2023 - Longitudinal Beam Dynamics

- Compute the linear synchrotron frequency and tune in the SPS at p=14 GeV/c and p=450 GeV/c, with an RF harmonic h=4620 and voltage $V_{
 m rf}=4.5$ MV (find the other SPS parameters obtained in the exercises from Module 5). The beam is not accelerated.
- Compute the approximate emittance and momentum spread at p=14 GeV/c for a bunch length $au_l=3$ ns.
- What would be the bunch length at p=450 GeV/c if the emittance is preserved?
- What would be the bunch length and energy spread at transition energy?
- Evaluate required increase in rf voltage to shorten the bunch length by a factor 2.

- Linear synchrotron frequency and tune
 - Low energy:

$$egin{aligned} f_{s0} &= rac{1}{2\cdot 3.14} \sqrt{rac{1\cdot 4.5\cdot 10^6\cdot (4620\cdot 2\cdot 3.14/23.11\cdot 10^6)^2\cdot 1.385\cdot 10^{-3}}{2\cdot 3.14\cdot 4620\cdot (14/14.03)^2\cdot 14.03\cdot 10^9}} \ &pprox 784 \ \mathrm{Hz} \ Q_{s0} &= 784\cdot 23.11\cdot 10^{-6} pprox 1.81\cdot 10^{-2} \end{aligned}$$

- Linear synchrotron frequency and tune
 - High energy:

$$f_{s0} = rac{1}{2\cdot 3.14} \sqrt{rac{1\cdot 4.5\cdot 10^6\cdot (4620\cdot 2\cdot 3.14/23.05\cdot 10^6)^2\cdot 3.082\cdot 10^{-3}}{2\cdot 3.14\cdot 4620\cdot 1\cdot 450\cdot 10^9}} pprox 206~\mathrm{Hz}$$

$$Q_{s0} = 206 \cdot 23.05 \cdot 10^{-6} pprox 4.76 \cdot 10^{-3}$$

• Linear emittance

$$arepsilon_{l,0} = rac{3.14 \cdot (14/14.03)^2 \cdot 14.03 \cdot 10^9}{4 \cdot 1.385 \cdot 10^{-3}} 2 \cdot 3.14 \cdot 784 \cdot (3 \cdot 10^{-9})^2 pprox 0.35 \ \mathrm{eVs}$$

• Energy spread

$$egin{aligned} \delta_p &= 2rac{\Delta E_m}{eta_s^2 E_s} = 4rac{arepsilon_{l,0}}{\pi au_l eta_s^2 E_s} = rac{4 \cdot 0.35}{3.14 \cdot 3 \cdot 10^{-9} (14/14.03)^2 \cdot 14.03 \cdot 10^9} \ &pprox 1.06 imes 10^{-2} \end{aligned}$$

• Adiabatic damping

$$au_{l,{
m high}} = au_{l,{
m low}} \left(rac{E_{
m high}}{E_{
m low}}
ight)^{-1/4} = 3 \cdot \left(rac{450}{14.03}
ight)^{-1/4} pprox 1.26 ~{
m ns}$$

JUAS 2023 - Longitudinal Beam Dynamics

• Transition

The bunch length would tend to zero while the energy spread diverge to infinity! Nonadiabatic theory needed to better evaluate bunch parameters at transition crossing.

• Adiabatic bunch shortening

$$egin{split} au_{l, ext{high}} &= au_{l, ext{low}} \left(rac{V_{ ext{high}}}{V_{ ext{low}}}
ight)^{-1/4} \ & \Longrightarrow V_{ ext{high}} = V_{ ext{low}} \left(rac{ au_{l, ext{high}}}{ au_{l, ext{low}}}
ight)^{-4} = V_{ ext{low}} imes 16 \end{split}$$

The required voltage increase is a factor 16! Not very efficient shortening.

- Compute the RF bucket area (or acceptance) using the SPS parameters from Module 5 and 8.
- Compute the bucket height.
- Compute the filling factor for 3 ns bunch at 14 GeV/c (use the linear approximation for the emittance calculation)
- The bunch length oscillations at injection indicate that the energy spread is too small by 10%. How much should the RF voltage be reduced to improve the matching?

• Low energy 14 GeV/c, RF Bucket area

$$egin{aligned} \mathcal{A}_{
m bk} = & rac{8}{4620 \cdot 2 \cdot 3.14/23.11 \cdot 10^6} \cdot \ & \sqrt{rac{2 \cdot 1 \cdot 4.5 \cdot 10^6 \cdot (14/14.03)^2 \cdot 14.03 \cdot 10^9}{3.14 \cdot 4620 \cdot 1.385 \cdot 10^{-3}} \ & pprox 0.50 \ {
m eVs} \end{aligned}$$

• RF Bucket height (half height)

$$egin{aligned} \Delta E_{ ext{sep},m} = & \sqrt{rac{2 \cdot 1 \cdot 4.5 \cdot 10^6 \cdot (14/14.03)^2 \cdot 14.03 \cdot 10^9}{3.14 \cdot 4620 \cdot 1.385 \cdot 10^{-3}} \ &pprox 79.1 \ ext{MeV} \end{aligned}$$

• High energy 450 GeV/c, RF Bucket area

$$egin{aligned} \mathcal{A}_{
m bk} =& rac{8}{4620\cdot 2\cdot 3.14/23.05\cdot 10^6} \cdot \ &\sqrt{rac{2\cdot 1\cdot 4.5\cdot 10^6\cdot 1\cdot 450\cdot 10^9}{3.14\cdot 4620\cdot 3.082\cdot 10^{-3}}} \ &pprox 1.91 \, {
m eVs} \end{aligned}$$

• RF Bucket height (half height)

$$egin{aligned} \Delta E_{ ext{sep},m} = & \sqrt{rac{2 \cdot 1 \cdot 4.5 \cdot 10^6 \cdot 1 \cdot 450 \cdot 10^9}{3.14 \cdot 4620 \cdot 3.082 \cdot 10^{-3}}} \ pprox 301 \ ext{MeV} \end{aligned}$$

JUAS 2023 - Longitudinal Beam Dynamics

• Filling factor

From the previous module exercise, the longitudinal emitatnce is 0.35 eVs. The filling factor in area is 0.35/0.50pprox70 %.

• Matching

The bunch length and energy spread are fixed at injection. In orderto match the bunch, the bucket height should be reduced by 10%. The RF voltage can be reduced to reduce the bucket height, with a scaling $\sqrt{V_{
m rf}}$

$$rac{\Delta E_{\mathrm{sep},m,2}}{\Delta E_{\mathrm{sep},m,1}} = 0.9 = \sqrt{rac{V_{\mathrm{rf},2}}{V_{\mathrm{rf},1}}} \quad
ightarrow \quad V_{\mathrm{rf},2} = 0.9^2 V_{\mathrm{rf},1} pprox 0.81 V_{\mathrm{rf},1}$$

The RF voltage should be reduced by 20% (useful tip: $\left(1-\epsilon
ight)^npprox 1-n\epsilon
ightarrow \left(1-0.1
ight)^2pprox 1-2\cdot 0.1$)