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        28.) Insertions 
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Layout of a Storage Ring

      Arc: regular (periodic) magnet structure: 

	 	 	 bending magnets —> define the energy of the ring

	 	 	 main focusing & tune control, chromaticity correction,

	 	 	 multipoles for higher order corrections


                       drift spaces for injection, dispersion suppressors, 	 	
	                low beta insertions, RF cavities, etc....


	 	                … and the high energy experiments if they cannot be avoided 

Straight sections: 
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fixed target event p + W -> xxxxx

 General Aspects:

	

high event rate,  

limited energy reachFixed Target

Fixed target < — > beam-beam collisions


Elab ∝ Ebeam

Z0 —>  e+e− pair

(white dashed lines)

Collider experiments:

            E=mc2

	

Elab = Ebeam 1 + Ebeam 2

low event rate (luminosity)

high energy reach
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 Insertions

 ... the most complicated one: the drift space

Question to the audience: what will happen to the beam parameters 

	 	 	    α, β, γ if we stop focusing for a while …?
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location of the waist: 

given the initial conditions α0, β0, γ0 :   where is the point of smallest beam   

      dimension in the drift … or at which location occurs the beam waist ?  

beam waist:
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β-Function in a Drift:

let‘s assume we are at a symmetry point in the center of a drift. 

2
0 0 0( ) 2s s sβ β α γ= − +

 as
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α γ
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and we get for the β function in the neighbourhood of the symmetry point

Nota bene: 

    1.) this is very bad !!!

    2.) this is a direct consequence of the 

         conservation of phase space density

         (... in our words: ε = const) … and 

         there is no way out.

    3.) Thank you, Mr. Liouville !!! 

! ! !

Joseph Liouville,

1809-1882
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Optimisation of the beam dimension at position s = 𝓁 :

2

0
0

( )β β
β

= +
!
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Find the β at the center of the drift that leads to the lowest maximum β at the end:

If we cannot fight against Liouville’s theorem ... at least we can optimise
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If we choose β0 = ℓ we get the smallest β at the end of the 
drift and the maximum β is just twice the distance ℓ


In any case:     keep 𝓁 as SMALL as possible !!!

*

𝓁 𝓁

β0

A bit more in detail:  β-Function in a Drift

7



B. J. Holzer, CERN                              JUAS 2023, Transverse Beam Dynamics 5 8

... clearly there is another problem !!!

Example: Luminosity optics at LHC: β* = 55 cm

                for smallest βmax we have to limit the overall length  

              and keep the distance “s” as small as possible.

But: ... unfortunately ... in general 

         high energy detectors that are 

         installed in that drift spaces 

         are a little bit bigger than a few centimeters ...



B. J. Holzer, CERN                              JUAS 2023, Transverse Beam Dynamics 5 9

ZEUS detector: inelastic 

scattering event of e+/p

production rate of (scattering) events

is determined by the

cross section Σreact

and a parameter L that is given 

by the design of the accelerator:

… the luminosity 

29.) The Mini-β Insertion:
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 Insertions:


Prepare for Beam collisions


… there is just a little problem
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Overall cross section of the  Higgs:

Problem: Our particles are VERY small !!

The only chance we have:

compress the transverse beam size … at the IP

LHC typical: 


σ = 0.1 mm   à  16 µm  

Σreact ≈ 1pb−1

1b = 10−24cm2

1pb = 10−12 * 10−24cm2

1pb =
1
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⋅
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⋅
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10000

mm2
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p2-Bunch

p1-Bunch
IP

± σ 
10 11 particles
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Mini-β Insertions: Betafunctions

A mini-β insertion is always a kind of special symmetric drift space.

	 —> greetings from Liouville

at a symmetry point β is just the ratio of beam dimension and beam divergence.
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Now in a mini β insertion:

Mini-β Insertions: Phase advance

By definition the phase advance is given by:
1( )
( )
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Consider the drift spaces on both 

sides of the IP:  


the phase advance of a mini β insertion is 

approximately π,

 

in other words: the tune will increase 

by half an integer.
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	 	 * calculate the periodic solution in the arc


   	 	 * introduce the drift space needed for the insertion device (detector ...)


	 	 * put a quadrupole doublet (triplet ?) as close as possible


	 	 * introduce additional quadrupole lenses to match the beam  parameters

	 	    to the values at the beginning of the arc structure


parameters to be optimised & matched to the periodic solution:

, ,
, ,
x x x x

y y x y

D D
Q Q

α β

α β

ʹ

8 individually 

powered quad 

magnets are 

needed to match  

the insertion 

( ... at least)

Mini-β Insertions: practical  guide lines 

periodic arc structure

β*
α* = 0

15
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 30.) Lattice Design

General Remark:


Whenever we combine two different lattice structures we need a 


“matching section” 


in between to adapt the optics functions between the two lattices.


16
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One word about Mini-Beta Insertions:

Mini Beta Insertions must be installed in 


… straight sections (no dipoles that drive dispersion)


… that are dispersion free


… that are connected to the arc lattice by 

     dispersion suppressors


if not, the dispersion dilutes the particle density and increases 

the effective transverse beam size.

17
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Are there any problems ??

sure there are ...

	 

       * aperture of mini β quadrupoles

          limit the luminosity


       * remember: large quads are weak quads


beam envelope at the first mini β 

quadrupole lens in the HERA proton 

storage ring 

—> keep distance „s“ to the first mini β quadrupole as small as possible

0
2

2
=

nIg
r
µgradient of a quadrupole 

magnet:
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∫−= dssskQ )()(
4
1' β
π

question: main contribution to Q' in a lattice … ?                                      

… and now back to the Chromaticity

mini beta insertions
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 Mini-Beta Insertion

Whenever we collide the beams the beam size has to be small 

to get highest luminosity.


This adds a large contribution to the chromaticity.


Which needs to be corrected by (non-linear) sextupole fields.


Non-linear fields however disturb the harmonic motion and 

can lead to particle losses.


 


20
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N

Sextupole Magnets: 

Correction of Q':

S

SN

corrected chromaticity

k1 normalised quadrupole strength 

xk
ep
xg

sextk *
/

~
)( 21 ==

p
p

Dksextk
Δ

= **)( 21

k2 normalised sextupole  strength 

counter acting effect in the two planes 

Q′￼x = −
1

4π ∮ βx(s) [+kq(s) − SFDx(s) + SDDx(s)] ds

Q′￼y = −
1

4π ∮ βy(s) [−kq(s) + SFDx(s) − SDDx(s)] ds , SF = k F
2 ⋅ lsext , SD = k D

2 ⋅ lsextwith

“natural” chromaticity sextupole correction of chromaticity
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Again: the phase space ellipse 

    for each turn write down – at a given 

    position „s“ in the ring – the 

    single particle amplitude x 

    and the angle x´... and plot it.
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4 particles, 

each having a slightly 

different emittance:

observed in phase space,

in a linear lattice


31.) Particle Tracking Calculations
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 Particle Tracking Calculations

particle vector: ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ʹx
x

Idea:  

             And if you encounter a nonlinear element (e.g. sextupole): stop and

             calculate explicitly the magnetic field at the particles coordinate.

             —> determine the Lorentz-force and thus the new x’. 
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… and continue with the linear matrix transformations 

Δx′￼1 =
Bzl
p/e

=
1
2

g′￼

p/e
l(x2

1 − z2
1)

field:
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Installation of a weak ( !!! ) sextupole magnet

The good news: sextupole fields in accelerators 

cannot be treated analytically anymore.

—> no equations; instead: Computer simulation

      „ particle tracking “ 

●
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Installation of a strong ( !!! ) sextupole magnet

The non-linear field effects are so strong, that 

- from a certain amplitude x - they destroy the 


stability of the motion and the particles are lost. 

●

“Dynamic Aperture”
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Than‘x for your attention 



