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• We will have 3 lectures (2 + 3 + 3 hours), i.e., today and in the next two days

• During the lectures, you will have to solve 5 exercises 

• We will give you ~20 minutes per exercise to work by yourself or with your neighbors

• After each exercise, we will kind ask one of you to show the solution on the whiteboard (~10 minutes)

• Please, feel free to interrupt at anytime if something is not clear

• PS: On the indico page, you can also find a small python notebook used to produce some of the 
plots presented in this lecture

• Feel free to use it in your spare time if you think it can be helpful… or use MAD-X!

Organisational matters
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• We will be discussing linear imperfections and their impact on circular accelerators (“rings”)

• These imperfections affect most importantly the transverse dynamics of the particle motion

• In most parts of the lecture, we will be using normalized magnet strength, i.e. magnetic field B 
derivatives normalized by the magnetic rigidity Br

• Remember: if particle energy, E, is given in GeV, and q is the particle charge, then the magnetic rigidity in Tesla-

meter is :

• Selection of symbols used in this course:

… denoting the horizontal and vertical plane, respectively

… denoting either horizontal or vertical plane

… denoting the betatron phase advance in rad

… tune in 2𝝅 units

… circumference

Pre-word
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• An accelerator is usually build using a repetition of basic ‘cells’ 

• A simple FODO cell usually contains: 

• Dipole magnets to bend the beams

• Quadrupole magnets to focus the beams

• Beam position monitors (BPM) to measure the beam position

• Small dipole corrector magnets for beam steering

• (Sextupole magnets to control off-energy focusing)

Basics: accelerator lattice
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Toy FODO lattice – no errors

• Tracking a single particle, for many turns

Starting point

Element by element “tracking” till completion of one turn…
… and start a new turn

A) B)

C) D)

A) Before foc. quad. B) After foc. quad.

C) Before defoc. quad. D) After defoc. quad.
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• The physical units of the machine model defined by the accelerator physicist must be converted into 

magnetic fields and eventually into currents for the power converters that feed the magnet circuits.

• Imperfections (= errors) in the real accelerator optics can be introduced by uncertainties or errors on:

• Actual beam momentum, magnet calibration and hysteresis, power converter regulation, …

From model to reality - fields

Example of the 

ELENA main dipoles 

hysteresis curve

Magnet 

strength
Magnetic field 

(gradient)

Requested 

current

Beam 

momentum

Magnet 

Calibration/hysteresis curve 

(transfer function)

Power converter

Actual 

magnet 

current
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Additional effects, 

e.g. eddy currents

Actual field 

seen by the 

beam

Earth currents flowing over the 

LEP vacuum chamber that 

were generated by the DC 

railway line near Geneva



• To ensure that the accelerator elements are in the correct position the alignment must be precise – to the 

level of nanometer for CLIC final focusing !

• For CERN hadron machines we aim for accuracies of around 0.1 mm.

• The alignment process implies:

• Precise measurements of the magnetic axis in the laboratory 

with reference to the element alignment markers used by the 

survey group.

• Precise in-situ alignment (position and angle) of the element 

in the tunnel.

• Alignment errors are a common source of imperfections

From model to reality - alignment
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1. Ideal machine toy model (no errors)

a) Particle injected on the design (or reference) orbit … remains on the design orbit turn after turn

Illustration of closed orbit distortion
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Starting point with (x=0, x’=0)



1. Ideal machine toy model (no errors)

a) Particle injected on the design (or reference) orbit … remains on the design orbit turn after turn

b) Particle injected with offset …

Illustration of closed orbit distortion
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1. Ideal machine toy model (no errors)

a) Particle injected on the design (or reference) orbit … remains on the design orbit turn after turn

b) Particle injected with offset … performs betatron oscillations around the closed orbit which is the same 

as the design orbit as long as there are no imperfections

Illustration of closed orbit distortion
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2. Ideal machine toy model with dipole error (unintended deflection) somewhere 

a) Particle injected on the design orbit … receives dipole kick every turn

Illustration of closed orbit distortion
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Dipole error location



2. Ideal machine toy model with dipole error (unintended deflection) somewhere

a) Particle injected on the design orbit … receives dipole kick every turn … and consequently performs 

betatron oscillation around a distorted closed orbit

Illustration of closed orbit distortion
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2. Ideal machine toy model with dipole error (unintended deflection) somewhere

a) Particle injected on the design orbit … receives dipole kick every turn … and consequently performs 

betatron oscillation around a distorted closed orbit

b) Particle injected onto distorted closed orbit remains on closed orbit

Illustration of closed orbit distortion

Starting point on closed orbit coordinates

Same particle coordinates after one(all) turn(s)
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Field error (deflection error) of a dipole magnet

• This can be due to an error in the magnet current or in the calibration table (measurement accuracy etc.)

• The imperfect dipole can be expressed as the ideal one + a small error

A small rotation (misalignment) of a dipole magnet has the same effect, but (mostly) in 
the “other” plane

Sources of unintended deflections 

imperfect dipole ideal dipole

= +

small dipole 

error
→ horizontal kick

ideal dipole

= +
𝜙

tilted dipole small dipole 

error
→ vertical kick
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Horizontal misalignment of a quadrupole magnet

• Equivalent to perfectly aligned quadrupole plus small dipole

Misalignments causing feed-down
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Horizontal misalignment of a quadrupole magnet

• Equivalent to perfectly aligned quadrupole plus small dipole

Misalignments causing feed-down

= +

horizontal offset creates 

horizontal (normal) dipole

quadrupole  dipole
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Vertical misalignment of a quadrupole magnet

• Equivalent to perfectly aligned quadrupole plus small dipole

Misalignments causing feed-down

= +

quadrupole  dipole vertical offset creates 

vertical (skew) dipole
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Multipole expansion of transverse magnetic field

• Start from the general expression for the transverse magnetic flux in terms of multipole coefficients

• In some cases, it is more convenient to use “normalized” components:

so that:

Interlude: multipole expansion

Normal components

(“upright” magnets)

Skew components

(magnets rotated by             )

e.g. normal quad e.g. skew quad

Normalized normal components Normalized skew components
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Beam rigidity



• Let’s explicitly write, for example, the vertical field as the sum of all multipole components

• A horizontal offset (-𝛿x) in a normal(skew) magnet of order n creates normal(skew) feed-down 

components at y=0 of all lower orders!:

Feed-down from multipoles

2(n+1)-pole                  2(n+1)-pole   2n-pole        2(n-1)-pole            dipole

dipole   quadrupole        sextupole octupole            

normal skew

(normal)

(skew)
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• Let’s explicitly write, for example, the vertical field as the sum of all multipole components

• A vertical offset (-𝛿y) in normal(skew) magnets of order n results in alternating skew(normal) and 

normal(skew) feed-down components for x=0 of all lower orders!, as can be worked out looking at n-order 

terms are defined (for x=0):

• E.g. n even, normal magnet:

Feed-down from multipoles

for n = even                                             for n = odd

Odd exponent,

i.e. it must be a skew componentnormal

Even exponent, i.e. a normal component again …
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dipole   quadrupole        sextupole octupole            

normal skew



1. Derive an expression for the resulting magnetic field components (Bx and By) when the closed orbit in a 

normal sextupole is horizontally displaced by -δx from its reference position. 

2. Do the same for an octupole. 

The field generated by a sextupole is

The field generated by an octupole is

Problem 1

dx
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e.g. sextupole



• Consider a single dipole kick at s=s0

• The coordinates of a single particle at a downstream location s can be computed using the lattice Twiss 

parameters (see transverse dynamics course):

• If we want that the orbit closes on itself after one turn, then we must solve: 

• Which only depends on the Twiss functions at the s0 location and the machine tune Q

Effect of single dipole kick 
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s

u

𝜃

s0

where



• The initial conditions of the closed orbit at the location of the kick are therefore obtained as 

and

• For any location s around the ring, the closed orbit distortion 𝛥u generated by a kick 𝛳 in s0 is

Closed orbit from single dipole kick 

maximum orbit distortion amplitude
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𝜃
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Integer and half integer resonance
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• Dipole kicks get cancelled in 

consecutive turns for Q = n+1/2 

• Half-integer tune cancels orbit 

oscillations

• Dipole kicks add-up in 

consecutive turns for Q = n  

• Integer tune excites orbit 

oscillations (resonance) 

• orbit becomes unstable!
u' u'

uu



Single dipole kick vs. tune
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• Closed orbit distortion is most critical for tunes close to integer → closed orbit becomes unstable (but 

beam size not affected)

• Note: the closed orbit distortion propagates with the betatron phase advance (e.g. single kick induces 4 

oscillations for a tune of Q=4.x)

Single dipole kick vs. tune

… closed orbit ill-defined
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Q = 6.1

• Example of horizontal closed orbit for a machine with tune Q = 6.x

• The kink at the location of the deflection (→) can be used to localize the deflection (if it is not known) →

can be used for orbit correction.

Closed orbit examples

Q = 6.5

Q = 6.2

Q = 6.9

Q = 6.7
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• In the example below for the 26.7km long LHC, there is one undesired deflection, leading to a perturbed 

closed orbit. 

A deflection at the LHC

Beam Position Monitor index along the LHC circumference

B
e

a
m

 p
o

s
it

io
n

 x
 (

m
m

)

Where is the location of the deflection?
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• To make our life easier we divide the position by and replace the BPM index by its phase 

• → transform into pure sinusoidal oscillation… with a kink!

A deflection at the LHC

B
e

a
m

 p
o

s
it

io
n

Can you localize the deflection now?

Betatron phase 
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Orbit distortion due to many errors:

By approximating the errors as delta functions in n locations, the distortion at ith

observation points (Beam Position Monitors) is

with the kick produced by the jth error:

Global orbit distortion

Courant and Snyder, 1957

𝜙j
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• Integrated dipole field error

• Dipole roll

• Quadrupole displacement



• In the SNS accumulator ring, the beta function is about 6 m in the dipoles and about 30 m in the 

quadrupoles, the tune is 6.2

• Consider a single dipole error of 1 mrad

• The maximum orbit distortion in dipoles is

• For quadrupole displacement giving the same 1 mrad kick (and betas of 30 m) the maximum orbit distortion 

is 25 mm, to be compared to magnet radius of 105 mm

Example: Orbit distortion in SNS

βx

βy

Dx

horizontal rms CO

vertical rms CO
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Consider random distribution of errors in N magnets

• By squaring the orbit distortion expression and averaging over the angles (considering uncorrelated errors), 

the expectation (rms) value is given by

Example:

• In the SNS ring, there are 32 dipoles and 54 quadrupoles 

• The rms value of the orbit distortion in the dipoles

• In the quadrupoles, for equivalent kick

Statistical estimation of orbit errors
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SNS: A proton ring with kinetic energy of 1 GeV and a circumference of 248 m has 18, 1 m-long focusing 
quads with gradient of 5 T/m. In one of the quads, the horizontal and vertical beta function are 12 m and 2 m
respectively. The rms beta function in both planes on the focusing quads is 8 m. 

1. With a horizontal tune of 6.23 and a vertical of 6.2, compute the expected horizontal and vertical orbit 
distortions on a single focusing quad given by horizontal and vertical misalignments of 1 mm in all the 
quads. 

2. What happens to the horizontal and vertical orbit 
distortions if the horizontal tune drops to 6.1 and 6.01? 

Problem 2

S. Henderson et al. 
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• Horizontal/Vertical dipole correctors and BPMs close to focusing/defocusing quads

• Highest sensitivity / effect on closed orbit due to beta-function maxima 

• Measure orbit in BPMs and minimize orbit distortion

• Locally

• Closed orbit bumps

• Globally

• Singular Value Decomposition (SVD)

• Harmonic: minimizing components of orbit frequency response from 
Fourier analysis

• MICADO: finding the most efficient corrector for minimizing the rms orbit 

• Least square minimization using orbit response matrix of correctors

Correcting closed orbit distortion

corrector
BPM

quadrupole

BPM: Beam Position Monitor

DH, DV: correctors

SPSDH
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Closed orbit bumps

unperturbed 

closed orbit

local orbit bump

dipole

dipole

septum

example of 2-corrector bump

example of 3-corrector bump

Often it is needed to steer the closed-orbit away from the nominal trajectory in a localized part of a 
synchrotron 

• Injection / extraction

• Local orbit correction (or steering around local aperture restrictions)

Standard bump configurations exist

• π-bump (with 2 correctors)

• 3 and 4-corrector bumps 

◼18-20.01.23 ◼Linear Imperfections and Correction ◼38



Closed orbit bumps

example of 3-corrector bump

Often it is needed to steer the closed-orbit away from the nominal trajectory in a localized part of a 
synchrotron 

• Injection / extraction

• Local orbit correction (or steering around local aperture restrictions)

Standard bump configurations exist

• π-bump (with 2 correctors)

• 3 and 4-corrector bumps 

unperturbed 

closed orbit

fast kick

dipole

dipole

septum

example of 2-corrector bump
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• Consider a transport matrix between positions 1 and 2

• Consider a single dipole kick at position 1:

• The variation of position (𝛿u2) and angle (𝛿u’2) at  

• Replacing the coefficient from the general betatron matrix, one obtains

Transport of closed orbit distortion
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• Consider a cell in which correctors are placed close to the focusing quads

• The orbit shift at the 2nd corrector is

• This orbit bump can be closed by choosing a phase advance equal to 𝜋 between correctors (this is called a 

“𝜋-bump”)

• The angle should satisfy the following equation

Orbit bumps: 2-corrector bump

QF QF QF QF QF

QD QD QD QD

s

x

q1 q2
dipole 

corrector

dipole 

corrector
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• Works for any phase advance if the three correctors satisfy

• Note: The angle of the closed orbit in the center of the bump is defined by the above condition, i.e. it cannot 

be adjusted independently of bump amplitude

Orbit bumps: 3-corrector bump

QF QF QF QF QF

QD QD QD QD

s

x

q1 q2 q3
dipole 

corrector

dipole 

corrector
dipole 

corrector
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• Works for any phase advance

• Position xb and angle x’b of the 

bump at location sb can be adjusted 

independently

• Can be used for aperture 

scanning, extraction bumps, …

Orbit bumps: 4-corrector bump

QF QF QF QF QF

QD QD QD QD

s

x

q1 q2 q3 q4

xb

x’b

dipole 

corrector

dipole 

corrector
dipole 

corrector

dipole 

corrector

sb
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• Let’s consider normalised phase-space (see linear dynamics lectures) where phase 
spaces are simple circles

Visualisation of simplest orbit bumps

◼18-20.01.23 ◼Linear Imperfections and Correction ◼44

u

u’

pi-bump

u

u’
3 corrector-bump

e.g., using “law of sines” in triangles



Three correctors are placed at locations with phase advance of 𝜋/4 between them and beta functions of 12, 

2 and 12 m. How are the corrector kicks related to each other in order to achieve a closed 3-corrector bump 

(i.e. what is the relative strength between the three kicks)?

Problem 3

QF QF QF QF QF

QD QD QD QD

s

x

q1 q2 q3
dipole 

corrector

dipole 

corrector
dipole 

corrector
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• The problem of correcting the orbit deterministically came up a long time ago in the first CERN machines.

• B. Autin and Y. Marti published a note in 1973 describing an algorithm that is still in use today (but in 

JAVA/C/C++ instead of FORTRAN) at ALL CERN machines: MICADO*

Closed orbit correction: MICADO

(Minimization of the quadratic orbit distortions)
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▪ The intuitive principle of MICADO is rather simple:

1. It requires a model of the machine

2. It computes for each orbit corrector what the effect (response) is expected to be on the orbit

MICADO – how does it work?
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3. MICADO compares the response of every corrector with the raw orbit in the machine

4. MICADO picks the corrector that has the best match with the raw orbit, i.e. that will give the largest 

improvement to the orbit deviation rms

5. The procedure can be iterated to the second-best corrector and so on, until the orbit is good enough (or as 

good as it can be)

MICADO – how does it work?

…
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• The raw orbit at the LHC can have huge errors, but the correction (based partly on MICADO) brings the 

deviations down by a factor 20

MICADO – LHC Orbit example

MICADO 

& Co

LHC vacuum chamber

44 mm

34 mm

50 mm

Corrected horizontal orbit of ring 1

At the LHC a good orbit 

correction is vital !

Uncorrected horizontal orbit of ring 1

50 mm
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This approach works for orbit correction when using the measured orbit distortion (but 
also for beta-beating when using ∆β/β, etc.)

• Consider an available set of correctors: 

• Consider the available observables (here the orbit at the Beam Position Monitors):

• Assume (or verify) that the linear approximation is good enough (small corrections):

• Use optics model to compute the response matrix       (i.e. the orbit change in the ith monitor due to a unit kick 

from the jth corrector): 

… or use, e.g., MAD-X, or measure it directly in the machine…

• Invert the matrix      to compute a global correction to obtain the desired orbit variation         :

• In case the number of correctors is not the same as the number of Beam Position Monitors one has to 

perform a pseudo matrix inversion, for example using the “Singular Value Decomposition (SVD)” algorithm

Response matrix approach
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Singular Value Decomposition

Monitors
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N (e.g. 72) monitors and N correctors

N (e.g. 72) monitors / M (e.g. 36) correctors



The SPS is a 400 GeV proton synchrotron with a FODO lattice consisting of 108 focusing and 108 defocusing 
quadrupoles of length 3.22 m and a gradient of 15 T/m, with a horizontal and vertical beta of 108 m and 30 m in the 
focusing quads (30 m and 108 m for the defocusing ones). The tunes are Qx=20.13 and Qy=20.18. Due to a 
mechanical problem, a focusing quadrupole was sinking down in 2016, resulting in an increasing closed orbit distortion 
compared to a reference taken earlier in the year. 

1. By how much the quadrupole had shifted down when the maximum vertical closed orbit distortion amplitude in 
defocusing quadrupoles reached 4 mm?

2. Why was there no change of the horizontal orbit measured?

3. How big would have been the maximum closed orbit distortion amplitude if it would have been a defocusing 
quadrupole?

Problem 4

vertical BPMs (at defocusing quadrupoles)

Difference orbit wrt reference (18.08.2016)

horizontal BPMs (at focusing quadrupoles)
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Beam orbit stability is very critical 

• Injection and extraction efficiency of synchrotrons

• Stability of collision point in colliders

• Stability of the synchrotron light spot in the beam lines of light sources

Consequences of orbit distortion

• Miss-steering of beams, modification of dispersion function, resonance excitation, aperture limitations, 

lifetime reduction, coupling, modulation of lattice functions, poor injection/extraction efficiency

Sources for closed orbit drifts

• Long term (years - months): ground settling, season changes, …

• Medium term (days - hours): sun and moon, day-night variations (thermal), rivers, rain, wind, refills and 

start-up, sensor motion, drift of electronics, local machinery, filling patterns, …

• Short term (minutes - seconds): ground vibrations, power supplies, experimental magnets, air conditioning, 

refrigerators/compressors, …

Final words on beam orbit stability
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Illustration of optics distortion
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Ideal machine toy model with regular FODO lattice and quadrupole error at the end of 
circumference 

• Particle injected with offset performs betatron oscillations but gets additional focusing from quadrupole error

• There is a tune-shift (additional de-/focusing)

• Beam envelope is distorted around the machine … “beta-beating”
Quadrupole error location

Note the change of the 

actual machine tune!

Note the change of 

the ellipse shape!



Optics functions perturbation can induce aperture restrictions

Tune perturbation can lead to reduced beam stability (dynamic aperture)

Broken super-periodicity → excitation of all resonances

• In a ring made of N identical cells, only resonances with harmonics being integer multiples of N can be excited

Sometimes control of optics is critical for machine performance

• Beta functions at collision points or at collimators (e.g. LHC)

Sources

• Errors in quadrupole strengths (random and systematic)

• Injection elements

• Higher-order multi-pole magnets and errors

Observables

• Tune-shift

• Beta-beating

• Excitation of integer and half integer resonances, beam losses

Gradient error and optics distortion
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• Consider the 1-turn transfer matrix:

• Consider a gradient error in a quad. We can take the error into account by adding a thin lens quadrupole to 

the one turn matrix. The new 1-turn matrix is

which yields

Gradient error: some math…
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• Can also be written as a new matrix with a new tune 

• The traces of the two matrices describing the 1-turn should be equal, i.e.

which gives:

• Developing the right-hand side: 

• Which finally gives: 

• I.e., for a quadrupole of length l the tune shift is:

• For distributed quadrupole errors, the tune shift is: 

Gradient error and tune-shift

≈ ≈
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• Consider the unperturbed transfer matrix for one turn

with

• Introduce a gradient perturbation between the two matrices

• Recall that and write the perturbed term as

• where we used and                                 and

Gradient error and beta distortion

a)
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• On the other hand 

• Equating the two terms 

• using and integrating yields

• for distributed errors around the machine

Gradient error and beta distortion

b)

a)  = b)
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• Quadrupole errors have biggest impact close to integer and half integer tunes → envelope (or beam 

size) becomes unstable

Optics distortion vs. tune
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• Therefore, integer tunes and half integer tunes need to be avoided for machine operation to avoid 

beam envelope becoming unstable due to quadrupole errors

• Recall: for integer tunes dipole errors drive the closed orbit unstable, but for half integer tunes they have 

minimum effect

Quadrupole error in phase space

Q = n (integer)

→ kicks from quadrupoles add up    

(same as for kicks from dipoles) 

Q = n/2 (half integer)

→ kicks from quadrupoles also add up

(while kicks from dipoles cancel)
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• Let’s take a look at the LHC …

Optics distortion characteristics

Nominal optics

Perturbed optics

Example: one quadrupole gradient is incorrect

Zoom into a subsection
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• The local beam optics perturbation

• … note the oscillating pattern

Optics distortion characteristics

Nominal optics

Perturbed optics
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• The error is easier to analyse and diagnose if one considers the ratio of the betatron function 

perturbed/nominal.

• The ratio reveals an oscillating pattern called the betatron function beating (‘beta-beating’). 

• Note: the amplitude of the perturbation is the same all over the ring!

Optics distortion characteristics
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• The beta-beating pattern comes out even more clearly if we replace the longitudinal coordinate with the 

betatron phase advance

• The result is very similar to the case of the closed orbit kick, the error reveals itself by a kink!

• If you watch closely, you will observe that there are two oscillation periods per 2p (360 deg) phase. The beta-

beating frequency is twice the frequency of the orbit!

Optics distortion characteristics
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• Consider 18 focusing quads in the SNS ring with 0.01 T/m systematic gradient error (wrt to nominal 5 T/m). In 

this location β = 12 m. The length of the quads is 1 m, the magnetic rigidity is 5.6567 Tm, and the tune is Q = 6.2

• The tune-shift is: 

• For a random distribution of errors of 1% of the nominal gradient, the beta beating is: 

• Optics functions beating ~20% by 1% random errors (1% of gradient)!

Example: Gradient error in SNS
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Quadrupole correctors

• Individual correction magnets

• Windings on the core of the quadrupoles (trim windings)

• Pairs of correctors at well-chosen locations for minimizing resonance

Methods & approaches

• Compute tune-shift and optics function beta distortion 

• Move working point close to integer and half integer resonance to increase sensitivity

• Minimize beta wave or quadrupole resonance width with trim windings

• Individual powering of trim windings can provide flexibility and beam-based alignment of BPM

Modern methods of response matrix analysis (LOCO) can fit optics model to real machine 
and correct optics distortion

Gradient error correction
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• At b*=40cm, the bare machine has a beta-beat of more than 100%

• After global and local corrections, b-beating was reduced to few %

Example: LHC optics corrections

R. Tomas et al. 

after final correctionsbefore and after local correction
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Compensation of quadrupole errors at half integer Qy=4.5

• PSB has 16-fold symmetry

• 2 families of normal quadrupole correctors

• +QNO4 and –QNO12 with Dmy = 2.25 * 2p

• +QNO8 and –QNO16 with Dmy = 2.25 * 2p

• Due to opposite polarity within each family, their contribution on beta-beating adds up (beta-beat 

frequency is twice the tune!) while there is no change of tune (same change of focusing & defocusing)

• The two families are orthogonal with respect to the half integer resonance driving term (every phase 

achievable)

Example: PSB half integer resonance correction

– QNO16L3 

QNO8L3    +

QNO4L3

+

–

QNO12L3
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Experimental data!

PSB half integer resonance correction

dynamic resonance crossing

– bare machine

– correction

F. Asvesta
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The SPS is a 400 GeV proton synchrotron with a FODO lattice consisting of 108 focusing and 108 defocusing 

quadrupoles of length 3.22 m and a gradient of 15 T/m, with a horizontal and vertical beta of 108 m and 

30 m in the focusing quads (30 m and 108 m for the defocusing ones). The tunes are Qx=20.13 and Qy=20.18. 

1. Find the tune shift for systematic gradient errors of 1% in the focusing and 0.5% in the defocusing quads

2. Find the 𝞫x and 𝞫y rms beating for rms gradient errors of 1% in both focusing and defocusing quads

Problem 5
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Outline
Introduction

Closed orbit distortion (steering error)

❑ Beam orbit stability

❑ Imperfections leading to closed orbit distortion

❑ Effect of single and multiple dipole kicks

❑ Closed orbit correction methods

Optics function distortion (gradient error)

❑ Imperfections leading to optics distortion

❑ Tune-shift and beta distortion due to gradient errors

❑ Gradient error correction

Coupling error

❑ Coupling errors and their effect

❑ Coupling correction

Summary
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• Coupling may result from rotation of a quadrupole, so that the field contains a skew quadrupole component

• A systematic vertical offset in a sextupole has the same effect as a skew quadrupole. 

• For a displacement of the field becomes

Coupling errors

φ

tilted quadrupole normal quadrupole skew quadrupole

skew quadrupole
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Normal vs. skew quadrupole

normal quadrupole

skew quadrupole

horizontal force depends on vertical position 

(and vice versa) 

→ resulting forces couples the motion in the 

two planes

horizontal force depends on horizontal 

position (and likewise for vertical)
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• Starting from uncoupled motion, we have the transport matrices for each transverse plane, which we can 

write as 

• We can write a 4x4 matrix describing the uncoupled motion

4x4 Matrices - uncoupled

Uncoupled motion – no cross-talk between planes
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• In presence of a thin skew quadrupole the transport matrix becomes

• In the presence of coupling, the motion is still linear but has two new eigen-mode tunes

• By adjusting quadrupole strengths, we can adjust the tunes. Let us suppose we keep the horizontal tune 

fixed and vary the vertical tune. Then we plot the eigen-mode tunes (as obtained from the eigenvalues of the 

new one-turn matrix) as a function of the unperturbed vertical tune for a fixed value dksds …

4x4 Matrices – with skew quadrupole

These terms from the skew quadrupole 

couples the motion in the two planes
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Eigen-mode tunes computation

Eigen-mode 

tunes

Skew quad. strength

unperturbed vertical tune

For increasing skew 

quadrupole strength, 

the distance between 

the two eigen-mode 

tunes increases!
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• It can be shown that the distance between the “perturbed” tunes at equal unperturbed tunes (i.e. “on the 

coupling resonance”) is given by

• In other words, there is a minimum tune separation between the eigen-mode tunes (which is determined by 

the so-called coupling coefficient)

Minimum tune separation
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• The simplest method to determine if there is coupling is to excite a beam oscillation in one plane (by kicking 

the beam), and then observe the oscillations or the frequency content 

• If coupling is present, then for a horizontal kick there will be a small vertical oscillation (and vice- versa). 

Coupling and tune observation 

Example from the LHC
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A first technique to characterise the coupling coefficient C- consists in 
measuring the crossed tune peak amplitudes:

• Vertical tune in horizontal spectrum and vice-versa.

• Simple measurement, but no phase information.

• Only the local coupling is obtained, which can differ from the global 

coupling.

Local coupling measurement
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Horizontal eigenmode Q1,

amplitude A1,x

Vertical eigenmode Q2,

amplitude A1,y
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• Coupling makes it impossible to approach the tunes below 

where        is the coupling coefficient

• The coupling coefficient         can be measured by trying to approach the tunes and measure the minimum 

distance 

Closest tune approach
Tune measurement in the CERN PS

quadrupole setting 

changed dynamically 

during storage time

programmed Qx

programmed Qy

programmed Qx

programmed Qy

tune peaks from both planes 

visible in Fourier spectra of 

horizontal and vertical motion

minimum tune separation

minimum tune separation
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Coupling correctors

• Introduce skew quadrupoles into the lattice

• If skew quadrupoles are not available, one can make vertical closed orbit bumps in sextuple magnets (used 

in JPARC main ring until installation of skew quadrupole correctors)

Methods & approaches

• Correct globally/locally coupling coefficient (or resonance driving term) 

• Correct optics distortion (e.g. vertical dispersion)

• Move working point close to coupling resonances and repeat

Remarks

• Correction especially important for beams with unequal emittances “flat beams” (coupling leads to emittance 

exchange)

• The (vertical) orbit correction may be critical for reducing coupling (e.g. due to feed-down sextupoles)

Linear coupling correction
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Problem 6
The SPS is a 400 GeV proton synchrotron with a FODO lattice consisting of 108 focusing and 108

defocusing quadrupoles of length 3.22 m and a gradient of 15 T/m, with a horizontal and vertical beta of 

108 m and 30 m in the focusing quads (30 m and 108 m for the defocusing ones). The tunes are Qx=20.13 

and Qy=20.18.

In order to correct its natural chromaticity, several 0.42 m long sextupoles are installed next to focusing 

and defocusing quadrupoles at locations with high dispersion. 

Assume that one of those sextupoles installed next to a focusing quad has a gradient of 60.3 T/m2 and it is 

vertically misaligned by δy=10 mm. Assume that the beta functions at the sextupole are equal to the 

one at the nearby quadrupole

1. What is the normalized sextuple strength?

2. Compute the impact of the vertical misalignment on: tune, max beta beating, minimum tune 

separation, max closed orbit deviation

(neglect next order effect of such an orbit on transverse optics due to other machine sextupoles…)

3. Repeat for the case in which the sextupole is displaced horizontally

4. What would be the maximum closed orbit deviation if only one focusing quadrupole would be 

vertically displaced by -δy=10 mm? Qualitatively, would you expect some effect on coupling or tune or 

beta-beating in such a case?
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Closed orbit distortion (steering error)

❑ Beam orbit stability

❑ Imperfections leading to closed orbit distortion
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• Linear imperfections, such as magnet misalignments and field errors, are unavoidable in a real 

accelerator, but they can be corrected to some extent as summarized in this table:

Summary of linear imperfections

Error Effect Cure 

fabrication imperfections unwanted multipolar components better fabrication / multipolar 

correctors coils 

transverse misalignments feed-down effect better alignment / correctors

dipole kicks orbit distortion / residual dispersion corrector dipoles

quadrupole field errors tune shift, beta-beating trim special quadrupoles

quadrupole tilts coupling x − y better alignment  / skew quads 

power supplies closed orbit distortion / tune shift / 

modulation

improve power supplies and their 

calibration
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A few useful formulas
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Beam Rigidity

𝜙j

• Integrated dipole field error

• Dipole roll

• Quadrupole displacement

3-bump kicks

Tune change due to quad error

Closed orbit variation due to single kick rms orbit due to rms kicks

Kicks from field error/misalignments

Minimum tune approach due to skew error

Beta beat due to several quad errors Rms beta beating


