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https://arxiv.org/pdf/2006.10661.pdf
https://cds.cern.ch/record/2723969/

Organisational matters

« We will have 3 lectures (2 + 3 + 3 hours), i.e., today and in the next two days

 During the lectures, you will have to solve 5 exercises

«  We will give you ~20 minutes per exercise to work by yourself or with your neighbors
» After each exercise, we will kind ask one of you to show the solution on the whiteboard (~10 minutes)

« Please, feel free to interrupt at anytime if something is not clear

 PS: Onthe indico page, you can also find a small python notebook used to produce some of the
plots presented in this lecture

Feel free to use it in your spare time if you think it can be helpful... or use MAD-X!
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Pre-word

« We will be discussing linear imperfections and their impact on circular accelerators (“rings”)

« These imperfections affect most importantly the transverse dynamics of the particle motion

* In most parts of the lecture, we will be using normalized magnet strength, i.e. magnetic field B
derivatives normalized by the magnetic rigidity Bp

 Remember: if particle energy, E, is given in GeV, and q is the particle charge, then the magnetic rigidity in Tesla-
meter is :

Bp|[Tm] = 3.3356 6, F [GeV]/q

« Selection of symbols used in this course:
L, Y denoting the horizontal and vertical plane, respectively
.. denoting either horizontal or vertical plane
.. denoting the betatron phase advance in rad
.. tune in 2m units

.. circumference

QO =
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Basics: accelerator lattice

 An accelerator is usually build using a repetition of basic ‘cells’

« Asimple FEODQO cell usually contains:

« Dipole magnets to bend the beams

 Quadrupole magnets to focus the beams

« Beam position monitors (BPM) to measure the beam position
« Small dipole corrector magnets for beam steering

* (Sextupole magnets to control off-energy focusing)

Quadrupole Quadrupole
(focussing)  Sextupole (de-focussing)

Dipole Dipole Dipole

corrector X I
[ ]
I_I T
‘ Beam
position

monitor
Schematic of a % cell (not to scale)
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Toy FODO lattice — no errors

 Tracking a single particle, for many turns

A) B) * *
\/ s=0.0*L(FODO) s=0.0*L(FODO)
L L L | 1.0 1 A) Before foc. quad. 1 B) After foc. quad.
U SY _ 051 -
10.0 o
—— particle trajectories g 007 ]
7.5 - ~
~0.5 - .
5.0 - 10 |
— 237 s=0.5*L(FODO) 5=0.5*L(FODO)
E 0.0 - 1.0 1c) Before defoc. quad| 7 D) After defoc. quad.
8 —2.5 1 - 0.5 A i
o
_50- .E. 0.0 A .
Q: 4.27 * ~0.5 1 .
—7.31 turns: 100 1ol |
-10.0 T T T T T T T T T ! ! J J T T
0 2 4 6 8 10 12 14 16 10 0 10 -10 0 10
FODO cell # x [mm] x [mm]

oo
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From model to reality - fields

« The physical units of the machine model defined by the accelerator physicist must be converted into
magnetic fields and eventually into currents for the power converters that feed the magnet circuits.

 Imperfections (= errors) in the real accelerator optics can be introduced by uncertainties or errors on:

« Actual beam momentum, magnet calibration and hysteresis, power converter regulation, ...

. Actual '
Magnet :> Magnetic field Requested :: magnet R ﬁgél;ag flﬁ:g
strength (gradient) :D current current bea?/n
Beam Magnet Power converter Additional effects,
momentum Calibration/hysteresis curve e.g. eddy currents
(transfer function) Rnipme 5.
/,’:f—mggf ¥ e Earth currents flowing over the P
Exam_ple .Of the Mo LEP vacuum chamber that 55
ELENA main dipoles R were generated by the DC |
hysteresis curve v L railway line near Geneva

[A]
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From model to reality - alignment

« To ensure that the accelerator elements are in the correct position the alignment must be precise — to the
level of nanometer for CLIC final focusing !

* For CERN hadron machines we aim for accuracies of around 0.1 mm.

« The alignment process implies:

* Precise measurements of the magnetic axis in the laboratory
with reference to the element alignment markers used by the
survey group.

* Precise in-situ alignment (position and angle) of the element
in the tunnel.

« Alignment errors are a common source of imperfections
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Outline

Closed orbit distortion (steering error)

L Beam orbit stability

O Imperfections leading to closed orbit distortion
O Effect of single and multiple dipole kicks

O Closed orbit correction methods
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lllustration of closed orbit distortion

1. lIdeal machine toy model (no errors)

a) Particle injected on the design (or reference) orbit ... remains on the design orbit turn after turn

I | | | | | | | | | | | | | | | phase space at end of machine

10 I I 1 1 I | | 1 5
—— particle trajectories ' e particle
1ol ® design orbit
5 |
. . . 0.5
_ Starting point with (x=0, x’=0) —_
£ rd ®
£ 0¢ £ 00} 3
X *
-0.5
5L a
Q: 4.27 -10r
turns: 100
-10 ] ] | | ] | -15¢ ] ] ] ] ] ] ] i
0 2 4 6 8 10 12 14 16 -8 -6 -4 -2 0 2 4 6 8
FODO cell # X [mm]
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lllustration of closed orbit distortion

1. Ideal machine toy model (no errors)
a) Particle injected on the design (or reference) orbit ... remains on the design orbit turn after turn
b) Particle injected with offset ...

10 | | | | | | | | | | | | | | | | phase space at end of machine
T 1 T I I 1 i) 1.5 1 1 ! 1 1 I I |

—— particle trajectories » particle
e design orbit

E’ B ..... [ ] 4 o =
Q:a27| TROr I
turns: 100
-10 L ] ] ] ] ] ] i B ] ] ] ] ] ] 1 .
0 2 4 6 8 10 12 14 16 -8 -6 -4 -2 0 2 4 6 8
FODO cell # x [mm]
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lllustration of closed orbit distortion

1. Ideal machine toy model (no errors)
a) Particle injected on the design (or reference) orbit ... remains on the design orbit turn after turn

b) Particle injected with offset ... performs betatron oscillations around the closed orbit which is the same
as the design orbit as long as there are no imperfections

10 | | | | | | | | | I | | | | | | phase space at end of machine
1 1 L] L 1 1 1 1.5 ! ! 1 ! I I I ]

=== cClosed orbit —— particle trajectories « particle
e design orbit
® closed orbit

x' [mrad]
$ g :
.,
[
",

Q:az27| TROr i
turns: 100
-10 1 ] ] ] ] ] ] -1.5| ] ] ] ] ] ] ] a
0 2 4 6 8 10 12 14 16 -8 -6 -4 -2 0 2 4 6 8
FODO cell # x [mm]
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lllustration of closed orbit distortion

2. ldeal machine toy model with dipole error (unintended deflection) somewhere

a) Particle injected on the design orbit ... receives dipole kick every turn

Dipole error location

I I Tkl’ N N O S O
10 | | | | | | I | | | | | | phase space at end of machine
I I I I I 1} | 1} ! 1} I I I I
—— particle trajectories La particle
1ol ® design orbit
_ 05}
E 3 /
€ g 00f
x *
=05}
Q: 4.27 -Lof
turns: 100
_10 , , , , , , , -15F
0 2 4 6 8 10 12 14 16 -8 6 4 -2 0 2 4 6 8
FODO cell # x [mm]
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lllustration of closed orbit distortion

2. ldeal machine toy model with dipole error (unintended deflection) somewhere

a) Particle injected on the design orbit ... receives dipole kick every turn ... and consequently performs

betatron oscillation around a distorted closed orbit

phase space at end of machine
1} ! 1} I I

T | 1.5 . I I
=== closed orbit —— particle trajectories particle
10 ® design orbit
' ® closed orbit
0.5}
T e
S £ 00f
8 *
-05}
_5 -
Q: 4.27 —10r
turns: 100
_10 1 L 1 1 L 1 _15 C 1 L L l L L L a
4 6 8 10 12 14 16 -8 -6 4 -2 0 2 4 6 8
FODO cell # x [mm]
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lllustration of closed orbit distortion

2. ldeal machine toy model with dipole error (unintended deflection) somewhere

a) Particle injected on the design orbit ... receives dipole kick every turn ... and consequently performs
betatron oscillation around a distorted closed orbit

b) Particle injected onto distorted closed orbit remains on closed orbit

| | | | | T | | | | | | | | | | phase space at end of machine
10 I I 1 1 | 1 1 l 5 1 1 1 I I I I
=== closed orbit = —— particle trajectories ' » particle
10 e design orbit
5| ] ' ® closed orbit
0.5}
T e
g Of 4 € 0.0 °®
x *
—-0.5}
_5 - -
Q: 4.27 -Lof
turns: 100
_10 1 1 L 1 1 [l 1 _1'5 B 1 L 1 | 1 L 1 ]
0 2 4 6 8 10 12 14 16 -8 -6 4 -2 0 2 4 6 8
FODO cell # x [mm]
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Sources of unintended deflections

Field error (deflection error) of a dipole magnet

« This can be due to an error in the magnet current or in the calibration table (measurement accuracy etc.)

« The imperfect dipole can be expressed as the ideal one + a small error

imperfect dipole ideal dipole small dipole - horizontal kick
Yy error
- Bp

A small rotation (misalignment) of a dipole magnet has the same effect, but (mostly) in
the “other” plane

tilted dipole ideal dipole small dipole - vertical kick

A error
ST .
¢ M _ w o B 9 — Bl sin ¢
1 : Bp
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Misalignments causing feed-down

Horizontal misalignment of a quadrupole magnet

« Equivalent to perfectly aligned quadrupole plus small dipole
—ox
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Misalignments causing feed-down

Horizontal misalignment of a quadrupole magnet

« Equivalent to perfectly aligned quadrupole plus small dipole
—ox

v

horizontal offset creates
horizontal (normal) dipole
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Misalignments causing feed-down

Vertical misalignment of a quadrupole magnet

« Equivalent to perfectly aligned quadrupole plus small dipole

A

Y
+ E

By(z,y +0y) = Gy + oy) = er_ﬁ Gy

quadrupole dipole  vertical offset creates
_’—‘G‘—\x vertical (skew) dipole

By(z,y + dy) = G(x)
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Interlude: multipole expansion

Multipole expansion of transverse magnetic field

- Start from the general expression for the transverse magnetic flux in terms of multipole coefficients
B=B,+iB, =Y (Bn+id,) (z+iy)"

e.g. skew quad

e.g. normal quad

n=0
Normal components Skew components
(“upright” magnets) (magnets rotated by 2(7;:_ 0 )
1 0"B 1 0"B,
By = S5 An= o
n! Ox (0,0) n! Oy (0.0)

* In some cases, it is more convenient to use “normalized” components:

Normalized normal components Normalized skew components
that 1 0"B, B, 1 0"B, n! A
so that: ” —<Ap
@ 9z™ | .0y @ (0,0) @ " ooy (0,0)
Beam rigidity 4+ zy)

B, + iB, :Z(kn +ijn) (z -
n=0
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Feed-down from multipoles

« Let's explicitly write, for example, the vertical field as the sum of all multipole components

normal skew

O DD e N e s

—Y —Y
p quadrupole sextupole ocﬂpole
l \ f \ \]
B, = Ag + A1z + Bly + Ag(:v — %) + 2Byxy + As(2® — 3zy?) + Bs(—y® + 32%y) +

 Ahorizontal offset (-6x) in a normal(skew) magnet of order n creates normal(skew) feed-down
components at y=0 of all lower orders!:

I B.(y=0)=0
(normal) By(y:O) — B, 7" = Bn(CC 4+ 5x)n _ Bn(xn 4+ ndry™ ! + n(n2—1) Sxly™ -+ (5$>n)
LY" — ~ ) \_ — J \_Y_I
2(n+1)-pole 2(n+1)-pole 2n-pole 2(n 1)-pole dipole
4 ~ — )
B.(y=0) = A,z" = A, (z + 0x)" = A, (2" +ndza L +ﬁn(n2_1)5:13296” 2\ -4 (0z)")
(skew)
y( :0) =0
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Feed-down from multipoles

« Let's explicitly write, for example, the vertical field as the sum of all multipole components

normal skew

o B Gy Bl = - Qe Bule’ — 3D Gl + 32+

pole quadrupole sextupole octupole

_l_*_\r \ [, —A

\
+ Ajx + Bly + Ag(:v — %) + 2Byxy + As(2® — 3zy?) + Bs(—y® + 32%y) +

B,

« Avertical offset (-8y) in normal(skew) magnets of order n results in alternating skew(normal) and
normal(skew) feed-down components for x=0 of all lower orders!, as can be worked out looking at n-order
terms are defined (for x=0):

By(x=0) =" B,y"

B, (x=0) =i"A,y"

B,(z=0) =" A, y"
B,(z=0) =i""'B,y"

Odd exponent,
- E.g.neven, normal magnet: normal I.e. it must be a skew component

B,(z=0)=1i"B,(y+dy)" =i"B @+ n5y@+ n(n nn=1) 5y @

Even exponent,ji.e.a normal comnonent again ...

(C\EKWE\ J Uas 18-20.01.23 Linear Imperfections and Correction 23

for n = even { for n = odd {




Problem 1

1. Derive an expression for the resulting magnetic field components (B, and B,) when the closed orbit in a
normal sextupole is horizontally displaced by -0x from its reference position.

2. Do the same for an octupole.

(B z.y) = B 22 o2
The field generated by a sextupole is - y(,y) 2( y)

B, (5’77 y) — 32(2:13y)

—-B — B 3 3 2
The field generated by an octupole is - y(x’ y) 3(2 ry”)

| B.(x,y) = Bs(—y’ + 32°y)

e.g. sextupole

(C\EKWE\ J Uas 18-20.01.23 Linear Imperfections and Correction
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Effect of single dipole kick

o(Bl
Consider a single dipole kick 6 = duy = du'(so) = (lﬁp) at s=s,
U 4

So \/ S

The coordinates of a single particle at a downstream location s can be computed using the lattice Twiss
parameters (see transverse dynamics course):

/ Bs . )
(us) - MSOS (2> where Msos = Bso (COS wsos T Qs SIN wsos) V 53550 S111 wsos

U/ Qo —Qs I+asas, Bsq

) \/ BsBsg oS wsos - \/BsBsg sin qpSOS Bs (COS zpsos — O sin wsos)

If we want that the orbit closes on itself after one turn, then we must solve:

[cos (27Q) + g sin (27Q) Bo sin (27Q) ] (uo) N (0) _ (u())

_ 1-2;1(2) sin (27Q) cos (2mQ) — ap sin (27Q) | \ug 0 Ug

* Which only depends on the Twiss functions at the s, location and the machine tune Q
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Closed orbit from single dipole kick

U 4

\ )6 i

Sp =~

S

« The initial conditions of the closed orbit at the location of the kick are therefore obtained as

- ﬁO / 6 Q)
"= tnng M u0:§(1_tan7rQ)

* For any location s around the ring, the closed orbit distortion Au generated by a kick 8 in s, is

o \/Bsﬁso
Aug = 05,5 E) cos(mQ — |5 — s, )

- J
Y

maximum orbit distortion amplitude
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Integer and half integer resonance

Aug =0 \/,BSBSO cos(mQ — |1 —
S So QSIH(WQ) ( st ¢$O|)
Dipole kicks add-up in : : :
copnsecutive {UInS frc))r Q=n « Dipole kicks get cancelled in
consecutive turns for Q = n+1/2
Integer tune excites orbit : :
ger « Half-integer tune cancels orbit
oscillations (resonance) , , -
_ u U oscillations
 orbit becomes unstable!
.
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Single dipole kick vs. tune

Aug =6

\/ BsBs,

"0 2sin(7Q)

10 T T

=== closed orbit

particle trajectories

x' [mrad]

Q: 4.47
turns: 100
_10 | 1 1 L 1 1 1
0 2 4 6 8 10 12 14 16
FODO cell #

1.5

1.0

0.5

0.0

—1.5

-20-15-10 -5 0 5

COS(WQ o |¢s — ¢so|)

phase space at end of machine

! ! ! ! I T T

e particle
e design orbit
@® closed orbit

10 15
X [mm]

20

&N juas

Joint Universities Accelerator School
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Single dipole kick vs. tune

« Closed orbit distortion is most critical for tunes close to integer = closed orbit becomes unstable (but
beam size not affected)

* Note: the closed orbit distortion propagates with the betatron phase advance (e.g. single kick induces 4

oscillations for a tune of Q=4.x)
Aty = 00y LD o520 — s — )
2sin(7Q)
N A N N O I O
| | | | | T | | | | | | | | | | phase space at end of machine
10 T T 7 T K T N T | T W T I Y 1.5F T I I T T T T -‘
, === closed orbit —— particle trajectories s particle Ny
® design orbit $ s
5‘ ’ , [ 1 _ Lor ® closed orbit 73
_ 0.5}
TE B
i E O £ 0.0} °
x x
-0.5¢+
-5} ‘ i
> -1.0}
_10JAJ ‘ii ‘ 1‘ . s .
0 2 4 6 8 10 12 16 -20-15-10-5 0 5 10 15 20
FODO cell # x [mm]
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Closed orbit examples

« Example of horizontal closed orbit for a machine with tune Q = 6.x

« The kink at the location of the deflection (=) can be used to localize the deflection (if it is not known) 2>
can be used for orbit correction.
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A deflection at the LHC

* In the example below for the 26.7km long LHC, there is one undesired deflection, leading to a perturbed
closed orhbit.

CO-P 1.000 GeV/c- Fill #0 - Single Kick & MCBH.32R4.B1 / Ang 10 / H - 04/01/17 21-35-43

2 : :
A Mean = 0.009 / RMS = 0.592 / RMS-dp = 0.592 / Dp: = -0.0093

1.5

14

0.5

0

0.5

-1

Beam position x (mm)
H Pos [mm)]

-1.57

Ecn

ATLAS|

T T T T T
0 100 200 300 400 500
Monitor H

Beam Position Monitor index along the LHC circumference

Where Is the location of the deflection?
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A deflection at the LHC

« To make our life easier we divide the position by 1/8s and replace the BPM index by its phase (VP
« = transform into pure sinusoidal oscillation... with a kink!

G ) O

Beam posmorw/\/g
0s [sigma] e
— |
I —yr— %
——t T
p— ]
—
——

itk WMWWm)\m

Hor. Phase [2pi]

Betatron phase 1)

Can you localize the deflection now?
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Global orbit distortion

Orbit distortion due to many errors:

_ V/B(s)
US) = 3 in(r0)

s+C
| oVER cosr@  10s) ~ v(r)))dr

Courant and Snyder, 1957

By approximating the errors as delta functions in n locations, the distortion at ith

observation points (Beam Position Monitors) is

) 1+n
b= gl D 0V cosnQ — i — )

j=i+1

with the kick produced by the jt error:

0(B;l;
- Integrated dipole field error 05 = (B“;j)
i Bl sin ¢
 Dipoleroll _ bt ;
p 0, s
- Quadrupole displacement 4 _ Gjljou,
J By
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Example: Orbit distortion in SNS

50 B T T T T T T T T T T T T T T T T T T T T ] 28-0 : . . . . . . . . . . . . . . . . | . . . . :
- 8 26.0 B 3
A B L ]
WY RN X
" ] 220 B 3
2" i hon : y =
£ noon non T 200 |- 3
= \ :l n il ] F D ]
8 o " " i 2 180 [ X -
[&] Phy 2 gt a ] i —- r ]
3.0 LI s 1 o |
@ N ERE RAWR &1 R 5 1601 ]
= o f H 8 14.0 F
s Y 3 @ N 1
= 20 I 5 1204 i
U
g ‘,"-'.-- l fulf 1 & 10.0 i
N e ures @ o
S @ 8.0 H
: ] 6.0
o horizontal rms CO 1 40%
i vertlcal rms CO 20
0.0 TR N R R N B 0.0 b | L
0.0 50.0 100 0 150 0 200 0 2500 0.0 : 100 0 1500
S (meters) S (meters)

* In the SNS accumulator ring, the beta function is about 6 m in the dipoles and about 30 m in the
guadrupoles, the tune is 6.2

« Consider a single dipole error of 1 mrad ——
6-0 1073 ~ bmm

« The maximum orbit distortion in dipoles is  “0 = 2 sin(6.27)

* For quadrupole displacement giving the same 1 mrad kick (and betas of 30 m) the maximum orbit distortion
Is 25 mm, to be compared to magnet radius of 105 mm
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Statistical estimation of orbit errors

Consider random distribution of errors in N magnets

« By squaring the orbit distortion expression and averaging over the angles (considering uncorrelated errors),
the expectation (rms) value is given by

\/7 \/Nﬁ 6rms
() = e @) 2 VOO = 5 smwQ)\e

rms

Example:
* Inthe SNS ring, there are 32 dipoles and 54 quadrupoles

dp _ V6-6v32

The rms value of the orbit distortion in the dipoles rms 2\/§sin(6.27r)

1073 ~ 2cm

« In the quadrupoles, for equivalent kick — q,quad — V30 - 30v/54 .1073 ~ 13cm

" 24/2sin(6.27)
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Problem 2

SNS: A proton ring with kinetic energy of 1 GeV and a circumference of 248 m has 18, 1 m-long focusing
guads with gradient of 5 T/m. In one of the quads, the horizontal and vertical beta function are 12 m and 2 m
respectively. The rms beta function in both planes on the focusing quads is 8 m.

1. With a horizontal tune of 6.23 and a vertical of 6.2, compute the expected horizontal and vertical orbit

distortions on a single focusing quad given by horizontal and vertical misalignments of 1 mm in all the
quads.

30

2. What happens to the horizontal and vertical orbit
distortions if the horizontal tune drops to 6.1 and 6.017

S. Hendersonetal. o 20 40 80
S[m]
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Correcting closed orbit distortion

 Horizontal/Vertical dipole correctors and BPMs close to focusing/defocusing quads
* Highest sensitivity / effect on closed orbit due to beta-function maxima

BPM: Beam Position Monitor
DH, DV: correctors

HBPM VBPM
MB

QF DH

 Measure orbit in BPMs and minimize orbit distortion
* Locally
*  Closed orbit bumps
*  Globally
«  Singular Value Decomposition (SVD)

«  Harmonic: minimizing components of orbit frequency response from
Fourier analysis

+  MICADO: finding the most efficient corrector for minimizing the rms orbit
* Least square minimization using orbit response matrix of correctors

(C\E/R@\ J Uas 18-20.01.23 Linear Imperfections and Correction
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Closed orbit bumps

Often it is needed to steer the closed-orbit away from the nominal trajectory in a localized part of a
synchrotron

* Injection / extraction
» Local orbit correction (or steering around local aperture restrictions)

Standard bump configurations exist
« T1-bump (with 2 correctors)

N

=== closed orbit —— particle trajectories

local orbit bump

dipole

Q:4.31 unperturbed
example of 3-corrector bump turns: 100 closed orbit
_10 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16

FODO cell #
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Closed orbit bumps

Often it is needed to steer the closed-orbit away from the nominal trajectory in a localized part of a
synchrotron

* Injection / extraction
» Local orbit correction (or steering around local aperture restrictions)

Standard bump configurations exist
« T1-bump (with 2 correctors)

=== closed orbit —— particle trajectories

fast kick

Q:4.31 unperturbed
example of 3-corrector bump turns: 100 closed orbit
_10 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16

FODO cell #
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Transport of closed orbit distortion

« Consider a transport matrix between positions 1 and 2

M _(mi1 mi2) %(COS Y12 + o sin o) VB2 B1 sin 1o
1—2 = ma1 Maz) | ai—as cos Py — 1t+asay sin 9 &(COS@D — iz sin o)
VA (0812 T g S Wiz /75, (05 W12 T A2 SN Y12
T 5(Bl)
» Consider a single dipole kick at position 1: 61 = B—p

* The variation of position (éu,) and angle (6u’) at (?Ji) = M9 (901)

* Replacing the coefficient from the general betatron matrix, one obtains
dug = +/ B1P2 sin(12)0,

Sy = %[COS(@DQ) — g sin(1)12)]61
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Orbit bumps: 2-corrector bump

dipole QD QD dipole QD QD
corrector corrector

« Consider a cell in which correctors are placed close to the focusing quads

- The orbit shift at the 2" corrector is  dug = +/ 8182 sin (112) 04

« This orbit bump can be closed by choosing a phase advance equal to & between correctors (this is called a
“n_bump”)

« The angle should satisfy the following equation

b1
Ba

/31
/32

6’2:5u’2:—

[cos(2P12)01 — asin(eP12)] =
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Orbit bumps: 3-corrector bump

X
T QF QF QF
o, 16 1 4
QD dipole QD  dipole QD  dipole QD
corrector corrector corrector

« Works for any phase advance if the three correctors satisfy

V51 9 VB2 5

Sin a3 Sin Y31

VB,

Sin 12

1_

2_

 Note: The angle of the closed orbit in the center of the bump is defined by the above condition, i.e. it cannot
be adjusted independently of bump amplitude
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Orbit bumps: 4-corrector bump

0, 0, 0, I 0,
dipole QD  dipole QD  dipole QD  dipole QD
corrector corrector corrector corrector

1 costap — apsin ¢2b:c | Bpsinggp o
V5315 sin 119 ’ By sintpyy « Works for any phase advance

» Position x, and angle x’, of the

0 = +

L costps + apsin g By sinps

. . Ly,
v B4 SN 134 B4 Sin 3y
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f, = — T cos ¢1bsin gb s gb Zi zlbx;, bump at location s, can be adjusted
270 12 2 12 independently
9. — 1 CcoSYps+ apsingy, psinYrs ,  « Can be used for aperture
3= — : Ty — : Iy ) ]
v B3B sin ¢sg B4 sin sy scanning, extraction bumps, ...
0, =+ Ty +
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Visualisation of simplest orbit bumps

+ Let’s consider normalised phase-space (see linear dynamics lectures) where phase
spaces are simple circles

3 corrector-oump

V12

cCyv

e.g., using “law of sines” in triangles

91\/61:92\/52 VB 9, — V52 0, — V33 04

sin ¢23 ! sin ¢31 2 sin ¢12
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Problem 3

Three correctors are placed at locations with phase advance of t/4 between them and beta functions of 12,

2 and 12 m. How are the corrector kicks related to each other in order to achieve a closed 3-corrector bump

(i.e. what is the relative strength between the three kicks)?

X
T QF QF QF
o, 16 1 ¢
QD dipole QD  dipole QD  dipole QD
corrector corrector corrector

(C\E/R@\ J Uas 18-20.01.23 Linear Imperfections and Correction

45



Closed orbit correction: MICADO

« The problem of correcting the orbit deterministically came up a long time ago in the first CERN machines.
« B. Autin and Y. Marti published a note in 1973 describing an algorithm that is still in use today (but in
JAVA/C/C++ instead of FORTRAN) at ALL CERN machines: MICADO*

* MInimisation des CArrés des Oistortions d'Orbite.
(Minimization of the quadratic orbit distortions)

EURDPEAN ORGANIZATION FOR MNUCLEAR RESEARCH

CERN ISR-MA/73-17

CLOSED ORBIT CORRECTION OF A.G. MACHINES
USING A SMALL NUMBER OF MAGNETS

by

B. Autin & Y. Marti
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MICADO - how does it work?

= The intuitive principle of MICADO is rather simple:
1. Itrequires a model of the machine
2. It computes for each orbit corrector what the effect (response) is expected to be on the orbit

Mean = 0.002 / RMS = 0.348 / RMS-dp = D.347/Dp;= 0.0112
T | L
I I | |
Mean = 0.000 / RMS = 0.304 /
15
S ey
H _ 054 i
100 % N : F 1
= I\ u ! H u k
=054 ; ean
N ;
fariag ; ; ; ;
\ I\ | Ul gl
) | AL AR
Iﬂl [pieany [CReb]

nnnnnnnn
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MICADO - how does it work?

3. MICADO compares the response of every corrector with the raw orbit in the machine

}‘ e ’ CO - P 450.000 GeV/c - Fill # 0 - 04/01/17 21-41-16 i
|
\

) 2
{;Ni P‘ M Ll o mlj | WW[‘% Mean = 0.006 / RMS = 0.434 / RMS-dp = 0.434 / Dpi = 0.0009
-l
N L5
14
0.5
£
E
w 0
(-]
-9
=
-0.54
-14
-1.57
ATLAS| IN]-B1 M-CLEAN| RF-B1 DUMP-E1 B- CLEAN] LHCD|
_2 N :I N . N . N N . N . N
0 100 200 200 400 500

4. MICADO picks the corrector that has the best match with the raw orbit, i.e. that will give the largest
Improvement to the orbit deviation rms

5. The procedure can be iterated to the second-best corrector and so on, until the orbit is good enough (or as
good as it can be)
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MICADO - LHC Orbit example

« The raw orbit at the LHC can have huge errors, but the correction (based partly on MICADO) brings the
deviations down by a factor 20

1‘ OpenVASP DV LHCRING / B1/ PHYSICS-4Te-IONS-2016_W1@100_[END]
|| 288 | G| @] More | e S

[7] cO- P 450.000 GeVic - Fill # 4726 INJPROB - MICADO | 0 iter [ V - 2503116 12-37-01 & 0

Uncorrected horizontal orbit of ring 1 %

Mean = -1,

.029 j RMS = 6.587

Ty

A 0.2431

50 mm

LHC vacuum chamber

MICADO

o | G0 el o i s o Corrected horizontal orbit of ring 1 | ==& & Co
Pl a0 ca e PRt e s e e e e e e e e
Mean = -0.012 / BMS = 0.381 /Dp = 0.0315 AN
50 mm
g lllj[ et .y :‘. r.—..‘ e .J;| uT) ,|—|| ST -
- [ I | ] | L -
At the LHC a good orbit
correction is vital !
1 v e i ey ol poicad el
(C\E\/RWE\ J Uas 18-20.01.23 Linear Imperfections and Correction 49



Response matrix approach

This approach works for orbit correction when using the measured orbit distortion (but
also for beta-beating when using AB/B, etc.)

Consider an available set of correctors: ¢
Consider the available observables (here the orbit at the Beam Position Monitors): m

Assume (or verify) that the linear approximation is good enough (small corrections): | A¢ = m

Use optics model to compute the response matrix A (i.e. the orbit change in the it" monitor due to a unit kick
from the jt corrector):

A VPiBjcos(mQ — |y — ¥5)
1,7 —

2sin(7Q) ... or use, e.g., MAD-X, or measure it directly in the machine...
Invert the matrix A to compute a global correction to obtain the desired orbit variation Am :
Aé=A"1Am

In case the number of correctors is not the same as the number of Beam Position Monitors one has to
perform a pseudo matrix inversion, for example using the “Singular Value Decomposition (SVD)” algorithm
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Singular Value Decomposition

N (e.g. 72) monitors and N correctors

Monitors Correctors Correctors Monitors
- !
A= U * W * V T \\\\\\\\\\\ 0
“Inverse
Response RN
ol = MaE[)rix |72 SVD l=| Response ||
A Matrix. .
. —1 o0
AT oveawru T o A
=> Minimization of the RMS orbit (=0 in case of "Matrix Inversion" using all Eigenvalues)
N (e.g. 72) monitors / M (e.g. 36) correctors
‘:‘;:\ifg}“\\\ . O -
| 36 36 | — ‘*ﬁﬁ:—:‘l}\ A
|0 TREEG
2= A SVD = BRI 2

=> Minimization of the RMS orbit (monitor averaging)
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Problem 4

The SPS is a 400 GeV proton synchrotron with a FODO lattice consisting of 108 focusing and 108 defocusing
guadrupoles of length 3.22 m and a gradient of 15 T/m, with a horizontal and vertical beta of 108 m and 30 m in the
focusing quads (30 m and 108 m for the defocusing ones). The tunes are Q,=20.13 and Q,=20.18. Due to a
mechanical problem, a focusing quadrupole was sinking down in 2016, resulting in an increasing closed orbit distortion
compared to a reference taken earlier in the year.

1. By how much the quadrupole had shifted down when the maximum vertical closed orbit distortion amplitude in
defocusing quadrupoles reached 4 mm?

Why was there no change of the horizontal orbit measured?

How big would have been the maximum closed orbit distortion amplitude if it would have been a defocusing

guadrupole?
Difference orbit wrt reference (18 08 2016)

7* OpenYASP DV SPSRING / SPS.USER.LHC4 / LHC 25ns SLOW 2IN) Q20 2015 V1 @ =@ @ =~ e E 4.5
1R views | [1|FR| [ = (s8] T[] [ [E| More | k4B .
€O @ 12500 ms -P 451150 GeV/c - SC# 9 - SPS.USERLHC4 - 18/08/16 12-01-41 © 00 0 nmm i s i i i o s i i s g ) = 4 ‘
G- Mean = -0.424 / RMS = 0.791 / RMS-dp = 0.755 / Dp = -0,1029 g — 35 ‘
Ee SE 3 o
i 2:"-ll"'|--I“**l|'lll|"“ll.'."l'“'l"Ll|'lllll"llll’“lll'"|I|II|lllll"l-"Il B Bl am U T T § e ®
= . . o c .
M horizontal BPMs (at focusing quadrupoles) °S °
0 20 40 50 80 100 § 5
Monitor H E '.(;; 15 [ ]
O 12500 ms -P 451.150 Gev/c - 5C# 9 - SPS.USERLHCY - 18/08/16 12-01-41 iiiiisn v s ainane s e s e s e o | = kS 1
E j:l‘lean= 0.180 / RMS = 2.483 / Dp = -0.1029 I (EG 05 ’. ..
Lier I, In, ||I.“ gl 1 Lt gl LN 0 .
S \ W O S
p Ivert|JaI BPMs (at de!ocusmg quadrupoles) %QW” oY @ e W 01:56"
0 100
Monitor V

(C\E/RWE\ J Uas 18-20.01.23 Linear Imperfections and Correction 52



Final words on beam orbit stability

Beam orbit stability is very critical

* Injection and extraction efficiency of synchrotrons

« Stability of collision point in colliders

« Stability of the synchrotron light spot in the beam lines of light sources

Consequences of orbit distortion

« Miss-steering of beams, modification of dispersion function, resonance excitation, aperture limitations,
lifetime reduction, coupling, modulation of lattice functions, poor injection/extraction efficiency

Sources for closed orbit drifts

 Long term (years - months): ground settling, season changes, ...

« Medium term (days - hours): sun and moon, day-night variations (thermal), rivers, rain, wind, refills and
start-up, sensor motion, drift of electronics, local machinery, filling patterns, ...

« Short term (minutes - seconds): ground vibrations, power supplies, experimental magnets, air conditioning,
refrigerators/compressors, ...
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Outline

Introduction

Closed orbit distortion (steering error)

O Beam orbit stability

U Imperfections leading to closed orbit distortion
O Effect of single and multiple dipole kicks

O Closed orbit correction methods

Optics function distortion (gradient error)

O Imperfections leading to optics distortion

O Tune-shift and beta distortion due to gradient errors
O Gradient error correction

Coupling error
L Coupling errors and their effect
0 Coupling correction

Summary
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lllustration of optics distortion

Ideal machine toy model with regular FODO lattice and quadrupole error at the end of
circumference
« Particle injected with offset performs betatron oscillations but gets additional focusing from quadrupole error

» There is a tune-shift (additional de-/focusing)

« Beam envelope is distorted around the machine ... “beta-beating”
Quadrupole error location

| | | | | | | | | | | | I I | I phase space at end of machine

=== cClosed orbit —— particle trajectories ' * particle
® design orbit

® closed orbit

4
,.' ]

l’/(\ Note the change of

the ellipse shape!

| Note the change of the

i !
. localised quadrupole error at end of machiRg: 0.025/m -1.5} actlual fnac[hlmla turlle. .

0 2 4 6 8 10 12 Tr~—rxrm6 -20-15-10 -5 0 5 10 15 20
FODO cell # X [mm]

|
[y
o
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Gradient error and optics distortion

Optics functions perturbation can induce aperture restrictions
Tune perturbation can lead to reduced beam stability (dynamic aperture)

Broken super-periodicity = excitation of all resonances
* In aring made of N identical cells, only resonances with harmonics being integer multiples of N can be excited

Sometimes control of optics is critical for machine performance
« Beta functions at collision points or at collimators (e.g. LHC)

Sources

« Errors in quadrupole strengths (random and systematic)
* Injection elements

* Higher-order multi-pole magnets and errors

Observables

¢ Tune-shift

* Beta-beating

« Excitation of integer and half integer resonances, beam losses
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Gradient error: some math...
« Consider the 1-turn transfer matrix:

Mo — cos(2mQ) + o sin(27Q) Bo sin(27Q)
0~ —7p sin(27Q) cos(2mQ)) — ap sin(27Q)

« Consider a gradient error in a quad. We can take the error into account by adding a thin lens quadrupole to
the one turn matrix. The new 1-turn matrix is

1 0
M = (—5de 1) Mo

which yields

M — cos(2mQ)) + g sin(2wQ) Bo sin(27Q) )

(—5de(cos(27r@) + ap sin(2mQ)) — Yo sin(271Q)  cos(27mQ) — (0K dsBy + ayg) sin(27Q)
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Gradient error and tune-shift

Can also be written as a new matrix with a new tune X = QW(Q + 5@)

« _ [cos(x) + agsin(x) Bo sin(x)
M” = ( —~o sin(x) cos(x) — ao Sin(X))

- The traces of the two matrices describing the 1-turn should be equal, i.e. trace (M™) = trace (M)
which gives:
J 2 cos(21Q) — S K dsfo sin(27Q) = 2 cos(27(Q + 6Q))

* Developing the right-hand side:  cos(27(Q + 0Q)) = cos(27Q) cos(2m0Q) — sin(27Q) sin(276Q))

J J
Y

Y
=~ 1 = 2m0Q)

- Which finally gives: 4wd() = d Kdsf

1 80—|—l
* l.e., for a quadrupole of length | the tune shiftis: () = yy / 0K Byds
s

50

1
- For distributed quadrupole errors, the tune shiftis: 0() = ppm 0K (s)B(s)ds
o

CERN . . L .
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Gradient error and beta distortion

« Consider the unperturbed transfer matrix for one turn

mMo1 M99 21 A22

My = (m“ m12> —B-A with A= (a’“ a”) B

I
O\

b1 b1z
ba1 b2z
* Introduce a gradient perturbation between the two matrices

* mvlkl m71k2 — B 1 0 A

0 m3,  mi, —0Kds 1
* Recallthat mqy = 5y Sjn(QwQ) and write the perturbed term as

a) Mz = (Bo +98)sin(2m(Q + 6Q)) = m12 + 63sin(27Q) + 276Q By cos(2mQ)

- where we used sin(276Q)) ~ 2w0() and cos(2710Q)) ~ 1 and
sin(27(Q + 0Q))) = sin(27Q) cos(2w6Q)) + cos(2mQ)) sin(27wHQ)

(c N% ‘ . L .
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Gradient error and beta distortion
On the other hand a12 = \/505(51) siny, b1z = \/ﬁoﬁ(sﬂ sin (QWQ — W

b) m’{z = 17&10112 —|— b12&22 — &12[)125[((18 = mMi12 — a126125Kd3

Y
mi2

Equating the two terms a) = b)
03 sin(2wQ) + 2wdQ By cos(2mQ)) = —PoB(s1) siny sin(27Q — )d Kds
0B sin(27Q) + %M{dsﬁoﬁ(sl) cos(2mQ)) = —PoB(s1) sinysin(27Q) — )0 K ds

using cos A —cos B = —2sin A;B sin AEB

op3 B 1
Bo  2sin(27Q
e for distributed errors around the machine

5B(s) _
5(s)

and integrating yields

s1+C
) / B(s)0K (s) cos(2¢ — 2mQ)ds

281n 27TQ / 5 51 5K(81)COS(‘2¢(31)) - 2¢< )| - 27TQ)d81

(c N% ‘ . L .
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Optics distortion vs. tune

« Quadrupole errors have biggest impact close to integer and half integer tunes - envelope (or beam
size) becomes unstable

5_5 B 1 Sl—I—C

B(s)0K(s) cos(2¢ — 2mQ)ds

Bo  2sin(27Q) J,,

phase space at end of machine

1 5 N ! ! ! ! 1 ol Q T ]
' « particle Bt
16l * design orbit| = ¢
' ® closed orbit| . &
0.5} * 3 J
T B £
.E. g 00 '-..' i
x ; -'. o
—-05}k ..‘ .- 2
-1.0f & = _
“. :. .
: ‘-
\ \ =15} 1 n’l e ] | ] ] ] .
2 4 6 8 10 12 14 16 -20-15-10-5 O 5 10 15 20
FODO cell # X [mm]
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Quadrupole error in phase space

Q =n (integer) Q =n/2 (half integer)
—> kicks from quadrupoles add up —> kicks from quadrupoles also add up
(same as for kicks from dipoles) (while kicks from dipoles cancel)

Therefore, integer tunes and half integer tunes need to be avoided for machine operation to avoid
beam envelope becoming unstable due to quadrupole errors

Recall: for integer tunes dipole errors drive the closed orbit unstable, but for half integer tunes they have
minimum effect
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Optics distortion characteristics

o Let’s take a look at the LHC ...

Example: one quadrupole gradient is incorrect

= 800 ¢
o 700 Nominal optics
= Perturbed optics
600 |—
500 —
400 —
300 — . .
L Zoom into a subsection
200 g
||=| E 700 E
100 i
H =
0 i 500 ?
0 5000 10006 15000 a0 -
300 E—
200 :—
100
Ogn\ulx\uljnx. ' BTN L AR PR R T S AN SN ST ST S AN T ST TR N N N S SN
8000 8500 9000 9500 10000 10500 11000 11500 12000 12500 13000

s [m]
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Optics distortion characteristics

« The local beam optics perturbation
* ... note the oscillating pattern

= 700 —
= — Nominal optics
600 = Perturbed optics
500 [— ‘
400 |[—
300 —
200 | | TTpem-em — Lo T TR I L
l Y, I ~ b | | X ! { |
IDO '_‘ { 1! . ; I
0 _I | | | | | . | | | | | | | | [ | | | | | | 1 1 | | | | I | I | | | | I | | | | | | | | | | | |
8000 8500 9000 9500 10000 10500 11000 11500 12000 12500 13000

s [m]
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Optics distortion characteristics

« The error is easier to analyse and diagnose if one considers the ratio of the betatron function
perturbed/nominal.

« The ratio reveals an oscillating pattern called the betatron function beating (‘beta-beating’).

* Note: the amplitude of the perturbation is the same all over the ring!

1.4

p ratio

1.3

1.2

1.1

1.0

0.9

0.8

0.7

|||||||L.J_-!—i—i—iiii|||!|||I|IIII|IIgIIII
—_—
r—

06 | I | 11 1 1 | |1 1 1 | 1 1 1 1 | 1 1 1 1 | |1 1 1 | 1 1 1 1 | 11 1 1 | | I | | I

8000 8500 9000 9500 10000 10500 11000 11500 12000 125 13000
s [m]

. v
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Optics distortion characteristics

« The beta-beating pattern comes out even more clearly if we replace the longitudinal coordinate with the
betatron phase advance

« The result is very similar to the case of the closed orbit kick, the error reveals itself by a kink!
« If you watch closely, you will observe that there are two oscillation periods per 2n (360 deg) phase. The beta-

beating frequency is twice the frequency of the orbit! . —
= — 2sin (27 Q) / B(s)0K (s) CO@ 27Q)ds
@mn phaseEt,)
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Example: Gradient error In SN

St =

325 =
- 1 B" B" S 45 X
o 3007 - v = M 5
275 40 :
250 '
3.0
2004 23
175
] 204
15.04 |
IR AL ' 15
G H 1 1 .2
R N F ; I* ' o Vi o | W
! b A et M EE I i 1.0
mody ! v THIN 1 Wl i
S R At T AR TSN TR R S S T R EE L T
_ | H IR Wyt b 3t s
73 L Yy by ! | 3
50 hrd 0.0
Al A bl fyf '
25 IR RRS] T 05
[iX7 -0
e ) i, 12 0 ] 3. 3. 5. 1o, 1. 130 175 200, s 2
5 (m)

« Consider 18 focusing quads in the SNS ring with 0.01 T/m systematic gradient error (wrt to nominal 5 T/m). In
this location B8 = 12 m. The length of the quads is 1 m, the magnetic rigidity is 5.6567 Tm, and the tune is Q = 6.2

1 1 0.01
. _shiftis: 0Q = — Ok; i(8) = —18-12 1=20.03
The tune-shift is: 0 I Z (s)Bi(s) . 5 6567

« For a random distribution of errors of 1% of the nominal gradient, the beta beating is:

1/2
83 1 1 0.05
— = 5k2 32 — V18- 12 1=0.17
<Bo>rms 2v/2|sin(27Q)] (Z 3 ) 2V/2| sin(276.2)| 5.6567

7

* Optics functions beating ~20% by 1% random errors (1% of gradient)!
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Gradient error correction

Quadrupole correctors

« Individual correction magnets

» Windings on the core of the quadrupoles (trim windings)

« Pairs of correctors at well-chosen locations for minimizing resonance

Methods & approaches

« Compute tune-shift and optics function beta distortion

» Move working point close to integer and half integer resonance to increase sensitivity

* Minimize beta wave or quadrupole resonance width with trim windings

« Individual powering of trim windings can provide flexibility and beam-based alignment of BPM

Modern methods of response matrix analysis (LOCOQO) can fit optics model to real machine
and correct optics distortion

(C\EKWE\ J Uas 18-20.01.23 Linear Imperfections and Correction 68




Example: LHC optics corrections

« At *=40cm, the bare machine has a beta-beat of more than 100%
« After global and local corrections, B-beating was reduced to few %
R. Tomas et al.

before and after local correction after final corrections SEAM 2

P _
, ﬂﬁi{{w ‘., % f

0.05 (A Bl d ke B

g:’

0.10 |
0.05 f .
Q. ‘.‘ :x" !.'\_‘i i 3
S 0.00 [FREEE
~0.05 |

-1.0 _l ¢ virgin {1 corrected

—0.10[ ¢ 2015 ¢ 2016]

0 5000 10000 15000 20000 25000

Longitudinal location (m) 0 5000 10000 15000 20000 25000

Longitudinal location (m)
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Example: PSB half integer resonance correction

Compensation of quadrupole errors at half integer Q,=4.5

+ PO has 1o-old symmetry Pots) L [ BnaK ) cos(2(s1)) — 20(5)] - 27Q)d
= < S S1 ) COS S — S)| — 4T S
« 2 families of normal quadrupole correctors B(s) 2sin(27Q) J, 1 1 ' '
° -_— I = * ].
+QNO4 and -QNO12 with Ap, = 2.25 * 2 50 — —y{dK(s)B(s)ds
» +QNO8 and —QNO16 with Ap, = 2.25 * 2 4m

 Due to opposite polarity within each family, their contribution on beta-beating adds up (beta-beat
frequency is twice the tune!) while there is no change of tune (same change of focusing & defocusing)

« The two families are orthogonal with respect to the half integer resonance driving term (every phase

achievable) 03
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PSB half integer resonance correction

Experimental data! _ _
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Problem 5

The SPS is a 400 GeV proton synchrotron with a FODO lattice consisting of 108 focusing and 108 defocusing
guadrupoles of length 3.22 m and a gradient of 15 T/m, with a horizontal and vertical beta of 108 m and
30 m in the focusing quads (30 m and 108 m for the defocusing ones). The tunes are Q,=20.13 and Q,=20.18.

1. Find the tune shift for systematic gradient errors of 1% in the focusing and 0.5% in the defocusing quads
2. Find the B, and B, rms beating for rms gradient errors of 1% in both focusing and defocusing quads

Ee
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Outline

Introduction

Closed orbit distortion (steering error)

O Beam orbit stability

U Imperfections leading to closed orbit distortion
O Effect of single and multiple dipole kicks

O Closed orbit correction methods

Optics function distortion (gradient error)

O Imperfections leading to optics distortion

O Tune-shift and beta distortion due to gradient errors
O Gradient error correction

Coupling error
O Coupling errors and their effect
0 Coupling correction

Summary
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Coupling errors

« Coupling may result from rotation of a quadrupole, so that the field contains a skew quadrupole component

tilted quadrupole normal quadrupole

skew quadrupole

 Asystematic vertical offset in a sextupole has the same effect as a skew quadrupole.

 For a displacement of 0y the field becomes

B, = 2Bsxy = 2Bsxy 4+ 2Bsxdy

A

B, = By(z* — §°) = —2Baydy + Ba(z® — y*) — B2(dy)”

skew quadrupole
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Normal vs. skew quadrupole

, “ny‘ \
b R normal quadrupole
(AR ERRRRN
ol A A B TR SR
LN by = —ka
e A VNN NN
I e il Iy = +ky

e T Y

T A T T e N

i L

VA a T a a aaa

NSNS horizontal force depends on horizontal
NN it d likewise f tical
NS/ position (and likewise for vertical)
NRRARRTY

skew quadrupole
F, =ksy
F, = ksx

horizontal force depends on vertical position
(and vice versa)

—> resulting forces couples the motion in the
two planes
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4x4 Matrices - uncoupled

Starting from uncoupled motion, we have the transport matrices for each transverse plane, which we can
write as

---------
--------
.® ‘e
b

z(s) C.(s) Szp(s) = 0 0, Tg
(JZ/((S))\ _ /C:;O(S)S%S) CO()SO( )\ /a:g\
g\s - Lyls yS Yo
\v'(s))  \=0._ 07 Cils) Sis)) \wi

Uncoupled motion — no cross-talk between planes
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4x4 Matrices — with skew quadrupole

* In presence of a thin skew quadrupole the transport matrix becomes

z(s) Cuo(s) Su(s) 0 0 1 0" 0 O\ [0
' (s) | | Cu(s) SL(s) 0 0 U LR 1% —0K,L 0f |«
y(s) | 0 0 C,(s) Sy(s) | | 0 0 el 0 | o
Yy (s) 0 0 Cy(s) Sy(s)) \Z0K,L 0 ¢ 0 1/ \y,

These terms from the skew quadrupole
couples the motion in the two planes

* In the presence of coupling, the motion is still linear but has two new eigen-mode tunes

« By adjusting quadrupole strengths, we can adjust the tunes. Let us suppose we keep the horizontal tune
fixed and vary the vertical tune. Then we plot the eigen-mode tunes (as obtained from the eigenvalues of the
new one-turn matrix) as a function of the unperturbed vertical tune for a fixed value dk.ds ...
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Eigen-mode tunes computation

AK = 0.01 m Skew quad. strength

03 03

0.28 0.28

0.26 0.26
~ ~
[ [N
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Eigen-mode
0.22 0.22 tunes
0.2 . 4 . s 0.2
0.2 0.22 0.24 0.26 0.28 03 0.2 0.22 0.24 Q.26 0.28 0.3
Vy a unperturbed vertical tune
AK=020

For increasing skew
gquadrupole strength,
the distance between
the two eigen-mode
tunes increases!
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Minimum tune separation

« It can be shown that the distance between the “perturbed” tunes at equal unperturbed tunes (i.e. “on the
coupling resonance”) is given by

0.34 .

0.33

0.32

Qx,y

AQmin ~ MMKSU—/
21 0.31

0.3

0.29 ' '
-0.02 -0.01 0 0.01 0.02

Any quadrupole strength

« In other words, there is a minimum tune separation between the eigen-mode tunes (which is determined by
the so-called coupling coefficient)
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Coupling and tune observation

« The simplest method to determine if there is coupling is to excite a beam oscillation in one plane (by kicking
the beam), and then observe the oscillations or the frequency content

» If coupling is present, then for a horizontal kick there will be a small vertical oscillation (and vice- versa).

"E‘ ' Example : horizontal beam position at a BPM
i .| w, i .“. ||,|. " '«| :‘m .| ”'"|""'-"Ei_"'f-f-i observed turn by tum
II|||| " "' | il l'l‘uh "u'. |I |"4"'” ._'|f'!!';l“!'r!'ij
PR T 2T T e Example from the LHC
Fourrier analysis @
3 0 | § %
< 09 | The horizontal < ., The hon'zontal The vertical
g o8 | — tune @ 0.27 8 C tune @0.27 l tune @ 0.295
5 o7 ; £ w0 | /
& ; E [
® 06 o o |
0s | |:‘L’>
0.4 100
ZZ Logarithmic " |
; scale 20 11
0.1 ;
00 & 130
0.00 005 0.0 015 0.20 025 0.30 035 040 0.45 0.50

fung
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Local coupling measurement

A first technique to characterise the coupling coefficient C- consists in
measuring the crossed tune peak amplitudes:

» Vertical tune in horizontal spectrum and vice-versa.
« Simple measurement, but no phase information.

 Only the local coupling is obtained, which can differ from the global

coupling.

Horizontal tune spectrum at the LHC

amplitude A, ,

amplitude [A.U.]

-100

-110

-120

Horizontal eigenmode Q1,

Vertical eigenmode

- amplitude A, ,

Qz,

-130 |||||||||||||||||||||||||||||||||||||||||||
0.00 0.05 0.10 0.15

0.20 0.25 0.30 0.35 0.40 0.45

0.50
tune
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Closest tune approach

Tune measurement in the CERN PS

**7 programmed Q,

0.2

-— -
—_—— -
T —————b
@

——————

B
2 0157

guadrupole setting "1 programmed Q, tune peaks from both planes
changed dynamically ns - - - - = Visible in Fourier spectra of
during storage time Cine (a2 — horizontal and vertical motion

0.25+

programmed Q,

= 0.2

0.15+

0.1

ro_grammed Q,

T T T T
200 250 300 350 400 450

-
=
3
=
E
5
Q
|l

* Coupling makes it impossible to approach the tunes below AQmin = ’C_’
where C'~ is the coupling coefficient

« The coupling coefficient (/= can be measured by trying to approach the tunes and measure the minimum
distance
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Linear coupling correction

Coupling correctors

* Introduce skew gquadrupoles into the lattice

» If skew quadrupoles are not available, one can make vertical closed orbit bumps in sextuple magnets (used
in JPARC main ring until installation of skew quadrupole correctors)

Methods & approaches

» Correct globally/locally coupling coefficient (or resonance driving term)
« Correct optics distortion (e.g. vertical dispersion)

* Move working point close to coupling resonances and repeat

Remarks

« Correction especially important for beams with unequal emittances “flat beams” (coupling leads to emittance
exchange)

« The (vertical) orbit correction may be critical for reducing coupling (e.g. due to feed-down sextupoles)
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Problem 6

The SPS is a 400 GeV proton synchrotron with a FODO lattice consisting of 108 focusing and 108
defocusing quadrupoles of length 3.22 m and a gradient of 15 T/m, with a horizontal and vertical beta of
108 m and 30 m in the focusing quads (30 m and 108 m for the defocusing ones). The tunes are Q,=20.13
and Q,=20.18.

In order to correct its natural chromaticity, several 0.42 m long sextupoles are installed next to focusing
and defocusing quadrupoles at locations with high dispersion.

Assume that one of those sextupoles installed next to a focusing quad has a gradient of 60.3 T/m? and it is
vertically misaligned by 8y=10 mm. Assume that the beta functions at the sextupole are equal to the
one at the nearby quadrupole

1.
2.

What is the normalized sextuple strength?

Compute the impact of the vertical misalignment on: tune, max beta beating, minimum tune
separation, max closed orbit deviation
(neglect next order effect of such an orbit on transverse optics due to other machine sextupoles...)

Repeat for the case in which the sextupole is displaced horizontally

What would be the maximum closed orbit deviation if only one focusing quadrupole would be
vertically displaced by -d0y=10 mm? Qualitatively, would you expect some effect on coupling or tune or
beta-beating in such a case?
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Outline

Introduction

Closed orbit distortion (steering error)

O Beam orbit stability

U Imperfections leading to closed orbit distortion
O Effect of single and multiple dipole kicks

O Closed orbit correction methods

Optics function distortion (gradient error)

O Imperfections leading to optics distortion

O Tune-shift and beta distortion due to gradient errors
O Gradient error correction

Coupling error
L Coupling errors and their effect
0 Coupling correction

Summary
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Summary of linear imperfections

Linear imperfections, such as magnet misalignments and field errors, are unavoidable in a real
accelerator, but they can be corrected to some extent as summarized in this table:

Error

fabrication imperfections

transverse misalignments
dipole kicks

quadrupole field errors
guadrupole tilts

power supplies

Effect

unwanted multipolar components

feed-down effect

orbit distortion / residual dispersion
tune shift, beta-beating

coupling x -y

closed orbit distortion / tune shift /
modulation

Cure

better fabrication / multipolar
correctors coils

better alignment / correctors
corrector dipoles

trim special quadrupoles
better alignment / skew quads

improve power supplies and their
calibration

18-20.01.23

Linear Imperfections and Correction

86



A few useful formulas

Beam Rigidity
Bp|Tm| = 3.3356 5, F [GeV]/(;l

= 3.3356 p [GeV /clc/

Closed orbit variation due to single kick rms orbit due to rms kicks 3-bump kicks

~ /BuBe o — \/NB(5) o B V&, A
Aus — 980 QSiH(ﬂ'Q) COS<7TQ |¢S wsoD urmS(S) — 2\/§| SiIl(?TQ)'GrmS Sil’l ¢23 91 - Sil’l /',b?,l 92 — SiIl '(,b12

Kicks from field error/misalignments

03

Tune change due to quad error

6(Bjl;) 1 oK
. Integrated dipole field error ¢; = —F%—— ) = — K, | — | [
g P J B?p. ¢ Qu 47_[_ ;ﬁu 1 K ?; 1
. . - bytjsng;
Dipole roll 0; = Bp Minimum tune approach due to skew error
 Quadrupole displacement 0, = Gjljou; AQ min ~ tﬁwﬁy |5KS\L\
Bp 27
Beta beat due to several quad errors Rms beta beating
0 L[ e er s cos(lzuten) - 200s)| — 2nQ)ds) (2) -1 (yae)
B(s) = 2sin(27Q) J. S1 S1) COS S1 S T S1 Bo ) ims 22| sin(27Q)| : o
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