
SUMMARY OF THE FIRST LECTURE (2h)ELECTROSTATIC 
ACCELERATORS

WIDERÖE : RF ACCELERATION

Δ𝐸 = 𝑞𝑉𝑅𝐹𝑇 cos 𝜙𝑖𝑛𝑗 = 𝑞 ෠𝑉𝑎𝑐𝑐 cos 𝜙𝑖𝑛𝑗

𝐿𝑛 = ሜ𝛽𝑛𝜆𝑅𝐹

HIGH  RF CYLINDRICAL CAVITIES (PILLBOX-LIKE)

 Ω
P

V
R

diss

acc  
ˆ 2

=
dissacc QP

Q

R
V 








=ˆ

RF

F

Q




2
=

/2 MODE

ALVAREZ DTL

=0.05-0.5, fRF=50-400 MHz

Δ𝐸𝑛 = 𝑞Δ𝑉𝑛Transit time factor and bunched beam

>0.5, fRF=0.3-3 GHz (or above)

nR

( )













−=

−
F

t

accacc eVtV


1ˆ2

RFd


=

d

 MODE

MULTI CELL STRUCTURES

diss

RF
P

W
Q =

 Ω
P

V
R

diss

acc  
ˆ 2

=

( )
 mΩ

p

E

LP

LV
r

diss

acc

diss

acc  
ˆˆ 22

==

Δ𝐸 = 𝑞Δ𝑉

𝑑𝐸

𝑑𝑧
= 𝑞𝐸𝑧

( ) ( ) ( ) cos, tzEtzE RFRFz =

MODE TM010

B E



SCC STRUCTURES: EXAMPLES

Spallation Neutron Source Coupled Cavity Linac (protons)

4 modules, each containing 12 accelerator segments CCL and 11 bridge couplers. The CCL
section is a RF Linac, operating at 805 MHz that accelerates the beam from 87 to 186 MeV
and has a physical installed length of slightly over 55 meters.

segment

Accelerating cell

Coupling cell



TRAVELLING WAVE (TW) STRUCTURES

To accelerate charged particles, the electromagnetic field must have an electric field along the direction of
propagation of the particle.

The field has to be synchronous with the particle velocity.

Up to now we have analyzed the standing standing wave (SW) structures in which the field has basically a given
profile and oscillate in time (as example in DTL or resonant cavities operating on the TM010-like). Ez

z

Direction of propagation

Ez

z

P RF in

P RF in
P RF out

P RF TW

( ) ( ) ( ) cos, tzEtzE RFRFz =

There is another possibility to accelerate particles: using a travelling wave (TW) structure in which the RF wave is co-
propagating with the beam with a phase velocity equal to the beam velocity.

Typically these structures are used for electrons because in this case the phase velocity can be constant all over the
structure and equal to c. On the other hand it is difficult to modulate the phase velocity itself very quickly for a low 

particle that changes its velocity during acceleration.

field profile

Time oscillation

(electrons)



TW CAVITIES: CIRCULAR WAVEGUIDE AND DISPERSION CURVE 
In TW structures an e.m. wave with Ez0 travel together with the beam in a special guide in which the phase velocity of the wave matches the particle velocity (v).
In this case the beam absorbs energy from the wave and it is continuously accelerated.

As example if we consider a simple circular waveguide the first propagating mode with
Ez0 is the TM01 mode.
Nevertheless by solving the wave equation it turns out that an e.m. wave propagating in
this constant cross section waveguide will never be synchronous with a particle beam
since the phase velocity is always larger than the speed of light c.
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In order to slow-down the wave phase velocity, iris-loaded periodic structure have to be used.

MODE TM01 MODE TM01-like
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(from Floquet theorem)

TW CAVITIES: IRIS LOADED STRUCTURES

( ) ( )zktrEE RFTMz

*

0 cos
01

−= 

CIRCULAR WAVEGUIDE

The field in this type of structures is
that of a special wave travelling within
a spatial periodic profile.

The structure can be designed to have the phase velocity equal to
the speed of the particles.

This allows acceleration over large distances (few meters, hundred
of cells) with just an input coupler and a relatively simple geometry.
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Metal irises

They are used especially for electrons (constant particle
velocity→constant phase velocity, same distance between irises, easy
realization)



PHASOR NOTATION: RECAP.
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With a more general notation we can consider the phasors of the accelerating field. 
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TW CAVITIES PARAMETERS: r, , vg
Similarly to the SW cavities it is possible to define some figure of merit for the TW structures

D

           

          
2

       
ˆ 2

k

p

w
Q

w

P
v

P

p

p

E
r

diss

RF

F
g

F

diss

diss

acc

=

=

=

=

=







lengthunit per energy  stored average                                               

cell  in  theenergy    stored       
4

1

4

1

lengthunit per power    dissipated   average                                         

cell in  thepower    dissipated  average                        
2

1

powerflux               ˆRe
2

1

cell in the field ngaccelerati average                                           
ˆ

ˆ

 voltagengaccelerati cell single                          ˆ

densityenergy 

22

2

tan

*

0

D

W
w

dVHEW

D

P
p

dSHRP

dSzHEP

D

V
E

dzeEV

volume
cavity

diss
diss

wall
cavity

sdiss

Section

F

acc
acc

c

z
j

D

accacc

RF

=









+=

=

=








 =

=

=









  






Group velocity [m/s]: the velocity
of the energy flow in the structure
(1-2% of c).

Shunt impedance per unit length
[/m]. Similarly to SW structures
the higher is r, the higher the
available accelerating field for a
given RF power.

Field attenuation constant [1/m]:
because of the wall dissipation,
the RF power flux and the
accelerating field decrease along
the structure.

Working mode [rad]: defined as
the phase advance over a period
D. For several reasons the most
common mode is the 2/3



TW CAVITIES: EQUIVALENT CIRCUIT AND FILLING TIME
In a TW structure, the RF power enters into the cavity through an input coupler, flows (travels) through the
cavity in the same direction as the beam and an output coupler at the end of the structure is connected to
a matched power load.
If there is no beam, the input power, reduced by the cavity losses, goes to the power load where it is
dissipated.
In the presence of a large beam current, however, a fraction of the TW power is transferred to the beam.

In a purely periodic structure, made by a sequence of identical
cells (also called “constant impedance structure”),  does not
depend on z and both the RF power flux and the intensity of the
accelerating field decay exponentially along the structure :
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EXERCISE 6: TW STRUCTURES

B) Demonstrate that if we define the shunt impedance per unit length as:

the average accelerating field “seen” by an ultrarelativistic particle (z=ct) along the structure can be expressed as:
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C) Demonstrate that the total accelerating voltage is given by:



A SLAC-type TW structure accelerate ultra-relativistic electrons. The structure length is L=3m and it can be simplified as a

structure with a group velocity is vg=1.1% the velocity of light. Calculate:

1) the filling time;

2) if we suppose that the structure has a field attenuation constant =0.2 m-1, calculate the total accelerating voltage if the

accelerating field at the beginning of the structure is EINPUT=20 MV/m;

3) Calculate the average accelerating field

4) if the average dissipated power per unit length in the structure, corresponding to the previous value of the accelerating field,

is pdiss= 4 MW/m calculate the shunt impedance per unit length.

EXERCISE 7: TW STRUCTURES



A constant impedance TW structure, accelerates ultra-relativistic electrons (β=1). The cavity has the following parameters:

=0.25 m-1 ; shunt impedance r=65 MOhm/m and a total length of 2 m. Calculate:

1) the input power to have an energy gain of the particles of 60 MeV

2) if the group velocity vg is 1% the speed of light, which is the filling time of the structure?

EXERCISE 8: TW STRUCTURES



TW CAVITIES: PERFORMANCES (1/2)
Just as an example we can consider a C-band (5.712 GHz) accelerating cavity of L=2 m
long made in copper.

r=82 [M/m]
=0.36 [1/m]
vg/c=1.7%
F=400 ns (very short if compared to SW!)

Output power (dissipated into the RF load): it is
not convenient to have very long RF structures
because their efficiency decreases over a certain
length (2-3 m depending on the operating
frequency).

Input power
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TW CAVITIES: CONSTANT GRADIENT STRUCTURES INTRODUCTION
In order to keep the accelerating field constant along the LINAC structure, the group velocity has to be
reduced along the structure itself. This can be achieved by a reduction of the iris diameters.

In general constant gradient structures are more efficient than
constant impedance ones, because of the more uniform
distribution of the RF power along them.
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LINAC TECHNOLOGY: MATERIALS



The cavities (and the related LINAC technology) can be of different material:
• copper for normal conducting (NC, both SW than TW) cavities;
• Niobium for superconducting cavities (SC, SW);

We can choose between NC or the SC technology depending on the required performances in term of:
• accelerating gradient (MV/m);
• RF pulse length (how many bunches we can contemporary accelerate);
• Duty cycle (see next slide): pulsed operation (i.e. 10-100 Hz) or continuous wave (CW) operation;
• Average beam current.
• …

ACCELERATING CAVITY TECHNOLOGY

Dissipated power into
the cavity walls is
related to the surface
currents

Frequency [GHz]

NIOBIUM

Between copper 
and Niobium 
there is a factor 
105-106
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RF STRUCTURE AND BEAM STRUCTURE: NC vs SC
The “beam structure” in a LINAC is directly related to the “RF structure”. There are two possible type of operations:

• CW (Continuous Wave) operation  allow, in principle, to operate with a continuous (bunched) beam
• PULSED operation  there are RF pulses at a certain repetition rate (Duty Cycle (DC)=pulsed width/period)

SC structures allow operation at very high Duty Cycle (>1%) up to a CW operation (DC=100%)
(because of the extremely low dissipated power) with relatively high gradient (>20 MV/m). This
means that a continuous (bunched) beam can be accelerated.

NC structures can operate in pulsed mode at very low DC (10-2-10-1 %) (because of the higher
dissipated power) with, in principle, larger peak accelerating gradient(>30 MV/m). This means
that one or few tens of bunches can be, in general, accelerated. NB: NC structures can also
operate in CW but at very low gradient because of the dissipated power.

Bunch spacing

RF pulses
RF power

t

Amplitude 103-108 RF periods

time



A multi cell SW cavity, operating on the -mode at 1 GHz, accelerates protons at β=0.5. The cavity is a 9 cell structure. Assuming a

negligible variation of the particle velocity through the cavity itself calculate:

1) the distance between the centers of the accelerating cells;

2) assuming a shunt impedance of the single cell (R) of 1 M, calculate the dissipated power to have an effective accelerating

voltage on the overall structure of Vacc=10 MV;

3) Calculate the average accelerating field;

4) If the cavity is fed by 4 s rf pulses with a repetition rate of 100 Hz, calculate the Duty Cycle.

EXERCISE 9:  MODE STRUCTURES AND DUTY CYCLE



EXAMPLE: SWISSFEL LINAC (PSI)



EXAMPLES: EUROPEAN XFEL



LINAC: BASIC DEFINITION AND MAIN COMPONENTS
LINAC (linear accelerator) is a system that allows to accelerate charged particles through a linear trajectory by electromagnetic fields.

Particle 
source

Accelerated beam 

Accelerating structures

Focusing elements: quadrupoles
and solenoids

Transverse dynamics of 
accelerated particles

Longitudinal dynamics of 
accelerated particles
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SYNCHRONOUS PARTICLE/PHASE

Let’s assume that the “perfect” synchronism condition is fulfilled for a phase s (called

synchronous phase). This means that a particle (called synchronous particle) entering in a gap

with a phase s (s=RFts) with respect to the RF voltage receive an energy gain (and a

consequent change in velocity) that allow entering in the subsequent gap with the same phase

s and so on.

for this particle the energy gain in each gap is:

Let us consider a SW linac structure made by accelerating gaps (like in DTL) or cavities.

In each gap we have an accelerating field oscillating in time and an integrated accelerating voltage (Vacc)
still oscillating in time than can be expressed as:

TRF

Δ𝐸 = 𝑞 ෠𝑉𝑎𝑐𝑐 cos 𝜙𝑠
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= 𝑞𝑉𝑎𝑐𝑐_𝑠
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2 ==Vacc

ts
*s

Vacc_s

obviously both s and s
* are synchronous phases.

𝑉𝑎𝑐𝑐 = ෠𝑉𝑎𝑐𝑐 cos 𝜔𝑅𝐹𝑡

accV̂



LINAC-SYNCHROTRON PHASE CONVENTIONS FOR BEAM 
DYNAMICS CALCULATIONS

 For circular accelerators, the origin of time is taken at the zero crossing of the RF voltage with positive slope

 For linear accelerators, the origin of time is taken at the maximum of the positive crest of the RF voltage

Vacc

ts

Vacc

ts

circular accelerators linear accelerators

𝑉𝑎𝑐𝑐 = ෠𝑉𝑎𝑐𝑐 cos 𝜔𝑅𝐹𝑡𝑉𝑎𝑐𝑐 = ෠𝑉𝑎𝑐𝑐 sin 𝜔𝑅𝐹𝑡



PRINCIPLE OF PHASE STABILITY

Vacc

ts
*s

Let us consider now the first synchronous phase s (on the
positive slope of the RF voltage). If we consider another
particle “near” to the synchronous one that arrives later in the
gap (t1>ts, 1>s), it will see an higher voltage, it will gain an
higher energy and an higher velocity with respect to the
synchronous one. As a consequence its time of flight to next
gap will be shorter, partially compensating its initial delay.

Similarly if we consider another particle “near” to the
synchronous one that arrives before in the gap (t1<ts, 1<s), it
will see a smaller voltage, it will gain a smaller energy and a
smaller velocity with respect to the synchronous one. As a
consequence its time of flight to next gap will be longer,
compensating the initial advantage.

On the contrary if we consider now the synchronous particle
at phase s

* and another particle “near” to the synchronous
one that arrives later or before in the gap, it will receive an
energy gain that will increase further its distance form the
synchronous one

The choice of the synchronous phase in the positive slope of the RF
voltage provides longitudinal focusing of the beam: phase stability
principle.

The synchronous phase on the negative slope of the RF voltage is, on
the contrary, unstable

Relying on particle velocity variations, longitudinal focusing does not
work for fully relativistic beams (electrons). In this case acceleration “on
crest” is more convenient.

12

(protons and ions or electrons at extremely low energy)



PHASE STABILITY IN A SYNCHROTRON 
From the definition of the slip factor  it is clear that an increase in momentum gives, below transition (<0), a higher revolution
frequency (increase in velocity dominates) while above transition (>0) a lower revolution frequency (vc and longer path)
where the momentum compaction (generally > 0) dominates. LINAC phase stability is similar to the synchrotron phase stability
below transition.

𝜂 = 𝛼𝑐 −
1
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𝑑𝑇𝑟𝑒𝑣
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= 𝜂
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𝑝

lateearlys −s

eV

eVs

stable synchr. particle for  > 0
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 < 0
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ENERGY-PHASE EQUATIONS (1/2)
In order to study the longitudinal dynamics in a LINAC, the following variables are used, which describe the generic particle phase (time of arrival) and energy with
respect to the synchronous particle:

ቊ
𝜑 = 𝜙 − 𝜙𝑠 = 𝜔𝑅𝐹 𝑡 − 𝑡𝑠
𝑤 = 𝐸 − 𝐸𝑠

The energy gain per cell (one gap + tube in case of a DTL) of a generic particle
and of a synchronous particle are:

൝
Δ𝐸𝑠 = 𝑞 ෠𝑉𝑎𝑐𝑐 cos𝜙𝑠
Δ𝐸 = 𝑞 ෠𝑉𝑎𝑐𝑐 cos𝜙 = 𝑞 ෠𝑉𝑎𝑐𝑐 cos 𝜙𝑠 + 𝜑

Energy of the synchronous particle at a 
certain position along the linac 

Energy of a generic particle at a 
certain position along the linac 

Arrival time (phase) of the synchronous 
particle at a certain gap (or cavity)

Arrival time (phase) of a generic 
particle at a certain gap (or cavity)

𝑉𝑎𝑐𝑐 = ෠𝑉𝑎𝑐𝑐 cos 𝜔𝑅𝐹𝑡

Δ𝑤 = Δ𝐸 − Δ𝐸𝑠 = 𝑞 ෠𝑉𝑎𝑐𝑐 cos 𝜙𝑠 + 𝜑 − cos 𝜙𝑠

L (accelerating cell length)

Δ𝑤

Δ𝐿
= 𝑞 ෠𝐸𝑎𝑐𝑐 cos 𝜙𝑠 + 𝜑 − cos𝜙𝑠

z

෠𝑉𝑎𝑐𝑐
Δ𝐿

= ෠𝐸𝑎𝑐𝑐subtracting

Dividing by the accelerating cell
length L and assuming that:

Average accelerating field over
the cell (i.e. average
accelerating field)

Approximating 

Δ𝑤

Δ𝐿
≈
𝑑𝑤

𝑑𝑧
𝑑𝑤

𝑑𝑧
= 𝑞 ෠𝐸𝑎𝑐𝑐 cos 𝜙𝑠 + 𝜑 − cos𝜙𝑠

(protons and ions or electrons at extremely low energy)



Δ𝜑 = 𝜔𝑅𝐹 Δ𝑡 − Δ𝑡𝑠

On the other hand we have that the phase variation per cell of a generic particle and of a synchronous particle are:

ቊ
Δ𝜙𝑠 = 𝜔𝑅𝐹Δ𝑡𝑠
Δ𝜙 = 𝜔𝑅𝐹Δ𝑡

Δ𝜑

Δ𝐿
= 𝜔𝑅𝐹

Δ𝑡

Δ𝐿
−
Δ𝑡𝑠
Δ𝐿

= 𝜔𝑅𝐹

1

𝑣
−
1

𝑣𝑠
⥂ ณ≅
𝑀𝐴𝑇

−
𝜔𝑅𝐹

𝑐𝐸0𝛽𝑠
3𝛾𝑠

3𝑤

v, vs are the average 
particles velocities

This system of coupled (non linear)
differential equations describe the motion
of a non synchronous particles in the
longitudinal plane with respect to the
synchronous one.

t is basically the time of
flight between two
accelerating cells

subtracting

Dividing by the accelerating cell length L
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𝑣
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2 Δ𝑣 = −

𝜔𝑅𝐹

𝑐

Δ𝛽

𝛽𝑠
2 remembering that β = 1 − Τ1 𝛾2 ⇒ 𝛽𝑑𝛽 = Τ𝑑𝛾 𝛾3 ⇒ −

𝜔𝑅𝐹

𝑐

Δ𝛽

𝛽𝑠
2 ≅ −

𝜔𝑅𝐹

𝑐

Δ𝛾

𝛽𝑠
3𝛾𝑠

3 = −
𝜔𝑅𝐹

𝑐

ฏΔ𝐸

𝑤

𝐸0𝛽𝑠
3𝛾𝑠

3

MAT

Δ𝜑

Δ𝐿
≅
𝑑𝜑

𝑑𝑧

Approximating 

𝑑𝜑

𝑑𝑧
= −

𝜔𝑅𝐹

𝑐𝐸0𝛽𝑠
3𝛾𝑠

3𝑤

𝑑𝑤

𝑑𝑧
= 𝑞 ෠𝐸𝑎𝑐𝑐 cos 𝜙𝑠 + 𝜑 − cos𝜙𝑠

ENERGY-PHASE EQUATIONS (2/2)
(protons and ions or electrons at extremely low energy)



SMALL AMPLITUDE ENERGY-PHASE OSCILLATIONS
𝑑𝑤

𝑑𝑧
= 𝑞 ෠𝐸𝑎𝑐𝑐 cos 𝜑𝑠 + 𝜙 − cos 𝜙𝑠

𝑑𝜑

𝑑𝑧
= −

𝜔𝑅𝐹

𝑐𝐸0𝛽𝑠
3𝛾𝑠

3𝑤 → 𝑐𝐸0𝛽𝑠
3𝛾𝑠

3
𝑑𝜑

𝑑𝑧
= −𝜔𝑅𝐹𝑤

Assuming small oscillations around
the synchronous particle

( ) sss  sincoscos −+

𝑑2𝜑

𝑑𝑧2
+ 𝑞

𝜔𝑅𝐹
෠𝐸𝑎𝑐𝑐 sin −𝜙𝑠

𝑐𝐸0𝛽𝑠
3𝛾𝑠

3

Ω𝑠
2

𝜑 = 0

The condition to have stable longitudinal
oscillations and acceleration at the same time is:

ൠ
Ω𝑠
2 > 0 ⇒ sin −𝜙𝑠 > 0

𝑉𝑎𝑐𝑐 > 0 ⇒ cos𝜙𝑠 > 0
⇒ −

𝜋

2
< 𝜙𝑠 < 0

Vacc

ts

Vacc_s

if we accelerate on the rising part of the positive
RF wave we have a longitudinal force keeping the
beam bunched around the synchronous phase.

ቊ
𝜑 = ො𝜑 cos Ω𝑠𝑧

𝑤 = ෝ𝑤 sin Ω𝑠𝑧

(protons and ions or electrons at extremely low energy)

accV̂

 The angular frequency is simply: T= ssc;

 The angular frequency scale with 1/3/2 that
means that for ultra relativistic electrons
shrinks to 0 (the beam is frozen)

Deriving both terms with respect to z
𝑐𝐸0𝛽𝑠

3𝛾𝑠
3
𝑑2𝜑

𝑑𝑧2
+ 𝑐𝐸0

𝑑𝛽𝑠
3𝛾𝑠

3

𝑑𝑧

𝑑𝜑

𝑑𝑧
= −𝜔𝑅𝐹

𝑑𝑤

𝑑𝑧

𝑐𝐸0𝛽𝑠
3𝛾𝑠

3
𝑑2𝜑

𝑑𝑧2
+ 𝑐𝐸0

𝑑𝛽𝑠
3𝛾𝑠

3

𝑑𝑧

𝑑𝜑

𝑑𝑧
= −𝜔𝑅𝐹𝑞 ෠𝐸𝑎𝑐𝑐 cos 𝜑𝑠 + 𝜙 − cos𝜙𝑠

General non linear differential equation that gives the phase evolution

Deriving both terms with respect to z
and assuming an adiabatic acceleration

𝑑𝛽𝑠
3𝛾𝑠

3

𝑑𝑧
<<1
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LONGITUDINAL BEAM DYNAMICS CONSIDERATIONS

• The approach we have used so far for the longitudinal
beam dynamics calculation is a simplified approach

• The most accurate but computer-time consuming,
consists in integrating the equation of motion (EoM)
using field maps giving the amplitude of the rf
accelerating field

• Another possible approach is to assume concentrated energy kicks in the cavities (Panofsky approach) and integrate the
equation of motion.

• The approach we have used assumes basically an average effect of the acceleration (smooth approximation)
• For large amplitude oscillations there are effects that only the correct approach can predict



s -s

saccE cosˆ







accÊ

To study the longitudinal dynamics at large oscillations, we have to consider the non linear system of differential equations without small oscillation approximations
(but with adiabatic acceleration approximation). It is possible to easily obtain the following relation between w and  (that is the Hamiltonian of the system related
to the total particle energy):

LARGE OSCILLATIONS AND SEPARATRIX (SMOOTH APPROX)

For each H we have different trajectories in the longitudinal phase space

the oscillations are stable within a region bounded by a special curve called separatrix: its
equation is:

the region inside the separatrix is called RF bucket. The dimensions of the bucket shrinks to
zero if s=0.

trajectories outside the RF buckets are unstable.

we can define the RF acceptance as the maximum extension in phase and energy that we
can accept in an accelerator:

2
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 3
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
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Small amplitude 
oscillations

RF bucket

1

2

𝜔𝑅𝐹

𝑐𝐸0𝛽𝑠
3𝛾𝑠

3𝑤
2 + 𝑞 ෠𝐸𝑎𝑐𝑐 sin𝜙 − 𝜙 cos𝜙𝑠 = H

1

2

𝜔𝑅𝐹

𝑐𝐸0𝛽𝑠
3𝛾𝑠

3𝑤
2 + 𝑞 ෠𝐸𝑎𝑐𝑐 sin𝜙 + sin𝜙𝑠 − 𝜙 + 𝜙𝑠 cos 𝜙𝑠 = 0



To study the longitudinal dynamics at large oscillations, we consider the
non linear system of differential equations without the small oscillation
approximation. The system also works for the fase 𝜙= 𝜙𝑠 + 𝜑

𝑑2𝜙

𝑑𝑧2
= −

𝜔𝑅𝐹𝑞 ෠𝐸𝑎𝑐𝑐

𝑐𝐸0𝛽𝑠
3𝛾𝑠

3 cos𝜙 − co𝑠 𝜙𝑠 = 𝐹 𝜙

The function F act as a non linear restoring force We
can then write.

SEPARATRIX EQUATION 
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න
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𝑑
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න
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𝜙
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𝑑

𝑑𝑧
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− 2න
0

𝜙
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1

2
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−න
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𝑐𝐸0𝛽𝑠
3𝛾𝑠
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For the separatrix equation we have that when s=-s w=0

-s

𝑞 ෠𝐸𝑎𝑐𝑐 −sin𝜙𝑠 + 𝜙𝑠 cos𝜙𝑠 = 𝐻𝑠𝑒𝑝
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2 + 𝑞 ෠𝐸𝑎𝑐𝑐 sin𝜙 + sin𝜙𝑠 − 𝜙 + 𝜙𝑠 cos 𝜙𝑠 = 0

-s



ADIABATIC DAMPING

A particle with some initial conditions will perform an ellipse in the phase space. Its maximum energy wmax is obtained when = 
s (i.e. 𝜑 = 0) and correspondingly its maximum phase excursion is obained when w=0. Then:

For small amplitude oscillations around the synchronous phase we have
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2 = H

𝜑 = 0 →
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−𝑞 ෠𝐸𝑎𝑐𝑐sin 𝜙𝑠 𝑐𝐸0𝛽𝑠
3𝛾𝑠

3

This ratio decrease during
acceleration while the area of the
ellipse should remain unchanged
because there are only conservative
forces (Liouville). This means that the
bunch reduce its length and increase
its energy spread

𝜑 𝜑

𝑤 𝑤



A RF accelerating structure operating at fRF=400 MHz, is used to accelerate protons at an input nominal kinetic energy Win=10

MeV. Assuming that the nominal synchronous phase s=-/6 rad and that the average accelerating field is Eacc=2 MV/m, calculate

the maximum kinetic energy of the protons that is possible to capture in the RF bucket.

EXERCISE 10: ENERGY ACCEPTANCE



From previous formulae it is clear that there is no motion
in the longitudinal phase plane for ultrarelativistic
particles (>>1).

It is interesting to analyze what happen if we
inject an electron beam produced by a cathode
(at low energy) directly in a TW structure (with
vph=c) and the conditions that allow to capture
the beam (this is equivalent to consider instead
of a TW structure a SW designed to accelerate
ultrarelativistic particles at v=c).

Particles enter the structure with
velocity v<c and, initially, they are
not synchronous with the
accelerating field and there is a so
called slippage.

This is the case of electrons whose velocity is always close to
speed of light c even at low energies.

Accelerating structures are designed to provide an accelerating
field synchronous with particles moving at v=c. like TW structures
with phase velocity equal to c.

LONGITUDINAL DYNAMICS OF LOW ENERGY ELECTRONS

After a certain distance they can reach enough energy (and
velocity) to become synchronous with the accelerating
wave. This means that they are captured by the accelerator
and from this point they are stably accelerated.

z

If this does not happen (the energy increase
is not enough to reach the velocity of the
wave) they are lost

Eacc
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LONGITUDINAL DYNAMICS OF LOW ENERGY ELECTRONS: 
PHASE SPLIPPAGE

The accelerating field of a TW
structure can be expressed by
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The equation of motion of a particle with a position z at
time t accelerated by the TW is then

It is useful to find which is
the relation between  and
 from an initial condition
(in) to a final one (fin)
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Suppose that the particle reach asymptotically the value
fin=1 we have:
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Eacc

in

in

fin

fin=1

z

Eacc

Should be in the interval [-1,1] to have a solution for fin

This quantity is >0
This limits the possible injection phases (i.e. the
phase of the electrons that is possible to capture)

We always have that
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For a given injection energy (in) and phase (in) we can find which is
the accelerating field (Eacc) that is necessary, to have the completely
relativistic beam at phase fin (that is necessary to capture the beam at
phase in)

Example: 
Ein = 50 keV, (kinetic energy), in =-/2, 

fin =0 in≈ 1.1; in≈ 0.41
fRF= 2856 MHzRF≈ 10.5 cm

We obtain Eacc 20MV/m;

LONGITUDINAL DYNAMICS OF LOW ENERGY ELECTRONS: 
CAPTURE ACCELERATING FIELD CALCULATION



LONGITUDINAL DYNAMICS OF LOW ENERGY ELECTRONS: 
CAPTURE EFFICIENCY AND BUNCH COMPRESSION
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During the capture process, as the injected beam moves up to the crest, the beam is also bunched, which is caused by velocity modulation (velocity bunching). This
mechanism can be used to compress the electron bunches (FEL applications).

Bunch lenght variation

in=0.01
fin1

These particle are lost
during the capture process

BUNCH COMPRESSION CAPTURE EFFICIENCY

All particles
are captured
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Depending on the injection phase we can have bunch compression or expansion



In order to increase the capture efficiency of a
traveling wave section, pre-bunchers are often
used. They are SW cavities aimed at pre-forming
particle bunches gathering particles
continuously emitted by a source.

I

t

I

tTRF

I

tTRF

Continuous beam
with velocity modulation

Bunching is obtained by modulating the energy (and therefore the velocity) of a continuous beam using the longitudinal E-field
of a SW cavity. After a certain drift space the velocity modulation is converted in a density charge modulation. The density
modulation depletes the regions corresponding to injection phase values incompatible with the capture process

A TW accelerating structure (capture section) is placed at an optimal distance from the pre-buncher, to capture a large fraction
of the charge and accelerate it till relativistic energies. The amount of charge lost is drastically reduced, while the capture section
provide also further beam bunching.

Once the capture condition ERF>ERF_MIN is fulfilled the
fundamental equation of previous slide sets the ranges
of the injection phases in actually accepted. Particles
whose injection phases are within this range can be
captured the other are lost.

BUNCHER AND CAPTURE SECTIONS
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Drift L
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SW AS A SUM OF TWO TW: RF NON-SYNCRONOUS HARMONICS
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On the other hand we can the SW can be written as the sum of two TWs in the form:
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Let us consider the case of a multi-cell SW cavity working on
the -mode. The Accelerating field can be expressed as:

The accelerating field seen by the particle is given by (t=z/c):

Synchronous wave co-propagating with beam

NON-Synchronous wave (called RF non-synchronous harmonic)
counter-propagating with beam (opposite direction)

The accelerating field seen by the particle is given by Τ𝑘 = 𝜔𝑅𝐹 𝑐 :
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Oscillating field that does not contribute to
acceleration but that gives RF focusing

Ez

z

Direction of propagation

P RF in

Synchronous wave: acceleration
𝑘 =

2𝜋

2𝑑
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𝑐
, 𝜆𝑅𝐹 = 𝑐𝑇𝑅𝐹

𝑑

In order to have synchronism between the accelerating field
and and ultrarelativistic particle we have to satisfy the
following relation (supposing electrons 𝛽=1):

𝑑 =
𝑐

2𝑓𝑅𝐹
=
𝜆𝑅𝐹
2

Oscillating term that has an average value equal to 0

t=z/c



LINAC: BASIC DEFINITION AND MAIN COMPONENTS
LINAC (linear accelerator) is a system that allows to accelerate charged particles through a linear trajectory by electromagnetic fields.

Particle 
source

Accelerated beam 

Accelerating structures

Focusing elements: quadrupoles
and solenoids

Transverse dynamics of 
accelerated particles

Longitudinal dynamics of 
accelerated particles

LI
N

A
C

 B
EA

M
 D

Y
N

A
M

IC
S

LI
N

A
C

 C
O

M
P

O
N

EN
TS

 A
N

D
 

TE
C

H
N

O
LO

G
Y



RF TRANSVERSE FORCES
The RF fields act on the transverse beam dynamics because of the transverse components of the E and B field

z

According to Maxwell equations the divergence of the field is zero and this
implies that in traversing one accelerating gap there is a focusing/defocusing term












=




−=


=

=

t

E

c

r
B

z

Er
E

E
c

B

E

z

z
r

2
2

2

21
0



( ) 











+




−=−=

t

E

cz

Er
qvBEqF zz

rr




2

( ) ( ) ( )tzEtzE RFRFz cos, =

( )








+




−= injRF

RF

Er
c

z

z

zEr
qF 


cos

2

( ) 







+= injRFRFRFBr

c

z
zE

c

r
qF 





 sin

2

fRF=350 MHz
=0.1
L=3cm

r




RF TRANSVERSE FORCES IN MULTI-CELL STRUCTURES: 
CONTRIBUTION OF THE FORWARD AND BACKWARD WAVES

For a multi-cell structure let us suppose that the field can be written as:
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To have synchronism

The Lorentz force is then given by the two contributions
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Positive term (i.e. defocusing force) because
𝜑𝑠<0. This term is given by the synchronous
harmonic (forward wave)

The average integrated effect is zero. This
term is given by the non synchronous
harmonic (backward wave). In electron
linacs this gives a focusing force



RF DEFOCUSING
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 transverse defocusing scales as 1/2 and disappears at relativistic regime (electrons). In this case we have a compensation between the
electric deflection and the magnetic one.

 At relativistic regime (electrons), moreover, we have, in general, =0 for maximum acceleration and this completely cancel the defocusing
effect

 Also in the non relativistic regime for a correct evaluation of the defocusing effect we have to:

 take into account the velocity change across the accelerating gap

 the transverse beam dimensions changes across the gap (with a general reduction of the transverse beam dimensions due to
the focusing in the first part)

Both effects give a reduction of the defocusing force

From previous formulae it is possible to calculate the transverse momentum increase due to the RF transverse forces. Assuming that the velocity
and position changes over the gap are small we obtain to the first order:

෠𝐸𝑎𝑐𝑐= ෠𝐸𝑅𝐹 /2



COLLECTIVE EFFECTS: SPACE CHARGE AND WAKEFIELDS

 Effect of Coulomb repulsion between
particles (space charge).

 These effects cannot be neglected especially
at low energy and at high current because the
space charge forces scales as 1/2 and with the
current I.

EXAMPLE: Uniform and infinite cylinder of charge moving along z
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Collective effects are all effects related to the number of particles and they can play a crucial role in the longitudinal and transverse beam
dynamics of intense beam LINACs

SPACE CHARGE

WAKEFIELDS

The other effects are due to the wakefield. The passage of bunches
through accelerating structures excites electromagnetic field. This
field can have longitudinal and transverse components and,
interacting with subsequent bunches (long range wakefield), can
affect the longitudinal and the transverse beam dynamics. In
particular the transverse wakefields, can drive an instability along
the train called multibunch beam break up (BBU).

z

wT
Several approaches are used to absorb these field
from the structures like loops couplers,
waveguides, Beam pipe absorbers



MAGNETIC FOCUSING AND CONTROL OF THE TRANSVERSE DYNAMICS

Defocusing RF forces, space charge or the natural divergence
(emittance) of the beam need to be compensated and controlled by
focusing forces.

This is provided by quadrupoles along
the beam line.
At low energies also solenoids can be
used

In a linac one alternates accelerating structures with focusing
sections.

Quadrupoles are focusing in one plane and defocusing on the other.
A global focalization is provides by alternating quadrupoles with
opposite signs

F D F D F

s

x

The type of magnetic configuration and magnets type/distance
depend on the type of particles/energies/beam parameters we want
to achieve.



Due to the alternating quadrupole focusing system each
particle perform transverse oscillations along the LINAC.

The equation of motion in the transverse plane is of the type:
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The final transverse beam dimensions (x,y(s)) vary
along the linac and are contained within an envelope

TRANSVERSE OSCILLATIONS AND BEAM ENVELOPE

Space charge term
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SMOOTH APPROXIMATION OF TRANSVERSE OSCILLATIONS
In case of “smooth approximation” of the LINAC (we consider an average effect of the
quadrupoles and RF) we obtain a simple harmonic motion along s of the type ( is constant):
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If we consider also the Space Charge contribution in the simple case of an ellipsoidal beam (linear space charges) we obtain:
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For ultrarelativistic electrons RF defocusing and space charge disappear and the external
focusing is required to control the emittance and to stabilize the beam against instabilities.

G=quadrupole gradient [T/m] 
l=quadrupole length

NB: the RF defocusing term f sets a higher limit to the
working frequency
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GENERAL CONSIDERATIONS ON LINAC OPTICS DESIGN (1/2)

 Beam dynamics dominated by space charge and RF defocusing forces

 Focusing is usually provided by quadrupoles

 Phase advance per period () should be, in general, in the range 30-80 deg, this means that, at low energy, we need a strong focusing term
(short quadrupole distance and high quadrupole gradient) to compensate for the rf defocusing, but the limited space () limits the
achievable G and beam current

 As  increases, the distance between focusing elements can increase ( in the DTL goes from 70mm (3 MeV, 352 MHz) to 250mm (40
MeV), and can be increased to 4-10 at higher energy (>40 MeV).

 A linac is made of a sequence of structures, matched to the beam velocity, and where the length of the focusing period increases with
energy. As  increases, longitudinal phase error between cells of identical length becomes small and we can have short sequences of
identical cells (lower construction costs).

 Keep sufficient safety margin between beam radius and aperture

PROTONS AND IONS

Courtesy A. Lombardi



 Space charge only at low energy and/or high peak current: below 10-20 MeV (injector) the beam dynamics optimization has to include
emittance compensation schemes with, typically solenoids;

 At higher energies no space charge and no RF defocusing effects occur but we have RF focusing due to the ponderomotive force: focusing
periods up to several meters

 Optics design has to take into account longitudinal and transverse wakefields (due to the higher frequencies used for acceleration) that can
cause energy spread increase, head-tail oscillations, multi-bunch instabilities,…

 Longitudinal bunch compressors schemes based on magnets and chicanes have to take into account, for short bunches, the interaction
between the beam and the emitted synchrotron radiation (Coherent Synchrotron Radiation effects)

 All these effects are important especially in LINACs for FEL that requires extremely good beam qualities

GENERAL CONSIDERATIONS ON LINAC OPTICS DESIGN (2/2)
ELECTRONS

Courtesy C. Vaccarezza

Courtesy M. Ferrario



A DTL (Alvarez structure) working at fRF=300 MHz accelerate protons with an injection energy Win=4 MeV, permanent magnet

quadrupoles are inside the drift tubes and the focusing system is equivalent to a FODO lattice, as sketched below. The

quadrupoles inside the drift tubes have a length LQ=5 cm.

If the average accelerating field per cell is Eacc=2 MV/m and the nominal synchronous phase S=-/6, calculate, using the “smooth

approximation” approach, the quadrupole gradient (G) that is necessary to have, in the first cells, of the structure in order to

achieve a transverse phase advance per period () equal to /3, supposing that the period of the FODO (LP) is exactly twice the

distance between two accelerating gaps.

EXERCISE 11: TRANSVERSE BEAM DYNAMICS

proton rest energy m0c2=E0=938 MeV

velocity of light c=2.998e8



RADIO FREQUENCY QUADRUPOLES (RFQ)
At low proton (or ion) energies (0.01), space charge defocusing is high and quadrupole
focusing is not very effective. Moreover cell length becomes small and conventional
accelerating structures (DTL) are very inefficient. At this energies it is used a (relatively)
new structure, the Radio Frequency Quadrupole (1970).

These structures allow to simultaneously provide:

Acceleration
Transverse Focusing

Bunching of the beam

Electrodes

Courtesy M. Vretenar



1-Focusing
The resonating mode of the cavity (between the four electrodes) is a focusing
mode: Quadrupole mode (TE210). The alternating voltage on the electrodes
produces an alternating focusing channel with the period of the RF (electric
focusing does not depend on the velocity and is ideal at low )

RFQ: PROPERTIES 

2-Acceleration
The vanes have a longitudinal modulation with period = RF this creates a longitudinal
component of the electric field that accelerate the beam (the modulation corresponds
exactly to a series of RF gaps).

3-Bunching
The modulation period (distance between maxima) can be slightly adjusted to
change the phase of the beam inside the RFQ cells, and the amplitude of the
modulation can be changed to change the accelerating gradient. One can start at -
90 phase (linac) with some bunching cells, progressively bunch the beam (adiabatic
bunching channel), and only in the last cells switch on the acceleration.

The RFQ is the only linear accelerator that can 
accept a low  energy continuous beam.

Courtesy A. Lombardi

Courtesy M. Vretenar
and A. Lombardi



RFQ: EXAMPLES 
The 1st 4-vane RFQ, Los Alamos
1980: 100 KeV - 650 KeV, 30 mA , 425 MHz 

TRASCO @ INFN Legnaro
Energy In: 80 keV
Energy Out: 5 MeV
Frequency 352.2 MHz
Proton Current (CW) 30 mA

The CERN Linac4 RFQ
45 keV – 3 MeV, 3 m
80 mA H-, max. 10% 
duty cycle 



In general the choice of the accelerating
structure depends on:

 Particle type: mass, charge, energy
 Beam current
 Duty cycle (pulsed, CW)
 Frequency
 Cost of fabrication and of operation

Cavity Type  Range Frequency Particles

RFQ 0.01– 0.1 40-500  MHz Protons, Ions

DTL 0.05 – 0.5 100-400 MHz Protons, Ions

SCL 0.5 – 1 600 MHz-3 GHz Protons, Electrons

SC Elliptical > 0.5-0.7 350 MHz-3 GHz Protons, Electrons

TW 1 3-12 GHz Electrons

THE CHOICE OF THE ACCELERATING STRUCTURE

Moreover a given accelerating structure has
also a curve of efficiency (shunt impedance)
with respect to the particle energies and the
choice of one structure with respect to another
one depends also on this.

As example a very general scheme is given in the
Table (absolutely not exhaustive).



STRUCTURE PARAMETERS SCALING WITH FREQUENCY
We can analyze how all parameters (r, Q) scale with frequency and what are the advantages or disadvantages in accelerate 
with low or high frequencies cavities.

parameter NC SC

Rs  f1/2  f2

Q  f-1/2  f-2

r  f1/2  f-1

r/Q  f

w//  f2

w┴  f3

Wakefield intensity: 
related to BD issues

r/Q increases at high frequency

for NC structures also r increases and this push to
adopt higher frequencies

for SC structures the power losses increases with f2

and, as a consequence, r scales with 1/f this push to
adopt lower frequencies

On the other hand at very high frequencies (>10 GHz)
power sources are less available

Beam interaction (wakefield) became more critical at
high frequency

Cavity fabrication at very high frequency requires
higher precision but, on the other hand, at low
frequencies one needs more material and larger
machines

short bunches are easier with higher f

SW SC: 500 MHz-1500 MHz
TW NC: 3 GHz-6 GHz
SW NC: 0.5 GHz-3 GHz

Compromise
between several 
requirements


