
• Derive the general expression of the transit time factor of an accelerating gap of length L, with constant accelerating field, in which the field is

oscillating at fRF and that accelerate particles with relativistic factor β.

• Remembering that the light wavelength in free space is given by RF=c/fRF, for which value of the accelerating gap length L, T is equal to zero?

• Calculate the numerical value of T for L=10 cm, fRF=1 GHz and ultra-relativistic electrons (β=1).

• Calculate the accelerating voltage as a function of the gap length L assuming an injection phase on crest (inj=0)

EXERCISE 1: TRANSIT TIME FACTOR



We consider now the acceleration between two electrodes fed by an RF generator
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EXERCISE 1: SOLUTION
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A proton beam is injected into a DTL (Alvarez structure) working at fRF=300 MHz, with a kinetic energy Win=4 MeV. Calculate:

1) the distance between the first two centers of the accelerating gaps (Lgaps) assuming a constant velocity of the proton beam between the first

two gaps and a negligible increase of the velocity due to the accelerating field;

2) if the structure is composed by 40 accelerating gaps (Ngaps) and the average accelerating voltage per gap is Vacc=0.5 MV, calculate final proton

beam kinetic energy.

EXERCISE 2: ALVAREZ STRUCTURES

REMEMBER

proton rest energy m0_pc2=E0_p=938 MeV

velocity of light c=2.998e8



Alvarez's structure can be described as a special DTL in which
the electrodes are part of a resonant macrostructure.

ALVAREZ STRUCTURES

The DTL operates in 0 mode for protons and ions in the range =0.05-0.5
(fRF=50-400 MHz, RF=6-0.7 m) 1-100 MeV;

The beam is inside the “drift tubes” when the electric field is decelerating.
The electric field is concentrated between gaps;

The drift tubes are suspended by stems;

Quadrupole (for transverse focusing) can fit inside the drift tubes.

In order to be synchronous with the accelerating field at each gap the
length of the n-th drift tube Ln has to be:
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(protons and ions)



EXERCISE 2: SOLUTIONS

RFnnL =

RF=c/fRF=0.9993m

in=(Win+E0_p)/E0_p=1.0043

βin=sqrt(1-1/in^2)= 0.0921

Lgaps=βinRF=92 mm

Wfin = Win +qNgaps*Vacc=24 MeV



EXERCISE 3: ALVAREZ STRUCTURES AND TRANSIT 
TIME FACTOR

Particles at β=0.5 are accelerated through an ideal DTL operating at fRF=400 MHz. Assuming a uniform accelerating RF field (ERF)
along the gap, calculate the accelerating gap length (L) that maximize the energy gain of the accelerated particles.



EXERCISE 3: SOLUTIONS
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A SW cavity is feed by an RF generator with constant power, calculate after how much time the field in the cavity is 90% the field

at full regime supposing that the cavity operate at fRF=1.3 GHz and has an equivalent Q factor of 10000.

EXERCISE 4: FILLING TIME



SW CAVITIES : FILLING TIME AND DISSIPATED POWER

Time domain
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Let us now consider the case of a cavity powered by a source (klystron) in pulsed mode at a frequency fRF=fres. The accelerating voltage has an exponential behavior
and reach the steady state regime asymptotically with a certain filling time (F) that is proportional to the quality factor of the resonator.
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EXERCISE 4: SOLUTION
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A -mode structure, operating at fRF=400 MHz, is made up of N=8 cells and is used to accelerate protons. Each single cell has a

shunt impedance R=3 M and a length Lcell=15 cm. Calculate:

1) the total shunt impedance of the -mode structure;

2) the accelerating voltage if the total dissipated power into the cavity is Pdiss=1 MW;

3) the average accelerating field;

4) the average  of the proton beam accelerated by this structure.

EXERCISE 5:  MODE STRUCTURES



MULTI-CELL SW CAVITIES

R

nR

• In a multi-cell structure there is one RF input coupler. As a consequence the
total number of RF sources is reduced, with a simplification of the layout
and reduction of the costs;

• The shunt impedance is n time the impedance of a single cavity

• They are more complicated to fabricate than single cell cavities;

• The fields of adjacent cells couple through the cell irises and/or through
properly designed coupling slots.

Pin

.

Pin (electrons or protons and ions at high energy)



diss

RF
P

W
Q =

QUALITY FACTORSHUNT IMPEDANCE

The shunt impedance is the parameter that qualifies
the efficiency of an accelerating mode. The highest
is its value, the larger is the obtainable accelerating
voltage for a given power. Traditionally, it is the
quantity to optimize in order to maximize the
accelerating field for a given dissipated power:

ACCELERATING VOLTAGE (Vacc) DISSIPATED POWER (Pdiss) STORED ENERGY (W)

NC cavity Q104

SC cavity Q1010

The R/Q is a pure geometric qualification factor. It does not
depend on the cavity wall conductivity. R/Q of a single cell is of
the order of 100.
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SHUNT IMPEDANCE PER UNIT LENGTH

Example:
R1M

Pdiss=1 MW
Vacc=1MV
For a cavity working at 1 GHz with a structure length of 10 cm
we have an average accelerating field of 10 MV/m



MULTI-CELL SW CAVITIES:  MODE STRUCTURES

• The N-cell structure behaves like a system composed by N coupled oscillators with N coupled multi-cell
resonant modes.

• The modes are characterized by a cell-to-cell phase advance given by:

1...,,1,0
1

−=
−

= Nn
N

n
n




.

• The multi cell mode generally used for acceleration is the , /2 and 0 mode (DTL as example operate in the 0
mode).

• The cell lengths have to be chosen in order to synchronize the accelerating field with the particle traveling into
the structure at a certain velocity
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For ions and protons the cell lengths
have to be increased along the linac that
will be a sequence of different
accelerating structures matched to the
ion/proton velocity.

For electron, =1, d=RF/2 and the linac
will be made of an injector followed by a
series of identical accelerating structures,
with cells all the same length.

(electrons or protons and ions at high energy)

EXAMPLE: 4 cell cavity operating on the -mode



EXERCISE 5: SOLUTION

1) RTOT=N*Rcell=24 M

2) Vacc=sqrt(RTOT*Pdiss)=4.9 MV

3) Eacc=Vacc/(Lcell*N)=4.08 MV/m

4) βin =2*Lcell /RF=0.4

being

RF=c/fRF=0.7495 m
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EXERCISE 6: TW STRUCTURES

B) Demonstrate that if we define the shunt impedance per unit length as:

the accelerating field “seen” by an ultrarelativistic particle (z=ct) along the structure can be expressed as:
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C) Demonstrate that the total accelerating voltage is given by:



TW CAVITIES PARAMETERS: r, , vg
Similarly to the SW cavities it is possible to define some figure of merit for the TW structures
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Group velocity [m/s]: the velocity
of the energy flow in the structure
(1-2% of c).

Shunt impedance per unit length
[/m]. Similarly to SW structures
the higher is r, the higher the
available accelerating field for a
given RF power.

Field attenuation constant [1/m]:
because of the wall dissipation,
the RF power flux and the
accelerating field decrease along
the structure.

Working mode [rad]: defined as
the phase advance over a period
D. For several reasons the most
common mode is the 2/3



TW CAVITIES: EQUIVALENT CIRCUIT AND FILLING TIME
In a TW structure, the RF power enters into the cavity through an input coupler, flows (travels) through the
cavity in the same direction as the beam and an output coupler at the end of the structure is connected to
a matched power load.
If there is no beam, the input power, reduced by the cavity losses, goes to the power load where it is
dissipated.
In the presence of a large beam current, however, a fraction of the TW power is transferred to the beam.

In a purely periodic structure, made by a sequence of identical
cells (also called “constant impedance structure”),  does not
depend on z and both the RF power flux and the intensity of the
accelerating field decay exponentially along the structure :
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EXERCISE 6: SOLUTION
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A SLAC-type TW structure accelerate ultra-relativistic electrons. The structure length is L=3m and it can be simplified as a

structure with a group velocity is vg=1.1% the velocity of light. Calculate:

1) the filling time;

2) if we suppose that the structure has a field attenuation constant =0.2 m-1, calculate the total accelerating voltage if the

accelerating field at the beginning of the structure is EINPUT=20 MV/m;

3) Calculate the average accelerating field

4) if the average dissipated power per unit length in the structure, corresponding to the previous value of the accelerating field,

is pdiss= 4 MW/m calculate the shunt impedance per unit length.

EXERCISE 7: TW STRUCTURES



TW CAVITIES PARAMETERS: r, , vg
Similarly to the SW cavities it is possible to define some figure of merit for the TW structures
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Group velocity [m/s]: the velocity
of the energy flow in the structure
(1-2% of c).

Shunt impedance per unit length
[/m]. Similarly to SW structures
the higher is r, the higher the
available accelerating field for a
given RF power.

Field attenuation constant [1/m]:
because of the wall dissipation,
the RF power flux and the
accelerating field decrease along
the structure.

Working mode [rad]: defined as
the phase advance over a period
D. For several reasons the most
common mode is the 2/3



TW CAVITIES: EQUIVALENT CIRCUIT AND FILLING TIME
In a TW structure, the RF power enters into the cavity through an input coupler, flows (travels) through the
cavity in the same direction as the beam and an output coupler at the end of the structure is connected to
a matched power load.
If there is no beam, the input power, reduced by the cavity losses, goes to the power load where it is
dissipated.
In the presence of a large beam current, however, a fraction of the TW power is transferred to the beam.

In a purely periodic structure, made by a sequence of identical
cells (also called “constant impedance structure”),  does not
depend on z and both the RF power flux and the intensity of the
accelerating field decay exponentially along the structure :
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EXERCISE 7: SOLUTION
1) L=3;  tF=L/vg=909.7 ns
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3) Eacc=Vacc/L=15 MV/m

4) r=Eacc^2/pdiss=56.5 M/m



A constant impedance TW structure, accelerates ultra-relativistic electrons (β=1). The cavity has the following parameters:

=0.25 m-1 ; shunt impedance r=65 MOhm/m and a total length of 2 m. Calculate:

1) the input power to have an energy gain of the particles of 60 MeV

2) if the group velocity vg is 1% the speed of light, which is the filling time of the structure?

EXERCISE 8: TW STRUCTURES



EXERCISE 8: SOLUTION
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A multi cell SW cavity, operating on the -mode at 1 GHz, accelerates protons at β=0.5. The cavity is a 9 cell structure. Assuming

a negligible variation of the particle velocity through the cavity itself calculate:

1) the distance between the centers of the accelerating cells;

2) assuming a shunt impedance of the single cell (R) of 1 M, calculate the dissipated power to have a peak accelerating voltage

on the overall structure of Vacc=10 MV;

3) Calculate the maximum average accelerating field;

4) If the cavity is fed by 4 s rf pulses with a repetition rate of 100 Hz, calculate the Duty Cycle.

EXERCISE 9:  MODE STRUCTURES AND DUTY CYCLE



RF STRUCTURE AND BEAM STRUCTURE: NC vs SC
The “beam structure” in a LINAC is directly related to the “RF structure”. There are two possible type of operations:

• CW (Continuous Wave) operation  allow, in principle, to operate with a continuous (bunched) beam
• PULSED operation  there are RF pulses at a certain repetition rate (Duty Cycle (DC)=pulsed width/period)

SC structures allow operation at very high Duty Cycle (>1%) up to a CW operation (DC=100%)
(because of the extremely low dissipated power) with relatively high gradient (>20 MV/m). This
means that a continuous (bunched) beam can be accelerated.

NC structures can operate in pulsed mode at very low DC (10-2-10-1 %) (because of the higher
dissipated power) with, in principle, larger peak accelerating gradient(>30 MV/m). This means
that one or few tens of bunches can be, in general, accelerated. NB: NC structures can also
operate in CW but at very low gradient because of the dissipated power.

Bunch spacing

RF pulses
RF power

t

Amplitude 103-108 RF periods

time



EXERCISE 9: SOLUTION

cm
f

c
d RF

RF
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1) 

2)

RTOT=N*R=9 M

Pdiss=Vacc^2/RTOT=11.1 MW

3)

LTOT=d*N=67.4 cm

Eacc=Vacc/LTOT=14.8 MV/m

4) 

DC=Timp/Tperiod=4e-6/0.01=4e-4 (0.04%)



A RF accelerating structure operating at fRF=400 MHz, is used to accelerate protons at an input nominal kinetic energy Win=10

MeV. Assuming that the nominal synchronous phase s=-/6 and that the average accelerating field is Eacc=2 MV/m, calculate

the maximum kinetic energy of the protons that is possible to capture in the RF bucket (assuming that it is injected at a phase

corresponding to the synchronous one).

EXERCISE 10: ENERGY ACCEPTANCE









s -s

saccE cosˆ

To study the longitudinal dynamics at large oscillations, we have to consider the non linear system of differential equations without approximations. In the
adiabatic acceleration case it is possible to easily obtain the following relation between w and  that is the Hamiltonian of the system related to the total particle
energy:

APPENDIX: LARGE OSCILLATIONS AND SEPARATRIX
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For each H we have different trajectories in the longitudinal phase space

the oscillations are stable within a region bounded by a special curve called separatrix: its
equation is:

the region inside the separatrix is called RF bucket. The dimensions of the bucket shrinks to
zero if s=0.

trajectories outside the RF buckets are unstable.

we can define the RF acceptance as the maximum extension in phase and energy that we
can accept in an accelerator:
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EXERCISE 10: SOLUTION

in=(Win+E0_P)/E0_P=1.0107

βin=sqrt(1-1/in^2)= 0.1449

362MeV.0
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WMAX=Win+w=10.362 MeV



A DTL (Alvarez structure) working at fRF=300 MHz accelerate protons with an injection energy Win=4 MeV, permanent magnet

quadrupoles are inside the drift tubes and the focusing system is equivalent to a FODO lattice, as sketched below. The

quadrupoles inside the drift tubes have a length LQ=5 cm.

If the average accelerating field per cell is Eacc=2 MV/m and the nominal synchronous phase S=-/6, calculate, using the “smooth

approximation” approach, the quadrupole gradient (G) that is necessary to have, in the first cells, of the structure in order to

achieve a transverse phase advance per period () equal to /3, supposing that the period of the FODO (LP) is exactly twice the

distance between two accelerating gaps.

EXERCISE 11: TRANSVERSE BEAM DYNAMICS

proton rest energy m0c2=E0=938 MeV

velocity of light c=2.998e8



SMOOTH APPROXIMATION OF TRANSVERSE OSCILLATIONS
In case of “smooth approximation” of the LINAC (we consider an average effect of the
quadrupoles and RF) we obtain a simple harmonic motion along s of the type ( is constant):
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If we consider also the Space Charge contribution in the simple case of an ellipsoidal beam (linear space charges) we obtain:
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Space charge term

For ultrarelativistic electrons RF defocusing and space charge disappear and the external
focusing is required to control the emittance and to stabilize the beam against instabilities.

G=quadrupole gradient [T/m] 
l=quadrupole length

NB: the RF defocusing term f sets a higher limit to the
working frequency

Lp

l

( )
( ) 








+=  0

0

cos)( 



s

s
o

s

ds
ssx

( ) p
L

LK
s

ds

p
0==  


( ) 

 p

L

L

s

ds

p

= 



EXERCISE 11: TRANSVERSE BEAM DYNAMICS

RF=c/fRF=0.9993m

in=(Win+E0_P)/E0_P=1.0043

βin=sqrt(1-1/in^2)= 0.0921

L_gaps=βinRF=92 mm

LP=2*Lgaps=184 mm

K0=(/3)/LP=5.69 m-1
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