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Abstract  
The cyclotrons are the most used hadron accelerators: it represents a compact 
and efficient solution with 100% duty cycle, very well adapted for the medical 
applications and for the nuclear physics research. The maximal energy of a 
cyclotron is typically 1 GeV for a proton beam, since relativistic effects and  
transverse focusing limit the cyclotrons. In this introductory lecture, we 
present the underlying concepts. The longitudinal and transverse beam 
dynamics in these accelerators are covered. Some specific cyclotrons are 
presented (compact cyclotron at low energy, synchrocyclotron, FFAG, 
superconducting cyclotron, separated sector cyclotrons). The concepts used in 
cyclotron are numerous, and the topic is an ideal application of many ideas 
introduced in a basic course in accelerator physics. We provide many 
exercises for a better understanding. 
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1 Introduction: from physics research to medical application 

 
The cyclotron concept [1- 4] has been developped in the years 1929-1931 by Ernest Orlando Lawrence. 
The proposed accelerator is a generic and powerfull idea : a unique acceleration radiofrequency gap 
crossed many times by a beam having a spiraling trajectory : Such general idea has been adapted to most 
of cyclic accelerators (cyclotrons, synchrocyclotron, microtron,  FFAG, recirculation linac ).   

Hence the first cyclotrons permitted to the scientists to overcome the technical difficulties of the 
high voltage DC accelerators (Van de Graaff). The numerous potential discoveries induced by the 
cyclotron idea have been recognized very soon, and a Nobel prize in Physics has been awarded to E.O 
Lawrence  in 1939 for his pionnering work and for the large quantity of  new results obtained with 
cyclotrons (especially with regard to artificial radioactive elements). Then the research in nuclear and 
particle physics made considerable progress during the period 1930-1970 thanks to proton and ion 
cyclotrons. 

Since the 1980’s, developpement of cyclotron facilities for the production of radionucleides used in the 
hospitals  has opened up a new era for the cyclotrons: Nowadays more 1300 cyclotons are in operation 
in the word  (AIEA  report in 2021). A cyclotron can be bought on a catalalog at several manufacters 
(IBA, BEST, VARIAN, SIEMIENS, SUMITOMO, GE... ).  For such  applications, the R&D in 
cyclotron is led mainly by these industrial manufacturers, which aim to reduce the cost and ease the 
operation in a medical context. 

In the near future, a larger number of cancer treatment facilities using 250 MeV proton isochronous 
cyclotron or synchrocyclotron could complement the standard radiotherapy technics. The X-rays 
radiotherapy uses low cost 5-15 MeV electron linac producing photons by bremstrahlung mechanism. 



The advantage of hadron irradiation over photon is related to the very precise tumour irradiation in a 
narrow range of depth, the so-called Bragg peak, minimizing radiation to the healthy nearby tissues. 

On the research context, the cyclotrons are very limited in their maximal energy compared to 
synchrotron. However many research facilities still used  some very specific cyclotrons, let us cite : 
    – PSI (in Switzerland, providing the most powerfull proton beam of 1.4 MW at 590 MeV) 
    – RIBF(in Japan, operating the largest superconducting cyclotron in the world) 
    – TRIUMF(in Canada, housing the world’s largest cyclotron, which delivers H- at 520 MeV) 
    – GANIL (in France, having 5 cyclotrons in operation) 

Besides, large projects could emerge using advanced cyclotron concept for muon acceleration or 
accelerator driven nuclear reactor. 

 
Fig. 1: The “compact cyclotron” hardware : 1) External ion source : A beam line direct the beam inside 
the cyclotron through an axial hole, then the beam is deviated in the cyclotron plane with an electrostatic 
inflector.  2) The magnet yoke: One compact magnet provide the bending force to the beam. 3) The magnet 
poles excited by copper coils define a complex magnetic field with modulations. 4) The 180° RF Dee for 
acceleration: Half of the cyclotron is at the ground potential while an hollow electrode is at sinusoidal 
voltage. 5) An electrostatic deflector is used for beam extraction. 

2 The cyclotron principle and the longitudinal dynamics 

2.1 Generalities 

A cyclotron consist in a very large dipolar magnet operating with a vertical magnetic field Bz generated 
by an electro-magnet. Inside the magnet, two semi-circular hollow electrodes with a D shape (the so-
called « Dees ») are excited by a radiofrequency generator. A sinusoidal electric field is generated in the 
gap between the two cavities. 

The operating mode of cyclotron is quite different from the synchrotron. Synchrotrons are 
pulsed accelerators: the beam is injected, then accelerated, then extracted. During the acceleration, no 
beam is injected into the ring, the magnet field are ramped up and the RF synchronized with beam 
revolution frequency. The beam is delivered to the users in pulses of a given length T (typically few 
microseconds with a fast extraction) at a given repetition frequency Fpulse (usually between 1 Hz and 10 
Hz). The duty cycle, i.e. the product of pulse length and repetition frequency, is very low (< 0.01%), but 
synchrotron can deliver beams (ions or electrons) at ultra-relativistic energy. 

A cyclotron will take the continuous particle beam coming out of an ion source. The beam is 
bunched at a given RF frequency with a pre-buncher and then accelerated continuously. The cyclotron 
delivers a continuous stream of particle bunches at RF frequency (we call it a continuous wave (CW) 
accelerator). 

 



 
Fig. 2 : The cyclotron principle .The beam is injected in the centre of the cyclotron magnet from a source in the 
gap between the two semi-circular cavity (the “Dee”) .The RF voltage of the Dees produces a sinusoidal electric 
field in the gap. The particle bunches are accelerated after each half turn. Nota: one of the Dee is at the ground 
potential. 

Table 1: A comparison between cyclotron and synchrotron. 

         Comparaison Isochronous   cyclotron Synchrotron 

Revolution  frequency Constant Variable    (~ v) 

Rf  frequency Constant 

cw acceleration 

100% RF duty cycle 

Variable :  RF ramped 

pulsed accelerator 

very Low RF duty cycle 

Orbit Radius r Variable Constant 

Magnetic field Bz Constant 

 

Variable :   Ramped 

Bdipole= f(time)=/ Rdipole 

Transverse focusing Weak focusing Strong focusing with quadrupoles 

Limits Beam energy   (<2) No limit in energy                             
(except synchrotron radiation and cost) 

Particles Protons, ions Electrons, electons, ions 

 
     Therefore, the main advantages of the cyclotron over the synchrotron are its 100% duty cycle and its 
compactness (and the associated relatively low cost). However, most of cyclotron accelerators are 
restricted to low energy hadron beams (E<1GeV for protons) as we will see. 

2.2 Revolution frequency:  rev= qB/ m 
 
  Using a cylindrical coordinate system (er, ez , e) , we compute to the beam revolution frequency during 
the acceleration in the cyclotron. A particle is injected in horizontal plane of cyclotron and the vertical 
magnetic field B=(0,Bz ,0) produces a radial force which bend the trajectories in a circular motion 
between each acceleration.  

𝑭 = 𝑞 (𝒗 × 𝑩) = 𝑞 (𝑣ఏ . 𝐵௭) . 𝒆𝒓  since   𝒗 × 𝑩 = อ

𝒆𝒓 𝒆𝒛 𝒆𝜽

0 0 𝑣ఏ

0௥ 𝐵௭ 0
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Between two successive accelerations, the relativistic Newton equation reads:  



𝑑𝒑

𝑑𝑥
= 𝑚𝛾

𝑑𝒗

𝑑𝑡
= 𝑞 (𝑣ఏ . 𝐵௭) . 𝒆𝒓 

 
The magnetic force, being always perpendicular to the motion produces an uniform circular motion. 
This circular motion corresponds to a radial acceleration (related to the centrifugal force, see exercise 
n°1) 

𝑑𝒗
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‖𝒗‖ଶ
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Rearranging the last equation, we express the radius R of the trajectory                                                

𝑅 =  m𝛾𝑣ఏ/q 𝐵௭   =  (P/q) /𝐵 
 

The particle revolution frequency reads:    

𝐹௥௘௩௢௟௨௧௜௢௡ =
𝑣

2πR
 =  

q 𝐵௭

2𝜋  𝑚 𝛾
 

Hence, in the non-relativistic approximation (, the revolution frequency is independent of the 
energy and the beam radius in the cyclotron. We express generally the angular velocity rev .  

𝜔 = 𝜔௥௘௩ =
𝑑𝜃

𝑑𝑡
=

𝑣ఏ

𝑅
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
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Exercise 1 

a. Demonstrate that in a uniform circular motion, the radial acceleration is   𝒂 =  ቀ
௩మ

ோ
ቁ . 𝒆𝒓 . 

   You can use parametric equations for a circular motion    𝑋(𝑡) = 𝑅𝑐𝑜𝑠(𝜔𝑡)    𝑎𝑛𝑑 𝑌(𝑡) = 𝑅 𝑠𝑖𝑛(𝜔𝑡)  

b. Computing the velocity and the acceleration, demonstrate that the acceleration is radial . 

Answer :   𝑣௫ =
ௗ௑(௧)

ௗ௧
= −𝜔𝑅 𝑠𝑖𝑛(𝜔𝑡)    𝑎𝑛𝑑 𝑣௬ =

ௗ௒(௧)

ௗ௧
= +𝜔𝑅 𝑐𝑜𝑠(𝜔𝑡)  

                                                       So the velocity modulus is    𝑣 = ‖𝒗‖ = ඥ𝑣௫
ଶ + 𝑣௬

ଶ = 𝜔𝑅   

Then the  acceleration is    

𝑎௫ =
𝑑𝑣௫

𝑑𝑡
= −𝑅𝜔ଶ 𝑐𝑜𝑠(𝜔𝑡)    𝑎𝑛𝑑 𝑎௬ =

𝑑𝑣௫  

𝑑𝑡
= −𝑅𝜔ଶ 𝑠𝑖𝑛(𝜔𝑡)        ‖𝑎‖ = 𝑅𝜔ଶ = 𝑣ଶ/𝑅 

The “longitudinal velocity v is perpendicular to a  (check that 𝒗. 𝒂 = 𝑣௫ . 𝑎௫ + 𝑣௬ . 𝑎௬ = 0 ) , so the acceleration 

is radial. We can conclude that, in an uniform circular motion, the acceleration vector  is      𝒂 =  ቀ
‖𝒗‖మ

ோ
ቁ . 𝒆𝒓 



2.3 Beam synchronisation with RF 
 
In fact, there is two alternative solutions to guarantee a proper synchronization with the RF field during 
the acceleration: 
- Making the revolution frequency rev constant to match the fixed RF frequency (isochronous 
cyclotron) 
- Matching the RF frequency to the variable revolution frequency (this is the synchrocyclotron and 
FFAG options, see chapter V) 
 



We will concentrate on the first technics (isochronous) since it provides 100% duty cycle accelerators, 
while the second, less used nowadays, delivers pulsed beam. 
If we choose a RF generator with a constant frequency and with a voltage V=U0 cost(rf t ), the  
synchronization between the beam and accelerating RF cavity requires first a careful tuning of the field 
B0 at injection:      

𝜔௥௙ = 𝐻. (2𝜋 𝐹௥௘௩) = 𝐻 𝑞𝐵଴/𝑚   . 
where H is an integer called Harmonic. 
The early cyclotron was designed with an uniform axial field Bz=B0.ez.  If the magnetic field is uniform, 
the beam revolution frequency will decreases progressively with the energy and radius due to the special 
relativity. Since the velocity in a circular motion is  |v|= R revwe have 
 

𝜔௥௘௩ =
௤஻బ

௠ఊ
=  

௤஻బ

௠
. ට1 − 𝑣ଶ

𝑐ଶൗ =
௤஻బ

௠
. ට1 − 𝑅ଶ𝜔ଶ

𝑐ଶൗ      . 

 
The early cyclotrons, having a uniform Bz field, was not able to provide high energy beams: at large 
energy, because of non-constant revolution frequency, the bunches arrive out of phase at the gap, as 
explained in the following fig. 3: 
 

 
Fig. 3 Desynchronization of bunches in uniform field cyclotron.With an uniform field, the 

bunches arrive out of phase after few turns when the  factor increases. The bunches start 
then to be decelerated and no beam reaches the extraction. The B field should evolve with 

the radius as the Lorentz factor in order to maintain an acceleration :   Bz= f(radius)~  

2.4 Isochronous cyclotron  
 
In order to keep the synchronisation with the RF acceleration, the vertical field Bz should follow the 
evolution of the gamma factor 
 

  𝐵௭ = 𝐵଴. 𝛾(𝑅𝑎𝑑𝑖𝑢𝑠) =
𝐵଴

ඥ1 − 𝑅ଶ𝜔ଶ/𝑐ଶ൘   →   𝜔 =
௤஻೥

௠ఊ
=

௤஻బ

௠
    . 

With this field Bz(R), the time to perform one turn is constant whatever the energy and radius. The 
cyclotron is said to be ISOCHRONOUS. In the fig. 4, the bunches are represented with respect to the 
RF accelerating wave at each gap crossing between the two Dees. With the isochronous conditions 
(Frev=Constant), the beam arrives always in the gap at the same optimum accelerating RF phase during 
the acceleration.  



 
Fig. 4: Bunch synchronization with RF in an isochronous cyclotron. For a perfect acceleration, the two 
following conditions are required:  
- Synchronism with RF at injection  𝜔௥௙ = 𝐻𝜔௥௘௩ = 𝐻. 𝑞𝐵଴/𝑚   . 

- Isochronism    rev = constant during the acceleration, with    𝐵௭(𝑅) =  𝐵଴/(1 − 𝑅ଶ𝜔ଶ/𝑐ଶ)ଵ/ଶ 

2.4.1 Choice of RF harmonic  H=rf  /  
 
In the gap, it is required that the electric field to be directed always in the right direction to obtain the 
acceleration. The AC generator must alternate the polarity of the 180° Dees in order to give to the ion 
an accelerating electric field every half period.  With this cavity geometry, the harmonic H should an 
odd value:  rf  =H . qB0/m. Besides, the harmonics H will define the number of bunches per turn in the 
cyclotron.       

2.4.2 Variable energy cyclotron 

 
Most of industrial cyclotrons for the medical application have a fixed energy. In the research labs, the 
flexibility is more important, whatever the technical complexity. The ion energy variation is associated 
with the beam velocity at the extraction radius extraction: which impose to modify the magnetic field 
and its radial dependence (to be adapted to the new   factor), and the RF frequency.                             

The variable energy cyclotrons having a variable final velocity ( 𝑣௙௜௡௔௟ = 𝑅௘௫௧௥௔௖௧௜௢௡ 𝜔 ), requires  :             

   -  A RF cavity with variable frequency (rf  =H  ) adapted for each required energy 
-    A magnet with many correction coils* for the modification of radial field evolution 
                      𝐵௭(𝑅) =  𝐵଴/(1 − 𝑅ଶ𝜔ଶ/𝑐ଶ)ଵ/ଶ with    𝐵଴ = 𝜔𝑚/𝑞 

*Nota : Correction coils (called trimming coils) are a set of adjustable concentric coils located on the pole pieces 
inside the magnet gap. With a variable frequency cavity and adjustable trimming coils (excited with independent 
power supplies), a cyclotron can accelerate a wide range of ion species (q,m) at diverse energies (). 
 

Exercise n°2 :   The isochronous cyclotron, numerical application 

An isochronous cyclotron uses a RF cavity at 60 MHz at the RF harmonic H=3  
a. Compute the time needed to perform one turn for the accelerated ions.  
b. Compute the average field B needed to accelerate proton in a non-relativistic approximation  

Answer : 

 a.         Revolution frequency Frev=Frf /H=20 Mhz     T=1/( 20. 10-6  s ) =50ns 

 b.         = qB/m =RF/ H   :  at relatively low energy the Lorentz factor     is close to 1. 
   So using the proton mass mp ~ 1.6 10-27kg  and proton charge~ 1.6 10-19 C,  Frf= 60 MHz= RF/2 
                        B0 ~ mp  /q .2FRF / H)=  10-8. 106 20 . 21.26 Tesla 

 



 

2.5 Acceleration with RF dees   

2.5.1 The classical cav=180°  RF dee 
 
The energy gain, in the accelerating gaps of the RF cavity (called “dee”), depend upon the phase at the 
gaps. In a isochronous cyclotron, with constant revolution frequency, the particle’s azimuth  is 
connected revolution frequency:    
  rev  t + constant.While the RF phase evolves like rf = H+ constant. 
   With a Dee angular width cav =180° (fig.1,2), there are two accelerations per turn. Using as a 
reference the phase 𝜑௠௜ௗ in the middle of the Dee, the phase 𝜑௚௔௣ଵ  is , at the entrance of the dee : 

  𝜑௚௔௣ଵ = 𝜑௠௜ௗ −  
𝐻𝛼௖௔௩

2ൗ  

Taking account that the voltage should be negative at the entrance of the Dee to accelerate the positive 
ions, the total energy gain per turn is: 

𝛿𝐸௧௨௥௡ =  𝛿𝐸௧௔௣ଵ + 𝛿𝐸௧௚௔௣ଶ =  −𝑞𝑉൫𝜑௚௔௣ଵ൯ + 𝑞𝑉൫𝜑௚௔௣ଶ൯ 

                                  =  −𝑞 𝑈଴ sin ቀ𝜑௠௜ௗ −
𝐻𝛼௖௔௩

2ൗ ቁ +  𝑈଴ sin ቀ𝜑௠௜ௗ +
𝐻𝛼௖௔௩

2ൗ ቁ 

                                  = + 2𝑞 𝑈଴ cos(𝜑௠௜ௗ). sin ቀ
𝐻𝛼௖௔௩

2ൗ ቁ = 2𝑞 𝑈଴ cos(𝜑௠௜ௗ). sin(𝐻. 90°)   

We demonstrate here that the even harmonics H=2,4... produce no energy gain (sin 180°=0), since the 
energy gain in the first acceleration is compensated by a deceleration in the second. 

In principle, all particles with a phase satisfying− 𝜋 2⁄ < 𝜑௠௜ௗ < 𝜋 2⁄ , are accelerated (Eturn  >0). 
But the particles with low energy gain are lost either at injection, extraction, or during the acceleration. 
The longitudinal acceptancedo not exceed generally out of 360° therefore, the optimization of 
the transmission requires a RF buncher upstream of the cyclotron. 

2.5.2 RF dee with smaller angle cav 

 
Some cyclotrons possess RF-cavities with an angular extent cav  much smaller than 180°, which permit 
to increase the number of acceleration per turn. We present in fig.5, a cyclotron with 2 independent 
cavities producing four accelerations per turn. 

𝛿𝐸௧௨௥௡ = 𝑁௚௔௣ 𝑞 𝑈଴. sin ቀ
𝐻𝛼௖௔௩

2ൗ ቁ . cos(𝜑௠௜ௗ) 

The kinetic energy of any particle after Nturn is connected the phase in the cavity: 

𝐸(𝑁௧௨௥௡) = 𝐸ே =   𝐸௜௡௝௘௖௧௜௢௡ +  𝑁௧௨௥௡ 𝑁௚௔௣ 𝑞 𝑈଴. sin ቀ
𝐻𝛼௖௔௩

2ൗ ቁ . cos(𝜑௠௜ௗ) 



 
Fig. 5 The Isochronous Cyclotron “CSS2”  (Ganil, France) has two RF cavities with an angular width of cav=34°, 
the RF is operated with H=2  at a frequency between 7 and 14MHz, depending on the chosen heavy ion beam. U0 

reach 230 kVolts. The incoming beam has been already pre-accelerated with 2 consecutive cyclotrons. The positive 
ions (12C6+, 40Ca20+, …,238U58+) are accelerated by a negative voltage at the cavity entrance, and by a positive 
voltage at the exit. 

2.5.3 RF acceleration, radial size R and bunch separation R 

 
The acceleration of a bunch having a finite length  ∆𝜑 =  𝜔௥௙∆𝑡 = 𝐻 𝜔 ∆𝑡 ,increases the bunch 
radial size:  Two particles arriving at different time in accelerating gap will get a different energy :    

Eଵ = E଴ +  q U଴ . cos (0)and         Eଶ = E଴ +  q U଴ . cos (𝜔௥௙ . 𝛿𝑡)
So the bunch length t induces an energy dispersion which ends up with a radial dispersion R  of the 
bunch . The reference particle after N turns is located at  R0 = B0 /Bz , and the horizontal size of the 
bunch  R satisfies the relation :. 
 

∆𝑅 ⁄ 𝑅  = ∆𝐵𝜌 ⁄ 𝐵𝜌 = ∆𝑝 ⁄ 𝑝 =   𝛾 ⁄ (𝛾 + 1)  .  ∆𝐸 ⁄ 𝐸   
 
Nota : We have used the relativistic formula  𝑑𝐸

𝑑𝑝ൗ   =   𝛾 ⁄ (𝛾 + 1)  .  (𝐸 ⁄ 𝑝)   

For low energy ions  ~1-1.5, we have 
 ∆𝑅 𝑅⁄ ≈  1

2ൗ  . ∆𝐸 𝐸⁄ ≈  1
2ൗ   ∆ cos(𝜑 ) ≈ 1

4ൗ ∆𝜑ଶ 
 
The radial beam size R is very sensitive to the bunch length t and RF Harmonic H: (∆𝜑 = 𝐻 𝜔 ∆𝑡 ) 

Besides, the radial separation between two bunches R, (i.e. the distance between two successive turns) 
is decreasing with the radius R in the cyclotron:                                              

Eே = E௜௡௝௘௖௧௜௢௡ + N୲୳୰୬. 𝛿E୲୳୰୬ ≈ 1
2  ൗ . 𝑚 𝑣ଶ ≈ 1

2  ൗ . 𝑚 (𝑅𝜔)ଶ 
 

𝛿 𝑅 𝑅⁄ ≈  1
2ൗ  . 𝛿𝐸௧௨௥௡ 𝐸ே⁄  ~ 1

𝑅ଶൗ  

 
As a consequence, the bunch spacing  R R  is often very small at the cyclotron extraction at large 
radius, : The bunches overlap each other and the extraction of the bunches independently is often rather 
difficult (see chapter 7). 



Exercise n°3 :   the Kb value of a cyclotron and its maximal capability 

a. A cyclotron is designed to accelerate ions with A nucleon and a charge state Q.  Demonstrate than the 
maximal kinetic energy (EK/A ) of a cyclotron can be written as  𝐸௄ 𝐴 =  𝐾௕ . ( 𝑄 𝐴⁄ )ଶ⁄  

 
Nota :  Give  the Kb factor in a non-relativistic approximation  using the extraction radius Rextr, the magnetic 
field B.  Assuming the mass of the ions is  m~ Amu  and the charge Q  of the ions is  q= Qe0  . The quantity mu  
is the atomic mass unit (mu= 1.66 10-27kg) 

b. A cyclotron with Kb= 30 MeV can accelerate proton up to 30 MeV. What would be the maximal 
energy of a carbon ion beam 12C4+ in this cyclotron. 
 

       c. What will be the revolution frequency with a field B0= 1.26 Tesla for proton beam (H1+)  and for or the 
12C4+ beam . 

Answer   : 

a. The kinetic energy is E௄ = (𝛾 − 1)mcଶ~
ଵ

ଶ
𝑚𝑣ଶ =

ଵ

ଶ
𝑚. (𝑅௘௫௧௥ . 𝜔)ଶ =

ଵ

ଶ
𝑚. (𝑅௘௫௧௥ . 𝑞𝐵/𝑚)ଶ 

E௄
𝐴ൗ =

1

2
𝑚

𝐴ൗ . ൬𝑅௘௫௧௥ .
𝑞𝐵

𝑚
൰

ଶ

=
1

2
𝑚௨. ൬𝑅௘௫௧௥ .

𝑒଴𝐵

𝑚௨

൰
ଶ

. ൬
𝑄

𝐴
൰

ଶ

 =  1
2ൗ  (𝑅௘௫௧௥ . 𝑒଴𝐵)ଶ/𝑚௨ . (𝑄/𝐴)ଶ    

 

Therefore        E௄
𝐴ൗ =  

ଵ

ଶ

(ோ೐ೣ೟ೝ.௘బ஻)మ

௠ೠ
. ቀ

ொ

஺
ቁ

ଶ

 =      𝐾௕ . ቀ
ொ

஺
ቁ

ଶ

                                  

 
b. For a proton (1 nucleon), we have A=1 and  q=+1 e0     EK/A = 30 . (Q/A)2 =30  MeV/A   

For 12C4+ : 12 nucleons (6 protons,6 neutrons), q=+4 e0 .So the maximal energy for 12C4+  is              
EK/A= 30. (4/12) 2=  3.33 MeV/A   (« MeV per nucleon ») 
 Frev=rev /2= (qB/m) / 2 = 60 MHz   with protons and Frev=20 MHz with 12C4+. 

Let us note that the revolution frequency for 12C4+, =qB0/m ~ q B/(A mu ) , will be  3 times smaller than the 
one of the proton beam.  We could imagine to operate the cyclotron at Frf=60 Mhz for the two beams, 

corresponding to  H=RF/ =1  for protons, and H=3  for Carbons  (a slight B adjustment would be needed, 
since the carbon ion mass is not exactly twelve times the proton mass). 

3 Transverse dynamics and orbit stability 

 
In the cyclotron magnet, the particles travel a long way before the extraction corresponding to many 
turns in the magnetic field. Therefore, it is important to study if a particle starting with a slight deviation 
to the reference orbit, is transported correctly.  

 
To study this aspect, we will introduce the following concepts:  cylindrical coordinates, field index n, 
transverse stability and tunes. 

 

3.1 Equation of motion in cylindrical coordinates 

 
We will provide rigorous formulation of the particle trajectories in the vicinity of an ideal circular 
trajectory over one turn:  we use a cylindrical coordinate system (er(t) , ez , e(t) ) .   

How evolves an arbitrary particle, in the field B( r): 

𝒓 (𝑡) = R . 𝒆𝒓 +  z. 𝒆𝒛 = (R଴ + 𝑥(𝑡)). 𝒆𝒓 +  z. 𝒆𝒛 
 



 
Fig. 6 In the cylindrical system, the basis vector er  and e (azimuthal vector) follow the reference particle and 
evolve as function of time. Let us note that the frame  (er , ez , e)  is direct :   er x ez , = + e . In the equations 

of motion, computing the derivative of the position vector r is required. Using a Cartesian frame (X,Y),  basic 

vectors are :  er=(cos(t),  sin(t) )  and  e=( sin(t), cos( t) ).Then, the vector derivatives required in the 
equations of motion are: 𝑑𝒆𝒓 𝑑𝑡⁄ = 𝝎 . 𝒆𝜽 =  𝑑𝜃/𝑑𝑡. 𝒆𝜽 and 𝑑𝒆𝜽 𝑑𝑡⁄ = −𝝎 . 𝒆𝒓.  Finally, we have  𝒅𝟐𝒆𝒓 𝑑𝑡ଶ⁄ =

−𝜔ଶ . 𝒆𝒓 =  𝑣ଶ/𝑅ଶ. 𝒆𝒓 , since =v/R.   

The equations of motion will be determined by   : 
ௗ𝒑

ௗ௧
= 𝑚𝛾

ௗ௩

ௗ௧
= 𝑚𝛾

ௗమ𝒓

ௗ௧మ
 

 

In the horizontal plane, the time derivatives will act on R(t),  er(t), and  e(t) .   

Since we have 𝑑𝒆𝒓 𝑑𝑡⁄ = 𝝎 . 𝒆𝜽 =  𝑑𝜃/𝑑𝑡. 𝒆𝜽 : (see Fig. 6  for a demonstration) 

𝒗 =
𝑑𝒓

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
. 𝒆𝒓 +  

𝑑𝑧

𝑑𝑡
  𝒆𝒛 + 𝑅

𝑑𝜃

𝑑𝑡
. 𝒆𝜽 

While the acceleration a is determined (by using 𝑑𝒆𝜽 𝑑𝑡⁄ = −𝝎 . 𝒆𝒓 ): 
 

𝒂 =
𝑑ଶ𝑟

𝑑𝑡ଶ
=

𝑑𝒗

𝑑𝑡
= [

𝑑ଶ𝑅

𝑑𝑡ଶ 
− 𝑅 ൬

𝑑𝜃

𝑑𝑡
൰

ଶ

]. 𝒆𝒓 +
𝑑ଶ𝑧

𝑑𝑡ଶ
  𝒆𝒛 + [𝑅.

𝑑ଶ𝜃

𝑑𝑡ଶ 
+ 2𝑟.

𝑑𝑅

𝑑𝑡
.
𝑑𝜃

𝑑𝑡
]. 𝒆𝜽   

 
Outside the gap, there is no electric field, the velocity |v| is constant, and the Lorentz factor  is constant: 
we can neglect d/dt= d 2 /dt2 ~ 0   (we have no longitudinal acceleration). The relativistic Newton-
Lorentz equation is: 

𝑑ଶ𝒓

𝑑𝑡ଶ 
=  

𝑞

𝑚𝛾
 (𝒗 × 𝑩) 

Expressing the cross product in the cylindrical frame: 

𝒗 × 𝑩 = อ

𝒆𝒓 𝒆𝒛 𝒆𝜽

𝑣௥ 𝑣௭ 𝑣ఏ

𝐵௥ 𝐵௭ 𝐵ఏ

อ 

This leads to the 3 equations used to study the stability of motion in an arbitrary field B=(Br,Bz,B) 
𝑑ଶ𝒓

𝑑𝑡ଶ 
. 𝒆𝒓 = [

𝑑ଶ𝑅

𝑑𝑡ଶ 
− 𝑅 ൬

𝑑𝜃

𝑑𝑡
൰

ଶ

] =  
𝑞

𝑚𝛾
 (𝑣௭. 𝐵ఏ − 𝑣ఏ. 𝐵ఏ) 

𝑑ଶ𝒓

𝑑𝑡ଶ 
. 𝒆𝒛 =

𝑑ଶ𝑧

𝑑𝑡ଶ 
=  

𝑞

𝑚𝛾
 (𝑣ఏ. 𝐵௥ − 𝑣௥. 𝐵ఏ) 

𝑑ଶ𝒓

𝑑𝑡ଶ 
. 𝒆𝜽 = 𝑅.

𝑑ଶ𝜃

𝑑𝑡ଶ 
+ 2

𝑑𝑅

𝑑𝑡
.
𝑑𝜃

𝑑𝑡
=

𝑞

𝑚𝛾
 (𝑣ఏ. 𝐵௥ − 𝑣௥. 𝐵ఏ) 

 



3.2 The definition of local field index n 

 
In an isochronous cyclotron, the magnetic field increases with the radius to fullfill the ischronism 
condition. As we will see later, the magnetic will generate defocusing force. Let’s suppose that the field 
evolution can be described locally as a power law :  

                                                             𝐵௭(𝑟) = 𝐾 𝑅ି௡  

The n factor is called “field index”. This  definition of “n” eases the analytical calculation of the orbit 
stability but does’nt restrict the generality. The sign is a convention. 

       Nota : If the field is Bz=B0 at r=R0,   the field can be written  as    𝐵௭(𝑟) = 𝐵଴. (𝑟/𝑅଴)ି௡  

Around a given orbit with a radius R0,  the vertical fied can be expanded a radius 𝑅 =  𝑅଴ + 𝑥 as 

                               𝐵௭(𝑅 =  𝑅଴ + 𝑥) =  𝐵௭( 𝑅଴) + 𝑥. ቀ
ௗ஻೥

ௗோ
ቁ + ⋯ = 𝐵଴ − 𝑥. 𝑛 ቀ

஻బ

ோబ
ቁ + ⋯ 

                              𝐵௭(𝑅 =  𝑅଴ + 𝑥) = 𝐵଴(1 − 𝑥.
௡

ோబ
) + ⋯ 

The field index n (R) can be seen as the fractional change in field assiociated with a fractional change 
in radius. 

                                 𝑛(𝑅) = ((𝑑𝐵௭)/𝐵௭ )/(𝑑𝑅/𝑅) = ቀ𝑅
𝐵௭

ൗ ቁ . ቀ
𝑑𝐵௭

𝑑𝑅
ൗ ቁ  

  Historical note : In the early synchrotron, the vertical focusing was not ensured with quadrupoles,but by dipoles 
having a slight a positive field index (a decreasing field with radius : n >0 ) :This technics is called weak focusing. 
In the isochronous cyclotrons, the field index is ajusted for isochronism and so the field should increase with 
increasing energy and radius (negatif field index  n <0 ). 

Between the poles, in the vaccum chamber, the static magnetic field satisfies Curl B=0. The  dependence 
of the vertical field Bz, produces a radial field component Br, as it can be seen from the maxwell equation.  

∇ × 𝑩 = ൬
𝑑𝐵ఏ

𝑑𝑧
−

𝑑𝐵௭

𝑅𝑑𝜃
൰ . 𝒆𝒓 +  ൬

𝑑(𝑅𝐵ఏ)

𝑅𝑑𝑅
−

𝑑𝐵ఏ

𝑑𝑧
൰ . 𝒆𝒛 + ൬

𝑑𝐵௭

𝑑𝑅
−

𝑑𝐵௥

𝑑𝑧
൰ . 𝒆𝜽 

 

-Using 𝐵௭(𝑅) = 𝐾 𝑅ି௡  and (∇ × 𝑩). 𝒆𝜽 = 0, we have 
ௗ஻ೝ

ௗ௭
=

ௗ஻೥

ௗோ
  = −  𝑛 𝐾 𝑅௡ିଵ = −𝑛 .

஻బ

ோ
           

 

                                     so   𝐵௥ =  −𝑧. 𝑛. 𝐵଴ ቀ
௭

ோబ
ቁ + 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡     (the constant is zero)             

-Since the radial component of curl B is zero (so  𝑑𝐵ఏ/𝑑𝑧 = 𝑑𝐵௭/𝑅𝑑𝜃 ), therefore to the first order in 
z, the azimutal component B is : 

𝐵ఏ =  𝑧.
ௗ஻೥

ோௗఏ
+… 

Finally,we expect a general magnetic field 𝑩 = (𝐵௥ ,  𝐵௭, 𝐵ఏ ) in the cyclotron with the following 
appearence    :                 

𝐵௥ =  −𝑧. 𝑛. 𝐵଴.
𝑧

𝑅
+ ⋯          𝐵௭ =

𝐵଴

ቀ1 −
ோమఠమ

௖మ ቁ

భ

మ

= 𝐾 𝑅ି௡         𝐵ఏ =  𝑧.
𝑑𝐵௭

𝑅𝑑𝜃
+ ⋯ 



Exercice  4 : Demonstrate that the field index n, is related to the Lorentz factor in an  isochronous 

cyclotron  :   𝑛(𝑅) = 1 − 𝛾ଶ . Remember that    𝑛 = ቀ𝑅
𝐵௭

ൗ ቁ . ቀ
𝑑𝐵௭

𝑑𝑅
ൗ ቁ 

Answer :  Since in isochronous cyclo.    𝐵௭ =  𝐵଴. 𝛾(𝑅) ,    let’s computes   
ௗ ஻೥

ௗோ
= 𝐵଴.

ௗఊ

ௗோ
          

  
ௗ஻೥

ௗோ
= 𝐵଴.

ௗఊ

ௗோ
= 𝐵଴

ௗ൬ଵି
ೃమഘమ

೎మ ൰
షభ

మൗ

ௗோ
= 𝐵଴  × ቀ

ଶோ ఠమ

௖మ ቁ × −
ଵ

ଶ
× ቀ1 −

ோమఠమ

௖మ ቁ
ି

య

మ
 

    
𝑑𝐵௭

𝑑𝑅
= −𝐵଴ . ቆ

𝛽ଶ 

𝑅
ቇ . ቆ1 −

𝑅ଶ𝜔ଶ

𝑐ଶ
ቇ

ିଷ/ଶ

= −
𝐵଴

𝑅
. 𝛽ଶ .  𝛾ଷ =  − ൬

𝐵଴. 𝛾

𝑅
൰ . 𝛽ଶ .  𝛾ଶ = − ൬

𝐵௭

𝑅
൰ . 𝛽ଶ .  𝛾ଶ     

Remember   𝛾ଶ = 1/(1 − 𝛽2 )    so it implies that 𝛽2 𝛾ଶ = 1 −  𝛾ଶ     
 
Finally, we have    

ௗ஻೥

ௗோ
= − ቀ

𝐵𝑧

𝑅
ቁ . 𝛽2 .  𝛾2 = − ቀ

𝐵𝑧

𝑅
ቁ . (1 −  𝛾2 ) 

Besides    
ௗ஻೥

ௗோ
= −𝑛 𝐾. 𝑅ି௡ିଵ = −𝑛 ቀ

𝐵𝑧

𝑅
ቁ 

          So, by identification, we have in isochronous cyclotron :   𝑛(𝑅) = 1 − 𝛾ଶ 

               

3.3 Horizontal stability and the radial tune Qr 

 
A reference particle (m, q, v=v0 e) is injected in a cyclotron having a field Bz(r)=B0 (r/R0)-n  at  a 
radius r=R0. The field B0 is adjusted to  B0 =(P0/q)/ R0= B/ R0 . 

This particle will describe a perfect circle of radius R=B/Bz=R0 which correspond to the radius of 
injection. 

 If a particle with the same velocity 𝑣଴ = 𝑅଴𝜔  is injected a radius R= 𝑅଴ + 𝑥 , it will oscillates 
around the ideal trajectory. 

𝒓 (𝑡) = R . 𝒆𝒓 + z(t). 𝒆𝒛 = (𝑅଴ + 𝑥(𝑡)). 𝒆𝒓 + z(t). 𝒆𝒛 
 
We project the Newton equation on horizontal plane (the radial plane), as obtained in 3.1 : 

ቈ
𝑑ଶ𝑅

𝑑𝑡ଶ 
− 𝑅 ൬

𝑑𝜃

𝑑𝑡
൰

ଶ

቉ =
𝑑ଶ𝑅

𝑑𝑡ଶ 
− 𝑅(𝜔)ଶ =  ቈ

𝑑ଶ𝑅

𝑑𝑡ଶ 
− 𝑅 ቀ

𝑣଴

𝑅
ቁ

ଶ

቉ =  
𝑞

𝑚𝛾
 (𝑣௭. 𝐵ఏ − 𝑣ఏ. 𝐵ఏ) 

 

For this particle, we have 
ௗఏ

ௗ௧
= 𝜔 =

௩

ோ
=

௩బ

ோ
  

 
So, with  𝑅 = 𝑅଴ + 𝑥   

 ቈ
𝑑ଶ𝑥

𝑑𝑡ଶ 
−

𝑣଴
ଶ

𝑅଴ + 𝑥
቉ =  

𝑞

𝑚𝛾
 (𝑣௭. 𝐵ఏ − 𝑣ఏ. 𝐵௭) 

 

      to the first order in x : (𝑅଴ + 𝑥)ିଵ = 𝑅଴
ିଵ . (1 + 𝑥/𝑅଴)ିଵ = 𝑅଴

ିଵ . (1 −
௫

ோబ
+ 0(𝑥ଶ)  )   

so we get   



 ቈ
𝑑ଶ𝑥

𝑑𝑡ଶ 
− 𝜔ଶ𝑅଴. (1 −

𝑥

𝑅଴
+ ⋯ )቉ =  

𝑞

𝑚𝛾
 (𝑣௭. 𝐵ఏ − 𝑣ఏ. 𝐵ఏ) 

       -The quantity vz.B is zero since B =0 in our case (no azimuthal component)   

          - The velocity of our particle is 𝑣ఏ = 𝑣଴ = 𝑅଴𝜔and  𝑞𝐵଴/𝑚𝛾 = 𝜔 (see 2.2)

          - The field around R0  is 𝐵௭ = 𝐵଴  ቀ1 − 𝑥.
௡

ோబ
ቁ + 0(𝑥ଶ) 

ቈ
𝑑ଶ𝑥

𝑑𝑡ଶ 
− 𝜔ଶ𝑅଴. + − 𝜔ଶ𝑥 + ⋯ )቉ = − 

𝑞

𝑚𝛾
 [𝑣ఏ ]. [𝐵௭] =

𝑞𝐵଴

𝑚𝛾
 [𝑅଴𝜔]. [(1 − 𝑥. 𝑛/𝑅଴ ) + ⋯ ] 

 
         Rearranging the equation, we get 

ቈ
𝑑ଶ𝑥

𝑑𝑡ଶ 
− 𝜔ଶ𝑅଴. −𝜔ଶ𝑥 + ⋯ )቉ = −𝜔[𝑅଴𝜔]. [(1 − 𝑥. 𝑛/𝑅଴ ) + ⋯ ] 

𝑑ଶ𝑥

𝑑𝑡ଶ 
= −𝜔ଶ(1 −  𝑛)𝑥 + ⋯  

The field index n, being negative in an isochronous cyclotron since dBz/dR >0, the quantity n)  is 
positive : indicating a sinus like solution. Hence, a particular solution can be found using initial condition 
x(t=0) =x0 .    At first order,   

                                   𝑥(𝑡) = 𝑥଴ cos (𝜔 𝑄௥  𝑡 + 𝜑)   with  𝑄௥ = (1 − 𝑛)ଵ/ଶ 

The quantity  𝑄௥ = (1 − 𝑛)ଵ/ଶ is called the “radial tune”, it correspond to the number of oscillations 
per turn in the radial plane around the reference orbit. The motion correspond to a stable oscillation if 
Qr is real, i.e. ( 1-n) >0.  

 

3.4 Vertical stability 

 
Let us follow a particle starting at radius R=R0 at the altitude z=z0 between the pole. The study of the 
motion is obtained by projecting the newton equation on the ez axis (3.1)                           

𝑑ଶ𝒓

𝑑𝑡ଶ 
. 𝒆𝒛 =

𝑑ଶ𝑧

𝑑𝑡ଶ 
=  

𝑞

𝑚𝛾
 (𝑣ఏ. 𝐵௥ − 𝑣௥. 𝐵ఏ) 

 
 Using ∇ × 𝑩 = 𝟎, the field index produces the radial component Br= -n B0 z/R, While the angular 

component could come from an angular modulation of Bz :𝐵ఏ =  𝑧.
ௗ஻೥

ோ ௗఏ
+ ⋯ 

The revolution frequency being  =qB0/m we have to the first order in z :    

                    ௗమ௭

ௗ௧మ =
𝒒

௠ఊ
ቀ−𝑅𝜔. 𝑛.

஻బ ௭

ோ
− 𝑣௥. 𝑧.

ௗ஻೥ 

ோௗఏ
ቁ = −𝜔ଶ. ቀ𝑛 +

௩ೝ

ఠ஻బ 
.

ௗ஻೥ 

ோௗఏ
ቁ .z 

 

We define the so called vertical tunes Q :  𝑄௭
ଶ = ቀ𝑛 +

௩ೝ

ఠ஻బ 
.

ௗ஻೥ 

ோௗఏ
ቁ 

and we get ௗ
మ௭

ௗ௧మ = −𝜔ଶ. 𝑄௭
ଶ . 𝑧

The nature of the dynamics in the vertical plane will depend of the sign of Qz
2 .  



                                     - Case [ Qz
2 ] <0  : vertical  instability 

if the azimuthal component is zero B=0 , Qz
2 n  since  dBz /dA particular solution of the 

equation is an exponential: the field index is negative in isochronous cyclotron (see ex. n°4, n=1-2 )   

𝑧(𝑡) = 𝑧଴ exp(𝜔 |−𝑛|ଵ/ଶ 𝑡) =  𝑧଴ exp( |−𝑛|ଵ/ଶ 𝜃) 

All the trajectories with z0≠0 will diverge exponentially (the transmission of such cyclotron would be 
very low). 

                                 - Case [ Qz2 ] > 0  : vertical stability 

If some angular modulations are done on the magnet poles, providing non zero B  components, the 

quantity Qz
2 can be positive: 𝑄௭

ଶ = ቀ𝑛 +   ቀ 
௩ೝ

ఠ஻బ
ቁ .

  ௗ஻೥

ோௗఏ
  ቁ  > 0

 In that case, a particular solution of the equation is a cosinus : 

                  𝑧(𝑡) = 𝑧଴ cos (𝜔 𝑄௭  𝑡 + 𝜑)   with  𝑄௭ = ට(𝑛 +   ( 
௩ೝ

ఠ஻బ
).

  ௗ஻೥

ோௗఏ
  ) 

The quantity Qz
 correspond to the number of oscillation per turn of any particle around the reference 

orbit in the vertical plane. An angular field modulation Bz= B0.F(r,)   associated with the B component 
are used to provide an additional vertical  focusing . The cyclotron with such field dependence is called 
“Azimuthally Varying Field”  (see “AVF cyclotron” chapter). The motion in the vertical plane should 
be stabilized with angular field modulations Bz= f(). 

 

3.5 Qualitative understanding of the vertical instability 

 

In the isochronous cyclotrons, the vertical field Bz should increase with the radius in such way to 
compensate the increase of the  factor  B= B0 (r) to keep  constant. This can be obtained by using 
correction coils or, by reducing the gap a large radius (since the local field Bz is inversely proportional 
to aperture between the two poles:  Bz( r) ~ 1/gap(r) . 
The non-uniformity of the magnetic field Bz generates a radial field component Br. The Lorentz force, 
coupled to the circular motion (v=v =R.), generates a vertical defocusing force. The particles that are 
not injected exactly on the median plane will hit the cyclotron pole. The solution to overcome the 
defocusing force will be to add an azimuthal field component B, as we will see in the chapter 4. 

 



 
Fig. 7 : The magnetic field lines are perpendicular to the pole surfaces, due to Maxwell equations (Curl B=0). The 
curvature of the magnetic field lines depicted correspond to a radial component Br. As we have seen in the last 
paragraph    B r   =  - n B0  z  / R   
    -In the upper plane,  Br is directed the centre of the cyclotron, this generates the vertical force Fz toward the top, 
As it can be seen with the right hand rule : Fz=v.Br  -z 
    -In the lower plan, Br is directed outwards, generating a vertical force Fz directed downward  
    -In the median plane, Br=0 because of the symmetry, there is no force. 
This force Fz proportional to z correspond to a vertical defocusing induced by the increasing function Bz (R). 

4 Azimuthally Varying Field (AVF) cyclotron 

4.1 Hill and valley 

 
As we have seen, in the isochronous cyclotrons, we have a radial field Br that gives a vertical 
defocusing force   :     𝐹௭ = 𝑞 (𝑣ఏ. 𝐵௥ ) = 𝑞 𝑣ఏ. (𝑛. 𝐵଴ 𝑧/𝑅) < 0  

This defocusing force is linear in z (like a defocusing quadrupole). With a field with B component, 
we could theoretically add a new force which can compensate the defocusing force: 

                                                          𝐹௭ = 𝑞 (𝑣ఏ. 𝐵௥ − 𝑣௥. 𝐵ఏ)  

A modulation of the magnet gap, function of the azimuth  produces such B component. If we realize 
a magnet gap modulation adding  N angular sectors, i.e. a succession of hills and valleys.  We get a 
vertical field :𝐵ఏ(𝑅, 𝜃) = 𝐵଴. [1 + 𝑓 sin 𝑁𝜃] 

- It produces an azimuthal field (Curl B=0)   𝐵ఏ = 𝑧. 𝑑𝐵௭/𝑅𝑑𝜃 = + 𝐵଴. 𝑓. 𝑁 cos 𝑁𝜃 /𝑅  
 

- Besides, the local orbit curvature radiusin the high field sectors (hill) is reduced  since 
locally  𝑅ு௜௟௟ = 𝐵𝜌/𝐵௭   = 𝐵𝜌/ 𝐵଴(1 + 𝑓) ≈  𝑅଴(1 − 𝑓) . While  increases in the valley 
(low field region)  𝑅௏௔௟௟௘௬ ≈ 𝑅଴(1 + 𝑓) 

 



The evolution of the trajectory radius corresponds to a radial velocity  𝑣௥ = 𝑑𝑅/𝑑𝑡. Therefore the 

combination of the two effects generate a new vertical force Fz = -q(vr B ). This effect has been 
discover by L.H. Thomas in 1938, which has improved a lot the transmission of the early cyclotrons. 

 
Fig. 8 :  Principle of pole modulation with a 4 “straight sectors” cyclotron. The pole modulation generates: 

-An oscillation of the trajectories in the horizontal plane corresponding to non-circular orbit                    

  𝑣𝑟 = 𝑑𝑅/𝑑𝑡 ≠ 0  (𝑣௥ < 0 at hill entrance and  𝑣௥ > 0 at the exit) 

-An angular field component proportional to z : 𝐵ఏ = 𝑧.
ௗ஻೥

ோௗఏ
+ ⋯  

The created force Fz is always inverse to z  (this is a vertical focusing force as you can realized applying the right 

hand rule)   :𝐹௭
஺௏ி = 𝑞 (−𝑣௥. 𝐵ఏ)~ − 𝑧 

 

4.2 Flutter F and averaged field index k 
 

The effect of the vertical focusing is maximal when the particle crosses the edge, and zero in the middle 
of a sector. The evaluation of the average focusing effect over one turn, is related to the flutter function 
F(R) .  F(R) is defined as the mean-squared relative azimuthal fluctuation of the magnetic field Bz  along 
a circle of radius R :  

                                                          𝐹(𝑅) =
〈  (  ஻೥ (ோ,ఏ)ି〈஻೥ (ோ,ఏ) 〉  )మ  〉

〈஻೥ (ோ,ఏ) 〉మ =
ఙಳ೥ 

మ

〈஻೥  〉
మ   

Where 〈𝐵௭ (𝑅, 𝜃) 〉 =
ଵ

ଶగ
∫ 𝐵௭ (𝑅, 𝜃) 𝑑𝜃

ଶగ

଴
= 𝐵଴

  is the average field over one turn. 

The flutter F is a useful quantity, because the tune Qz is connected to the betatron oscillation frequencies, 
and it can be expressed quite precisely in terms of F(r). 
The local curvature radius in a complex field Bz() does not coincide anymore with the radius R 
(the coordinate R) . Let us define an equivalent radius <R>, being connected to the path length C over 
one turn: 〈𝑅 〉 =  𝐶/2𝜋








 
The magnetic rigidity is the product of the average field and radius : 

𝐵𝜌 = 𝑃/𝑞 = 〈𝐵(𝜃) 〉. 〈𝑅 〉 =  𝐶/2𝜋 
 
Demonstration: Since locally    𝐵(𝜃) = 𝐵𝜌/𝜌(𝜃) , we have  

〈𝐵 〉 =
1

𝐶
න 𝐵. 𝑑𝑠 =

𝐵𝜌

𝐶
න

1

𝜌(𝜃) 
. 𝑑𝑠 =

𝐵𝜌

𝐶
න

1

𝜌(𝜃) 
. 𝜌𝑑𝜃 =

𝐵𝜌

𝐶
2𝜋 = 𝐵𝜌/〈𝑅 〉

ଶగ

଴

 

 
Exercise 5:  Considering a four sectors cyclotron having a field :    𝐵ఏ(𝑅, 𝜃) = 𝐵଴ . [1 + 𝑓 cos 𝑁𝜃] ,  Compute the 
“Flutter” F(r) . 

Answer :   We have the average field   〈𝐵௭ (𝑅, 𝜃) 〉 =  𝐵଴ (𝑅) 

          〈  (  𝐵௭ − 〈𝐵௭  〉  )ଶ  〉 =
ଵ

ଶగ
∫ 𝐵଴

ଶ. [1 + 𝑓 cos 𝑁𝜃]ଶ − 𝐵଴
ଶ 𝑑𝜃

ଶగ

଴
    with N=4 

since cos 𝑁𝜃 = ൫𝑒௜ேఏ + 𝑒ି௜ேఏ൯/2     → cosଶ 𝑁𝜃 = (1 + cos 2𝑁𝜃)/2          

The flutter is  F=
〈  (  ஻೥ ି〈஻೥  〉  )మ  〉

〈஻೥ 〉
మ =

ଵ

ଶగ
∫  [𝑓 cos 𝑁𝜃]ଶ 𝑑𝜃 =  𝑓ଶ/2 

ଶగ

଴
      ( whatever sector number N ) 

 
 
Though the trajectories are complex in an AVF cyclotron, a simple formula holds: 𝐵𝜌 = 〈𝐵 〉〈𝑅 〉 
The field index should be defined of as an average and the field evolution over one turn is:  

〈𝐵௭ 〉 = 〈𝐵଴ 〉. ቆ 
〈𝑅 〉

〈𝑅଴ 〉
ቇ ௞                   

 
So, locally in magnet, we can used the local field index n : 

𝑛(𝜌, 𝜃) =  −(𝑑𝐵/𝑑𝜌). ( 𝜌/ 𝐵) 
where 𝜌(𝜃)  = 𝐵𝜌/𝐵(𝜃) is the curvature radius in the magnet. 
 

While an AVF machine the average field index k over one turn is 
 

𝑘(〈𝑅 〉) =  +(𝑑𝐵/𝑑〈𝑅 〉). ( 〈𝑅 〉/ 𝐵) 

Where 〈𝑅 〉 =
ଵ

ଶగ
∫ 𝑑𝑠  is the average radius 

 
Nota : the sign + of k corresponds to the convention of synchrotron community and is not coherent with n (sorry...). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Exercise 6: Compute the average field index k, in a separated sector cyclotron. 

Answer : In a cyclotron without azimuthal field modulation, the trajectories are circular, and we 

have  Bz(θ) = 〈𝐵 〉 and  〈𝑅 〉 = 𝐵𝜌/〈𝐵 〉  = 𝜌 ,   so    k =-n .  
 
A Separated Sector Cyclotron with N radial sectors, alternates straight lines of Length L0 and circular 

sections with /N. The ion path for a reference ion is  2+N L0 =  2 <R> . 

The constant factor =<R>/ drives the field in the sectors: for a given trajectory, we have   
Bsector=B<B><R>/<B>.  
We have demonstrated that𝐵𝜌 = 〈𝐵 〉〈𝑅 〉 therefore  〈𝑅〉 = 𝐵𝜌/ 〈B〉   = 𝛾 𝑚 𝑣/q 〈𝐵〉 

Using the average radius <R>, the particle revolution is given by 𝜔 = 2𝜋𝐹௥௘௩ = 2𝜋
௩

ଶ஠〈ୖ〉
 =  

୯ 〈஻〉

 ௠ ఊ
 

For isochronism (=Constant), we should have <B>=B0 R.Finally, we recover the usual formula 
for the average field index (except the sign convention) 

𝑘(〈𝑅 〉) =  + ቀ
ௗ஻

ௗ〈ோ 〉
ቁ . ቀ

〈ோ 〉

஻
ቁ =  𝛾ଶ − 1           (see exercise n° 3) 

 

4.3 Edge focusing and AVF cyclotron 
 
The mechanism of vertical focusing in a cyclotron with straight radial sectors is very similar to the edge 
focusing that occurs at the entrance and exit of the rectangular bending magnets in synchrotron. 
A dipole magnet, which has an entrance edge non-perpendicular to the reference trajectory, generates 
focus or defocus as a function of the sign of the edge angle. 

In the deviation plane (horizontal), a positive edge corresponds to less deviation of external 
trajectories (x>0), which ends up as an equivalent defocusing lens (see fig. 9).        

 

 

Fig. 9: In a sector magnet, the edge crossing has no effect. In a rectangular magnet a positive edge angle at entrance 
1 and exit  2 defocus in horizontal plane : fx<0. 

 
With a positive entrance edge angle (1>0), like the rectangular magnet, the focal length associated 
with an horizontal plane is 
                                                         fx = - R0/ tan 1 
Like a quadrupole, the effect in the vertical plane is inverse to the one in horizontal plane and fy= - fx = 
R0/ tan 1, the edge is vertically focusing (see a basic course in beam optics for a full demonstration).  
 



Exercice 7: Write down the transfer matrix R of the entrance edge with positive angle 1 in vertical plane 
(y,y’)= R. (y,y’)  with a thin lens approximation.  

Answer  :   in the edge the vertical angle change y’=y0/f y = y0/ ( R0/ tan 1 ) 

         After the dipole edge, we have    y = y0    and  y’=y0 tan 1/R0  + y’0                                                           

This can be written on the a matrix form:    ቀ
𝑦

𝑦′ ቁ = ቆ
1 0

1
𝑓௬

ൗ 1ቇ . ቀ
𝑦଴

𝑦଴′ቁ = ቆ
1 0

𝑡𝑎𝑛𝛽ଵ
𝑅଴

ൗ 1
ቇ . ቀ

𝑦଴

𝑦଴′ቁ 

 
 In the AVF cyclotrons, the crossing of the hill edge is such that the equivalent edge angle is positive: 
though the reference frame (R,z,)  is different than the usual (x,y,s) optical frame of a synchrotron, the 
mechanism is the same.   
  
   We can demonstrate (ex. 8) the vertical tune is    : 

𝑄௭
ଶ = −𝑘 +

1

2
𝑓ଶ.

𝑁ଶ

𝑁ଶ − 1
= −𝑘 + 𝐹

𝑁ଶ

𝑁ଶ − 1
 

 
Exercise 8 : How to compute the vertical tune in an AVF field : 𝐵ఏ(𝑅, 𝜃) = 𝐵଴. [1 + 𝑓 sin 𝑁𝜃] 

- First compute a periodic solution for the radial motion R =r ( 
- Then compute the particle dynamic in the vertical plane. 
 

Answer : The field perturbation in AVF generates    𝛿𝐹௥ = −𝑞 𝑣ఏ . 𝛿𝐵௭  = −𝑞 𝑣ఏ . 𝛿𝐵௭ . 𝑓 sin 𝑁𝜃                      
So, we expect an evolution as 𝑅 = 𝑅଴ + 𝑥(𝑡) =  𝑅଴  A. sin(𝑁𝜔𝑡)  let’s compute A.The effect of field index k 
is neglected radially, because the smooth variation of B(R) is smaller than the variation of B() for the 
equilibrium orbit. 

    ௗమ௫

ௗ௧మ = −𝜔ଶ𝑥 – 𝑞 𝑣ఏ . 𝐵଴
௙ ୱ୧୬(ேఏ)

௠ఊ
  =   𝜔ଶ𝑥 −  𝜔ଶ𝑅଴ . 𝑓 sin(𝑁𝜃)  

 (since   𝑣ఏ = 𝑅଴ 𝜔 and𝜔 = 𝑞𝐵଴/𝑚𝛾 
       −𝜔ଶ𝑁ଶ𝐴 sin(𝑁𝜃) = −𝜔ଶ𝐴 sin(𝑁𝜃) − 𝜔ଶ𝑅଴𝑓 sin(𝑁𝜃)   

    Hence the amplitude is    𝐴 = 𝑓  𝑅଴ ⁄ (𝑁ଶ − 1)     

 The radial velocity    𝑣௥ = 𝑑𝑅/𝑑𝑡 =   (𝑑θ/𝑑𝑡). (𝑑𝑅/𝑑θ)   =   𝜔  𝑁 𝐴  cos (𝑁θ)     

while the azimuthal field is𝐵ఏ = 𝑧. 𝑑𝐵௭ /𝑅𝑑𝜃  =   + 𝑧 〈 𝐵 〉 𝑁 . 𝑓 cos (𝑁θ) / 𝑅଴     

       The vertical force is   𝐹௭
஺௏ி = −𝑞 𝑣௥ . 𝐵ఏ = − 𝜔𝑧. 𝑞〈𝐵〉 𝐴 𝑓𝑁ଶ cosଶ(𝑁𝜃)

 𝜔 = 𝑞〈𝐵〉/𝑚𝛾 we compute the vertical motion z(t) as in 3. 

                    ௗమ௭

ௗ௧మ = −𝜔ଶ〈𝑛〉 𝑧 +  
ிಲೇಷ

௠ఊ
= −𝜔ଶ〈𝑛〉 𝑧 +  𝜔ଶ𝑧 𝑓ଶ𝑐𝑜𝑠ଶ(𝑁θ).  

ேమ

ேమିଵ
              

   The average effect over one turn , 〈ிಲೇಷ

௠ఊ
〉 = 〈𝜔ଶ𝑓ଶ𝑁ଶ cosଶ(𝑁𝜃)〉 = 𝜔ଶ  

௙మ

ଶ
 

ேమ

ேమିଵ
= 𝜔ଶ. 𝐹.

ேమ

ேమିଵ
  

                             Finally we get :     𝑄௭
ଶ =

𝑑2𝑧

𝑑𝑡2
/𝜔2𝑧 =< 𝑛 > +𝐹

ேమ

ேమିଵ
 

 



4.4 Spiralled sectors 

 
We can use edges with spiral shape in AVF machines to enhance the vertical focusing effect over one 
turn. Shifting progressively the hill boundary with a function  g( R) gives a field  
                     

𝐵௭(𝑅, 𝜃) = 𝐵଴. [ 1 + 𝑓 sin( 𝑁(𝜃 − 𝑔(𝑅) ) ) ]

 

 
Fig. 10: Spiralled sectors with spiral inclination angle  and evolution of the tangent of the hill edges. The 
inclination of the sector edge  is related to the evolution of the edge g(R). For an archemedean spiral g(R)=R/A. 

On the fig.10, we understand the effect: 
-At the hill entrance, we get a vertical defocusing due to inclination of the field boundary (the 
inclination angle is negative <0) 

           - At the hill exit, we get a vertical focusing ( >0) 

The overall effect is focusing, like in a FoDo channel: alternating the gradient of the quadrupoles 
provides a net focusing effect. For the spiral geometry, we can use an archimedean spiral g( R) = R/A, 
in that case the inclination of the field boundary become simple             

tan ( (r) )= R. d (edge/dR = rR. d (R/A/dR = R/A 

 The tangent of the spiral angle , increases linearly with radius in archimedean spiral : So the associated 
z-focusing effect increases at large radius, compensating the increase of the relativistic vertical 
defocusing effect. 

 

4.5 Separated Sector Cyclotron (S.S.C.) 

 
When the Lorentz factor becomes large (>1.4) one has to increase the flutter term F to keep an 

efficient vertical focusing. This is possible by lowering the field in the valley down to zero : separating 
the sectors lead to the Separated Sector Cyclotron. The SSCs provide optimal beam quality, are adapted 
to high-energy beams. They require generally a pre accelerator for the beam injection. 

 



 
Fig. 11: PSI Ring cyclotron .The largest cyclotron of PSI (Villigen, Switzerland) provides a very intense proton 
beam (up to 2.5 mA) at 590 MeV. The total size is about 15 m diameter (Rextraction= 4.5m) .There are 8 independent 
magnets with a spiral shape, to increase as much as possible the z-focusing. Beside four RF cavities in the valleys 
are required for a separated turn extraction (chapter 7) to reduce the beam losses. The large beam power permit to 
produce high intensity secondary particles (neutrons, muons, pions) for different research fields. 

4.6 Tunes in AVF cyclotron with spiralled sectors 
 

With a complex calculation, the tunes in AVF cyclotrons and synchrocyclotron with N sectors appears 

as                                   𝑄௭
ଶ = −𝑘 +

ேమ

ேమିଵ
𝐹(1 + 2 tanଶ(𝜉) )+… 

𝑄ோ
ଶ = 1 + 𝑘 +

ଷேమ

(ேమିଵ)(ேమିସ)
𝐹(1 + 2 tanଶ(𝜉) )+… 

-The   term 1/ (N2-4)   in the radial tune means that a cyclotron geometry with two sectors 
(N=2) is unstable in horizontal plane. Therefore N=3 sectors is the minimal geometry. 

- In isochronous cyclotron, the average field index k is constrained by isochronous 
requierement(exercice 4 and 6)   k= 2-1  

 

4.6.1 Tunes and resonances  

 
The tune calculation is important to establish whether the motion is stable ( Q2>0), but it is not sufficient. 
At a certain energy, if the tunes reach an integer value (Qz =N), it means than any particle will go back 
nearly at the same position after one turn: So if a magnet produces a field defect (no magnet is perfect), 
the particles will see the same defect at each turn, producing large amplitude oscillations and finally 
beam losses. Moreover, If the tune corresponds to Qz =N/K the particles will go back to the same vertical 
position after K turns, it can excite a resonance except if K is very large. In a machine with large turn 
number, the oscillations in vertical plan can even excite the horizontal resonances (the non-linearities 
couple the vertical and horizontal motion). 

Thus, in the synchrotrons and cyclotrons, we try to adjust the tunes to avoid a resonance, by requiring 
K.Qr + L.Qz ≠ N during the acceleration, where K,L N are integers. In synchrotron tune is often constant, 
while in cyclotron the tunes evolves progressively. Only large cyclotron with a large turn number 
(Nturn>500) can excite a resonance, while in synchrotron is the worry is important since particles can 
perform more than 107 turns. 

 



4.6.2 Limits of the tunes formulas  

 
 The previous approximations for Q2 are not very precise, since these formulas correspond to a 
simplified field :  𝐵௭(𝑅, 𝜃) = 𝐵଴. [ 1 + 𝑓 sin( 𝑁(𝜃 − 𝑔(𝑅) ) ) ]
 
 In reality the magnetic field of real magnets is often more complex and better approximations has 
been computed for more general field with several harmonics N [7] 

For a more accurate determination of the tune Qz,r , we can determine numerically with a multiparticle 
code using a realistic field map to extract the first order transport matrix  R over one turn. We use a 
reference particle, which describe a closed orbit (the trajectory comes back at the same position after 
one turn without acceleration). The dynamic is periodic without acceleration and the matrix over one 
turn has the following form: 

𝑅(0,2𝜋) = ൬
cos( 𝜇) + 𝛼 sin (𝜇 ) β sin (𝜇 )

β sin (𝜇 ) cos( 𝜇) + 𝛼 sin (𝜇 )
൰ 

Where ( are the Twiss parameters 

The phase advance per turn Qis drawn from the half trace of the transport matrix : 

                                                    Cos = ½ Trace (R) 
So, we can extract z  and  rFinally, we can obtain the tunes numerically 

𝑄௭,௥ =
𝜇௭,௥

2𝜋ൗ  =
acos(  

𝑇𝑟𝑎𝑐𝑒 (𝑅) 
2

ൗ    ) 
2𝜋

൘ 
 Another limit of tunes formulas can be underlined: the tune concept does not describe fully the particle 
motion, since it’s a first order approach. The complexity of the cyclotron magnet and the complexity of 
the trajectories with the acceleration produces many non-linear effects. Therefore, a start-to-end multi-
particle simulation is always required. 

5 Frequency modulated cyclotrons (Not isochronous) 

 
Two machines resolve the problem of the detuning between particle revolutions and RF-field by 
cycling the RF frequency: Synchrocyclotron and FFAG [10,11].  

5.1 Synchrocyclotron 
 
The RF modulated cyclotron called synchrocyclotron are less used than the isochronous cyclotrons. In 
the synchrocyclotron, the B field is not shaped for isochronism, and the RF rf  is varied to 
synchronize few injected bunches during their acceleration: 

𝑞𝐵଴

𝑚 𝛾(𝑅)
= 𝑓(𝑡𝑖𝑚𝑒) = 𝜔௥௙(𝑡)/𝐻

During one cycle, the RF frequency is first adapted to the injection energy (=1). Progressively, the 
frequency is decreased to follow the evolution of the gamma factor of some particle. The frequency then 
reaches the value corresponding to the extraction energy. Then, the frequency restart at the highest value 
to be re-synchronized the acceleration of few other bunches. 
 
Any particle injected at RF phase  close to an ideal phase swill oscillate during the acceleration. 
This is the synchrotron oscillations. The phase s is called synchronous phase and corresponds to a 



particle phase permitting to cross the gaps at the same RF phase during the whole acceleration process. 
The particle revolution time Trev is not constant during the acceleration. 

 
Fig 12:  The cycle of the RF frequency. The revolution frequency decreases with (R) from the injection to 

extraction. The total acceleration E should take place during the decreasing part of the RF cycle RFcycle. The 
acceleration per turn must be on average: 

〈𝛿𝐸௧௨௥௡〉 = ∆𝐸/𝑁௧௨௥௡   with    𝑁௧௨௥௡ = 𝜏ோி௖௬௖௟௘/〈𝑇௥௘௩〉

 
The energy gain per turn is related to the gap Number Ngap ,the cavity aperture 𝛼௖௔௩, and the RF voltage 
U0: 

〈𝛿𝐸௧௨௥௡〉 = 𝑞 𝑁௚௔௣𝑈଴ sin(𝐻 𝛼௖௔௩/2) . cos(〈𝜑〉) =  𝑞 𝑉 ଴   cos(𝜑௦)       

 
Technically, the cycle of RF can hardly be faster than 1kHZ and the acceleration take a rather long time 

RFcycle~ 1ms, while the rf cycle is short <Trev>=H/<FRF> ~10-20ns, finally we have a large turn number 
in the synchrocyclotron: 𝑁௧௨௥௡ = 𝜏ோி௖௬௖௟௘/〈𝑇௥௘௩〉~10ସ −  10ହ     

The total acceleration voltage V0 per turn and the synchronous phase s are chosen to match the cycle 
of the RF (see fig. 12), therefore the energy gain Eturn must be small: 

〈𝛿𝐸௧௨௥௡〉 = 𝑞 𝑉 ଴   cos(𝜑௦) =
∆𝐸

𝑁௧௨௥௡
=  ൫𝐸௘௫௧௥௔௖௧௜௢௡ − 𝐸௜௡௝௘௖௧௜௢௡൯. 〈𝑇௥௘௩〉/𝜏ோி௖௬௖௟௘

The couple (V0, 𝜑௦)have to fullfil the equation :   𝑞 𝑉 ଴   cos(𝜑௦)    =  ∆𝐸. 〈𝑇௥௘௩〉/𝜏ோி௖௬௖௟௘    

The synchronous phase s  should be chosen to maximise the phase acceptance of the synchrocyclotron: 
a typical value like s =60° provide a large acceptance in phase such that many particles having different 
phases at the source output will be captured and describe stable oscillations in the plane (phase, energy) 
[2]. The frequency synchro of the synchrotron oscillations is generally much lower than the revolution 
frequency  :    synchro ~10-3  

For the proton therapy facility, the IBA company proposes an ultra-compact machine which is 
a superconducting synchrocyclotron called S2C2 [12] and operated at 5Tesla (fig. 13). The machine 
aims to replace the less compact isochronous superconducting cyclotron “C235”  (fig. 14). 

 
 



 
Fig. 13: The S2C2 IBA proton synchrocyclotron and the associated rotating gantry. The machine because of 
very high field is more compact than isochronous cyclotron, but it has a very low duty cycle. 
Accelerator parameters:  E= 230MeV ;  Weight 50 tons.  
Field at extraction <B> = 5.Tesla , k<0. Extraction radius  R=49cm. Tpulse =  7 s  Repetion rate  : 1kHz    
(duty cycle=0.7%) . Frf =[93 Mhz , 63 Mhz]    (cycled) . Vrf= 10kV      →    turn number~ 40000. 

 
 
 

 
 

Fig. 14 : C235_IBA isochronous cyclotron. This cyclotron have 100% duty cycle but has a greater cost than the 
very compact synchro-cyclotron S2C2. 
Accelerator parameters :  E= 235MeV;  Weight 210 tons 
The Field at extraction is  <B> = 2.2Tesla , k>0 . Compact magnet with spiralled sectors is used; 
Extraction radius  R=108 cm   (duty cycle=100% ). The RF frequency is FRF = 106 Mhz  (fixed) 
Vrf= 150kV    →   turn number~ 700 
 
Historical Note: The synchrocyclotrons was the precursors of the synchrotrons, they provided the highest energy 
beam from 1946 to 1954. The first accelerator of the CERN facility was a 600MeV proton synchrocyclotron with 
a radius of 2.3m and has been operated in the years 1958-1990. Nowadays, for research applications, which require 
often a high beam intensity, the 100% duty cycle isochronous cyclotron are preferred. Regarding very high-energy 
applications, synchrotrons have still no rival.  
 
The main drawback of a synchrocyclotron is its low duty cycle. Because of the frequency variation of 
the cavity, only a small fraction of the ions leaving the source are synchronized with RF acceleration. 



Finally, the average beam current is rather low, compared to the one of an isochronous cyclotron. As an 
advantage, the magnet of a synchrocyclotron can be much simpler than the one of isochronous cyclotron. 
The vertical stability of the beam is guaranty without the trick of azimuthal field modulation. 
 

Exercise 9 : Establish the relation of revolution time Trev and the momentum in a synchrocyclotron, noting that 
the field <Bz> is slightly decreasing at large radius (B ~Rk , so k<0 ). Use the concept of momentum compaction 
factor 𝛼௣ = (𝑝/𝐶). (𝑑𝐶/ 𝑑𝑝)  

Answer :  For a given particle orbit with length C, traversed in the time Trev, we have 𝑣. 𝑇௥௘௩ =   𝐶 . Using the  
logarithmic  differentiation  : 𝑑𝑇௥௘௩/ 𝑇௥௘௩ =    𝑑𝐶/ 𝐶 −   𝑑𝑣/ 𝑣 =  𝑑𝐶/ 𝐶 −   𝑑𝛽/ 𝛽                      
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 𝑑𝑝/ 𝑑𝛽  =  𝑑(𝛾𝑚𝛽𝑐)/ 𝑑𝛽 = . . . = ( 𝑝/𝛽) . 𝛾ଶ  

-  We have 𝑑𝑝/ 𝑑𝛽  =  𝑑(𝛾𝑚𝛽𝑐)/ 𝑑𝛽 = . . . = ( 𝑝/𝛽) . 𝛾ଶ      so       (𝑝/𝛽). (𝑑𝛽/𝑑𝑝) =  1/𝛾ଶ                               

-  The quantity𝛼௣ =
𝑑𝐶/ 𝐶

𝑑𝑝/ 𝑝ൗ      is called momentum compaction factor.  

    Since p = q. 𝐵𝜌 =  〈B〉〈𝑅〉 and <B>~<R> kௗ௣

௣
  =

ௗ〈஻〉

〈஻〉
+  

ௗ〈ோ〉

〈ோ〉
=    (𝑘 + 1 ) 

ௗ〈ோ〉

〈ோ〉
                            

    so    𝛼௣ = 1
𝑘 + 1ൗ               𝑑𝑇௥௘௩/ 𝑇௥௘௩ =    ൫𝛼௣ − 1/𝛾ଶ൯   . 𝑑𝑝/𝑝        

-In a synchrocyclotron    ቀ𝛼௣ −
ଵ

ఊమቁ = ቀ
ଵ

௞ାଵ
−

ଵ

ఊమቁ > 0 , the revolution time Trev increases with momentum p, 

and the revolution frequency Frev decreases. 

-in an isochronous cyclotron 𝑘 = −𝑛 = 𝛾ଶ − 1 ,(ex n°4), therefore ൫𝛼௣ − 1/𝛾ଶ൯ = 0   the revolution time 
Trev  is independent from p (this is needed ) 

 

5.2 FFAG : Fixed Field Alternating Gradient accelerator 

 
The idea of FFAG [10,11] (also abbreviated FFA) is to provide a very high energy like in synchrotron 
(>>1) but at higher duty cycle. The ramping of the magnets in a synchrotron limits the repetition rate 
to a range 1Hz -50Hz. While, in a synchrocyclotron the magnet has fixed field, and the cycling of the 
RF can be as fast as 1kHz. However, the vertical focusing in synchrocyclotron is not optimal, and a FFA 
could provide a better beam quality at even larger energy. The FFAG idea has been proposed in the 
1950s, Few proof of principle machines have been constructed (KEK KURRI with 30 and150 MeV 
protons). 

 A FFAG is a synchrocyclotron with complex magnets ensuring a better focusing by alternating gradient 
(dBz/dr).The FFAG field should oscillate azimuthally  𝐵௭(𝑅, 𝜃) = ±𝐵଴. (𝑅/ 𝑅଴)ି௡. F(𝜃 − 𝑔(𝑅) )  

-F(- g(r) ): is a periodic oscillating function with N symmetry   
-g(r) : is the spiral edge angle, if needed 
-n(r,) : is the local field index in each magnet    
 

The average field scale as follows 〈𝐵௭ (𝜃)〉 = 〈𝐵଴ 〉. ( 〈𝑅 〉/〈𝑅଴ 〉) ௞ .The beam dynamic in a FFAG is 
not isochronous (k ≠ 2-1).  Since we have demonstrated that 𝐵𝜌 = 〈𝐵(𝜃) 〉. 〈𝑅 〉 =  𝐶/2𝜋, the particle 
momentun increases with  the average radius 〈𝑅 〉 =  𝐶/2𝜋 



 

𝑃௘௫௧௥௔௖௧௜௢௡ = 𝑞 〈𝐵௭ 〉〈𝑅 〉 = 𝑃௜௡௝௘௖௧௜௢௡ . ൬
〈𝑅௘௫௧௥௔௖௧௜௢௡ 〉

〈𝑅௜௡௝௘௖௧௜௢௡ 〉൘  ൰ ௞ାଵ                   

 

The average field index k in a FFAG is generally rather large (k>>1) to reduce the horizontal size (and 
cost) : for a given extraction momentum Pextraction  you can reduce <Rextraction> if k is large. The vertical 
motion (Qz

2=-k+…) is stabilized with the alternating gradient magnets.  The use of a serie of dipole 
magnets (with a gradient) with alternate field ±B0 permit to provide an additive transverse focusing 
coming by an alternating-gradient focusing effect to get  a stable motion (Qz

2=-k+…>0). 

 

 
Fig. 15 : The scaling FFAG geometry. The scaling conditions constant focusing properties during the acceleration 
conversely to the cyclotrons. Such FFAG use many cell containing a triplet of bending magnets. In the main dipole 
(+ : horizontal focusing)  dB/dR= -n B0 (R/R0)-n   > 0  . While In the 2 reverse field dipoles (- : means horizontal 
defocusing) dB/dR = (-n) (-B0) (R/ R0)-n <0 
 

5.2.1 Scaling FFAG 
 
The simplest idea was to find a geometry which provide homothetic trajectories, keeping the same tunes 
during the acceleration (one reason is to avoid to cross resonance during the acceleration in the tune 
diagram: Scaling FFAG means that the orbit shape (optics) is kept fixed, independent of energy, just as 
in synchrotrons. The 3 conditions to get a constant tune are the following 

 The average field index k  independent of r: We take local index  n=constant in the 
two dipole kind  B1=-B2 

 The flutter F, should be independent of r  
 A Spiral shape permitting to get a constant  ( tan ) : we have two possibilities 

-With a straigth sector   tan(no spiral  for  the main magne 
-With   rspiral=R0 exp(A ), we get   tan ( (r) )=r d/dr = A  (the reverse 
field magnet) 

5.2.2 New applications and non-Scaling FFAG 
 
In FFAG, the reverse field region increases the average radius of the machine (and the cost) by an 
important factor compared to an equivalent synchrocyclotron or cyclotron. But the FFAG can be a 
solution when a rapid cycling synchrotron is not possible and when a cyclotron cannot reach the desired 
energy. For instance, FFAG accelerators were reconsidered for muons acceleration for a neutrino 
factories and for Muon Colliders : It was indeed required to accelerate muons to an energy of about 20 
GeV, not reachable with cyclotrons :The muons have a short half-life and the acceleration in a rapid 
cycling synchrotron would be difficult. 



The rapid acceleration if with a small turn number (<20 turns) would be important for unstable muons 
(T1/2=2.2s). A small number of turns allows to relax the constraint of scaling FFAG, since the betatron 
oscillations and resonances will have no time to develop and damage beam quality. So, the field index 
can evolve k=k(r). In non-scaling FFAGs, a linear variation of magnetic field can be employed: using 
constant-gradient “linear” magnets greatly increases dynamic aperture and simplifies construction, 
while employing the strongest possible gradients minimizes the real aperture. Besides, the linear field 
variation provides a large dynamic aperture, allowing the acceleration of large emittance beams. 

EMMA (Electron Model for Many Applications), the first non-scaling FFAG, has been built at the 
Daresbury Laboratory (UK) in 2010. This is a proof of principle machine delivering 20MeV electrons, 
requires a ring of 16 m circumference: The ring uses a combined function magnet with a dipolar and a 
quadrupole component (a gradient): The magnets implemented seems in fact quadrupoles, and the dipole 
component is obtained by using them off-axis. 

A serie of 42 cells composed with 2 magnets (focusing and defocusing) produces at the same 
time a deviation (dipolar component) and AG focusing (quadrupole components). 

 

 
Fig. 16 : The EMMA FFAG [13] constructed at STFC Daresbury Laboratory. The  EMMA ring accelerates 
electrons from 10 MeV to 20 MeV. The geometry is called “non-scaling” since the tunes Qr,Qz  are evolving from 
the injection up to extraction. Since it crosses the resonances very quickly (3 Qr=1, 2Qr+2Qz =1 ) within 20 turns 
EMMA has demonstrated a good stability. There are 42 cells of two magnets. The two magnets are quadrupoles 
used off axis to provide two field component :   we have   Bz  (r) = B0 ± G (r-r0) .The alternate linear gradients ± 
G generates a small momentum compaction factor p=(dC/C)/ (dp/p ) which provide a good dynamics aperture 
with small magnets.  Four cells of the doublet are shown in detail. 

 

 

 

 

 



 

6 Introduction to cyclotron injection 
 
Designing the central region of a cyclotron is a very complex task [14, 15, 16,17, 18], and we gives only 
a first approach. Several injection systems are used, depending of the cyclotron model. 

 For the low-energy cyclotrons, two technics are used to inject a beam in a cyclotron: 
- A very compact internal ion source inserted directly inside the cyclotron center 
- An external ion source connected to a beam line inject the beam axially (vertically) and bend 
the beam with a compact electrostatic inflector (hyperboloid or spiral inflector) on the first orbit 

 The high-energy cyclotrons (like separated sector cyclotrons) are located downstream a pre-
accelerator. In that case, the beam is more rigid and a compact axial injection system is not 
feasible. We use a radial injection beam line. 

 

6.1 Internal ion sources 
 
Most of industrial cyclotron (Kb=5-30 MeV) use a very compact internal source (PIG=Penning ion 
gauge), which can be inserted in the central region of the cyclotron. This system avoid a complex 
injection beam line (vacuum, quads, solenoids, inflector), this reduce a lot the cost of the machine. This 
technology can deliver positive and even negative hydrogen ions. 

 
Fig. 17 : Penning Ion Gauge source with a hot cathode (filament). 
Electrons are emitted by thermo-ionic effect and ionize the gas atom generating a plasma. The plasma is confined 
with the cyclotron magnetic field. Ions emerge from the plasma, with the electric field between the anode, and the 
puller.However, a very old technology, specific design aim to improve current or to increase cathode lifetime, thus 
reducing the cost and maintenance of medical cyclotron. I=100 A is a typical performance for H+ beam. 

 

6.2 Axial injection with external sources 

 
An external ion source is often preferred for various reasons: The external source is less constrained 
geometrically and can be much bigger and performant than a very compact internal ion source. 
 
– For heavy ion, it is important to get the higher charge state Q to increase the maximal energy of a 
given cyclotron: (E/A)max= Kb (Q/A)2. The ECR ion source, which produces heavy ion beams with high 
charge states, require a magnetic confinement with two large solenoids and a hexapolar magnet and can 
not fit inside a cyclotron. 
- For negative hydrogen isotopes, Multicusp sources are very efficient but cumbersome. 
- In general situation, a complex injection beam line associated with an external ion source permit 6D 
matching (radial, axial, and longitudinal) which is better to obtain a better transmission of any cyclotron. 



In particular, using a pre-buncher, operating at the cyclotron frequency, permit to focus longitudinally 
the beam and increase the beam current and the cyclotron phase acceptance. 
 
At the energy provided by the ion source extraction (typically 20kV), the beam magnetic rigidity is very 
low. The only possibility is to inject the beam vertically toward the centre of the cyclotron, by way of a 
hole in magnet yoke: in the axial direction, beam velocity is parallel to the cyclotron field Bz so no radial 
force perturbs the injection axially. 
 
 The beam is then bent onto the cyclotron median plane with an electrostatic device, called inflector. As 
soon as the beam is deflected into the horizontal plane, the beam experience a magnetic force Fr due to 
the cyclotron field. The full motion is in 3D. After the inflector, the beam starts a circular radial motion, 
meet rather quickly the first acceleration gap.  The inflector is designed to inject the beam on the first 
cyclotron orbit Rm 
 
Two inflector geometries are used nowadays: 

- Hyperboloid inflector  (Müller Inflector) 
- Spiral inflector (called Pabot-Belmont inflector) 

The injection geometry in a cyclotron is determined by the injection energy (the voltage of the ion 
source) and the mass over charge ratio of the desired beam: the two parameters define the magnetic 
rigidity at injection and the magnetic radius of the first orbit is hence Rm= B0/B0 . 
The inflector should drive the beam on the first orbit taking of magnetic force generated in the horizontal 
plane and the electric force generated by the inflector electrodes. 
The axial injection problem is generally treated in the backward direction:  

i) we start from a trajectory rotating around cyclotron center at large radius 
ii)  then we go back toward the first turn orbit 
iii) then we search to bend the beam backward from the radial plane toward the vertical plane 

of the injection beam line with a vertical electric field Ez. 

6.2.1 Hyperboloid inflector (“Müller Inflector”) 
 
The principle of Hyperboloid inflector 18] [is to find a geometry whose electrodes are surfaces of 
revolution. An hyperbolic electric potential 𝑉 = 𝐾𝑧2/2 + 𝐾𝑅2/4 , is the simplest potential which satisfies  
  ∆𝑉 = 0  which possesses a radial  symmetry. The two electrodes follow an equation   R2-2z2 = Constant. 
Assuming a constant field B0, the parametric equations of the central trajectory in the inflector are: 

𝑋(𝑡) = [a cos(𝑘𝑡) − 𝑏 cos(𝑘𝑡)]. 𝑟଴/2  
𝑌(𝑡) = [a sin(𝑘𝑡) − 𝑏. sin(𝑘𝑡)]. 𝑟଴/2   

    𝑍(𝑡) = 𝐴 [sin(𝑘𝑡)]                                        
  (kt) is included in  and corresponds to the azimuth kt v0t The parameter k  is related to 
the potential V : 𝑘 = 𝑞𝐾/m  . While A is the inflector height. 

The other parameters  a, b and r are given below: 

aandbrRm 

The magnetic radius of the first orbit is given by injection energy and the field of the cyclotron. 

                                                 Rm= B/ B0 =r = A 

Therefore, if Rm is fixed, there is no free parameter: the hyperboloid inflector height A is sometines 
too large to be adapted in small cyclotron, in that case the spiral inflector is preferred. 

 
 



 
Fig 18 : hyperboloid  inflector and beam centring. The inflector electrodes are represented in 3D with 3 
trajectories. The use in a real cyclotron is represented (right, cyclotron CIME at Ganil). Two RF cavities produce 
four acceleration per turn. The positions of the centre of the ion trajectory (curvature centre) during the 
acceleration evolve (left). The centre of curvature should converge toward the cyclotron centre after the after few 
accelerations. The position of the inflector should be chosen carefully. 

 
The magnetic radius Rm is fixed by cyclotron geometry and injection energy, so we have only one 
adjustable parameter A (the height):  Therefore, it is often used with an off-axis injection, since the axis 
of the cyclotron centre   does not coincide with the entrance point in the inflector. 
For a given radius Rm, the required height A is bigger than the Spiral inflector, which is more compact. 
The advantage of a hyperboloid is that the two transverse sub-spaces are not correlated and can be 
matched independently. 

6.2.2 Spiral inflector (called “Pabot-Belmont” inflector) 
 
The main issue of the spiral inflector [19,20] is to find the electrode shape such that electric field vector 
E along the central trajectory is always perpendicular to the velocity vector of the ion. This assumption 
insures that the central ion trajectory will always lie on an equipotential surface, and this allows us to 
construct an inflector working at a low voltage. Several geometries can be found ensuring v. E=0 : The 
electrode can be tilted progressively around the central trajectory : varying this  tilt k’ permit to adapt 
the geometry to the cyclotron constraint  
 
The electric field changes as a function of the parameter  v0t  evolving from 0 to /2 : 

𝐸௫ = 𝐸଴. [ cos(𝜃).  cos(2𝐾𝜃) −  kᇱ. sin(𝜃).  sin(2𝐾𝜃)]   
𝐸௭ = 𝐸଴. [ cos(𝜃).  sin(2𝐾𝜃) −  kᇱ. sin(𝜃).  cos(2𝐾𝜃)]   
𝐸௭ = 𝐸଴. [sin(𝜃)]                                                                       

The parametric equation of the central trajectory can be derived in 3D: 

 

 

 

 

 



The integration of the equation of motion for the reference trajectory   

𝑋(𝑡) = [ cos(𝑎𝜃)/𝑎 − cos(𝑏𝜃)/𝑏].
𝐴

2
  −                    

𝑌(𝑡) = [ sin(𝑎𝜃)/𝑎 − sin(𝑏𝜃)/𝑏].
𝐴

2
                             

    𝑍(𝑡) = 𝐴  [sin(𝑘𝑡)]                                                                 

The parameter are   : a=2 K-1       b=2 K+1          = A/(4K2-1)      With   K=  A/2Rm  +  k’ . 

Physically, A is the inflector height, and Rm= B/ Bo  is the Magnetic radius and k’  is the electrodes 
tilt. 
 
The height A is constrained by the maximal vertical dimension available in the axial hole after the 
injection solenoid. 
The tilt  k’ is related to the angle  between the electric field with the vertical axis  
                                                  k’= tan()/ sin()  
 The tilt k’ is chosen to adapt the entrance point of the inflector for a fixed arrival point in the 
cyclotron median plane.  
 
Though the spiral inflector is the most compact inflector, it suffers from two defects: 
- The beam is defocused vertically and require often a small electrostatic quad at the inflector exit, which 
increase the complexity of the injection. 
- The electrode geometry requires a complex machining. 

 

6.3 Radial injection for separated sector cyclotron 

This technic is devoted to specific separated sector cyclotron. The separated sector cyclotrons 
(SSC) consist of magnet sectors separated by empty valleys, which can house an  injection beam line 
(SSC2_ganil, picture 19). The injection beam line is comprised of several magnets and a high voltage 
electrostatic inflector, having two planar electrodes. 

 
  Fig 19: Radial injection of SSC2 (Ganil, France).The space available between separated sector magnets is used 
to insert injection magnet (1,2,3,4) and an electrostatic inflector in the radial plane. The inflector gives the few 
milliradians deviation to put the beam on the accelerated orbit. while the trajectory of the accelerated beam (red)  
is not perturbed. The position of the electrostatic inflector can be moved to generate a precession (see extraction 
chapter 



7 Extraction 

The most frequently used extraction methods are stripping extraction and extraction by electrostatic 
deflectors. 

7.1 Stripping extraction 

 
Hydrogen isotopes (1H or deuterium 2H) can be produced in negative ion state: i.e. a hydrogen atom can 
capture an extra-electron. Though the extra-electron on an H− ion is very loosely bound, we can 
accelerate these anions. After the acceleration, when passing through a thin foil, the ion loses its 
electrons (stripping). By positioning a thin carbon foil in the cyclotron magnetic field close to the 
extraction radius, the accelerated H- ions are transformed into H+. The change of the ion’s sign changes 
the direction of the bending force (from Fr=- e0 vB to Fr=+e0 vB), and the positive ions are directed 
outside the magnetics field. 

 
Fig. 20: Stripping extraction for H- . At large radius, a thin carbon foil strips off the electrons. The residual ions 
are H+. The positive ion trajectories are bent in the opposite direction.  Several strippers can be inserted producing 
simultaneous beams. The radial location of the stripper define the beam energy. The simultaneous beam can be 
delivered for different applications at the same time, which is very cost effective. 

The stripping extraction technics present many advantages and is very cost effective: 
- The efficiency is closed to 100%, much better than an electrostatic deflector. 
- The foil lifetime even with large current is rather long (~104 μA.h) 
- Simultaneous extraction of two beams toward two external lines is possible with two foils 
corresponding to different energies and with different beam currents. 
- A large energy range may be covered by changing the foil position in the magnetic field 
(correcting magnets are needed to ensure a constant angle in the exit beam line) 
- Negative ion source can provide H- or negative deuterium D- at high current up to 0.5 mA 
(with an external multiscup source)  
 

7.2 Deflector extraction: Single turn extraction vs multi-turn extraction 

For positive ions such as H+, the stripping extraction cannot be used and several optical element are 
used to bend the beam out of the cyclotron. 

The extraction hardware for a cyclotron usually consists of an electrostatic deflector followed by a 
magnetic channel. The curvature of the electrodes of the deflector must correspond to the shape of the 
orbits of extracted ions. The deflector provides an angle kick of typically 50mrd with an electric field 
around E=100kV/cm.   

If the bunches are well separated radially (bunch size R smaller than R turn separation), it is 
possible to adjust on line the acceleration voltage to direct most of particle inside the electrostatic 
deflector without beam losses: We talk about single turn extraction. 



If the bunches are not separated radially (size R> turn separation R), the bunch having performed 
N turn overlap the N-1 turn bunch, the deflector will cut the continuous stream of particle and generating 
important beam losses: and we talk about multiturn extraction, which result in activation and HV 
sparking of the deflector. 

The reduction of beam losses in the deflector requires to minimize beam size while maximizing the 
turn separation. 
 

 Minimization Bunch size r : The minimization of the beam size r  is obtain through transverse 
matching an longitudinal bunching. 

- Transverse matching: The cyclotron is a (quasi) periodic accelerator and the magnetic structure 
possesses an ideal periodic emittance in the transverse plane (the eigen ellipse). 
A mismatch between the cyclotron periodic ellipse and the injected beam will result in an increase of 
the beam emittance. It is always important to design the injection beam line to match properly the beam 
ellipse to the ideal periodic ellipse and avoid emittance dilution, and getting the minimal bunch size at 
the extraction. 
- Longitudinal bunching: The energy dispersion can be reduced by a minimization of the phase width  
∆𝜑 = 𝐻 𝜔௥௙∆𝑡  using a buncher, which result in a reduction of the bunch size. 
  

∆𝑅
𝑅ൗ  =

∆𝐵𝜌
𝐵𝜌ൗ =

∆𝑝
𝑝ൗ =  

𝛾
𝛾 + 1ൗ  . ∆𝐸

𝐸ൗ ~ 1 2ൗ [cos(0) − cos(∆𝜑/2 )] ≈ 1
4ൗ ∆𝜑ଶ 

 
 Maximisation of the orbit separation  R : During acceleration the bunch spacing Ris reduced 

progressively, the energy gain per turn is constant while the energy is increasing. The conditions 
to obtain a single turn extraction rely on the maximisation of the turn separation R. Three 
technics are used: 

1. Acceleration     //   2. Precession    //  3.  Resonant extraction 
 

7.2.1 Acceleration 

 
In high-energy isochronous cyclotron, the energy gain per can be increased by using more 

accelerating gaps: For example, the 8 separated sector cyclotron of PSI (Kb=590 MeV, fig. 11), has 4 
accelerating RF cavities located in the valleys. It provides 8 accelerating gaps. The number of valleys 
available restricts the number of the accelerating cavities. A large bunch separation R that overpasses 
1cm is rather difficult to obtain. Therefore, additive mechanisms are required.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



 
 
 

Exercise 8 : Demonstrate that the turn separationR  is dominated but the energy gain per turn Eturn  in the 
cyclotron, but is influenced as well by the average field index k: 

𝛿𝑅

𝑅
=  

𝛾

𝛾 + 1
.
𝛿𝐸௧௨௥௡

𝐸ே

.
1

1 + 𝑘
 

   Answer :             
We can compute the radial gain R per turn, in a non-homogenous field   <B>~ <R>k : 

Since 
𝑑〈஻ 〉

ௗோ
=

𝑑൫ோೖ൯

ௗோ
= 𝑘. 𝑅௞ିଵ = 𝑘

〈஻ 〉

ோ
 , we have   

𝛿〈஻ 〉

〈஻〉 
= 𝑘

ఋ〈ோ 〉

〈ோ〉
    

Besides, we have  𝐵𝜌 = 〈𝐵 〉〈𝑅 〉    so      〈𝑅 〉 =  𝐵𝜌/〈𝐵 〉      

ఋ〈ோ〉

〈ோ〉
= 𝛿 ln(𝑅) =  𝛿 ln ቀ

஻ఘ

〈஻〉
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ఋ஻ఘ

஻ఘ
−

ఋ〈஻〉

〈஻〉
=

ఋ௣

௣
+ 𝑘

ఋ〈ோ〉

〈ோ〉
 = acceleration + field variation over one turn 

        So  rearranging R on two side :    
ఋ〈ோ〉

〈ோ〉
=  
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௣
.

ଵ

ଵା௞
=

ఊ

ఊାଵ
.
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.

ଵ
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The energy after Nturn is  Eே = E௜௡௝௘௖௧௜௢௡ +  N୲୳୰୬. 𝛿E୲୳୰୬ ≈ N୲୳୰୬. 𝛿E୲୳୰୬  

Therefore  the radial separation of two consecutive  turn R is : 

𝛿𝑅 = 〈𝑅〉
𝛾
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.
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𝛾
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ଶ
 

So for a desired cyclotron energy, if you have to increase the turn separation R at extraction. 
- Build cyclotrons with a large radius R  
- Make the energy gain per turn Eturn   as high as possible (it reduces  Nturn ) 
- Accelerate the beam into the fringe field, where <B> and Qr

2 drops  
if R is not sufficient to get a single turn extraction, we have to use precession and resonant extraction. 

 

7.2.2 Precession 

 
An orbital precession induced by an off-centring injection enhance The turn separation R.. Detuning 
slightly the beam at the cyclotron injection permits to shift the radial position by few mm.  Then, because 
of the betatron oscillation, the beam will oscillate with a frequency (Qr t)=. Qr see 3.3). The 
position of a bunch after N turns at azimuth 1=2N will be :  

𝑅(𝜃ଵ = 2𝜋𝑁) = 𝑅଴(2𝜋𝑁) + 𝑥ே cos( 𝑄௥ . (2𝜋𝑁) + 𝜑 ) = 𝑅଴ே + 𝑥ே cos( [𝑄௥ − 1]. (2𝜋𝑁) + 𝜑 )   

Where the ideal orbit after N turns is R0N = R0 (1 =2N, given by acceleration, and the amplitude of 
the precession is given the injection error x0  :  x N = R0N. (x0

/ R0 ). Since Qr ~1 in isochronous cyclotron, 
we can replace  cos( Qr.(2) )  by  cos([Qr-1](2) ), only the fractional part of the tunes matters. 



 
Fig. 21: Precession by off centering injection.. The beam intensity is measured as a function of the cyclotron 
radius on radial proble. The radial oscillation of the beam permit to increase the turn’s separation at the deflector. 
In this cyclotron (Ganil CSS2), the precession is defined by the radial tune (Qr-1)=1/13 generating a period of 
oscillation of 13 turns 

7.2.3 Resonant extraction 

 
The resonant extraction aims to generate an oscillation x( θ ) close to the extraction with some magnetic 
perturbations (field bumps). The radius of the trajectory will oscillate around a non-perturbed trajectory 
R0    :𝑅(𝜃) = 𝑅଴(𝜃) + 𝑥(𝜃)   

Adding a magnetic perturbation at the extraction ∆𝐵௭ = 𝐵௉(𝑅) 𝑐𝑜𝑠(𝑃𝜃) , using =t, we get as in 3.3:                                      

ቈ
𝑑ଶ𝑥

𝑑𝜃ଶ 
+ 𝑄௥𝑥቉ =  𝐴 cos(𝑃𝜃)   

Nota : a full derivation gives   𝐴 = (〈𝑅〉/〈𝐵௭〉 ) . (𝑑𝐵௉(𝑅) /𝑑𝑅) 

This equation correspond to a driven oscillator, and we can search a particular solution x()~cos(P )   

which gives    = ቂ
௫(ఏ)

஺
ቃ =

ୡ୭ୱ(௉ఏ) 

(ொೝ
మି௉మ)

  . 

If the excitation frequency P corresponds to the natural frequency Qr ( P ~ Qr), the response function   
 = [ 𝑥(𝜃)/𝐴] will diverge. This means, that a very small amplitude perturbation  induces a large 
amplitude motion x()=. This is the definition of a resonance…  

Nota on resonances: Most of time, in the synchrotrons and cyclotrons, we try to adjust the tune Qz, Qr to avoid 
the resonance, by requiring K.Qr + L.Qz ≠ N during the acceleration, where K,L N are integers. For a resonant 
extraction, we excite on purpose the radial resonance (K.Qr =N) , but locally close to the extraction radius to 
increase R.   

    In isochronous cyclotron, the average field index is k~ 2-1, so Qr
2 =  1+k +…=2 which defines the 

multi-polarities of the field perturbation to be used  P~ . For low energy cyclotron (<1.2a flat field 
bump localized at large radius with an aperture =20° is sufficient: it mimics a first harmonic 
perturbation cos() and corresponds to a “Qr=1” resonance. 



 

Fig. 22 : Principe of the excitation of the first order resonance using a magnetic bump. When Qr~ 1, a dipolar 
perturbation (Bz) shifts the orbit centre at each turn. If the orbit separation is sufficient (R>R), we can direct 
the full bunch through the extraction channel without beam losses : obtaining a single turn extraction. 

 

Table 1: Overview of two resonance often used in cyclotron extraction 

Resonance 
 

Ideal 
perturbation 

Field bump Comments 

( Qr =1 )   cos(  Local dipolar bump 

B()= C1 f() 

Adapted to cyclotron with Qr ~ 1 

 

( 2Qr =2 )   

 

cos(2 

Local quadrupolar bump 
 
B()= C1(r) f()   
     - C1(r) f()   
 
 
C1 is a quadrupolear 
field.  

Called regenerative extraction: The quadrupolar 
perturbation C1 modify the field index k and the 
radial tune Qr. 
        Qr

2 =  1+k+… 
If k~-1, R increases exponentialy 
sinceR/R  ~ 1/ (Qr2) 

Useful technic for low energy gain per turn and bad 
beam quality as in synchrocyclotrons. 

 

  



8 Conclusion 

 
The cyclotrons are cost effective hadron accelerators. The main application is the production of 
radioisotopes for medicine for diagnosis (imaging). The Cancer therapy centres using 250 MeV proton 
cyclotron represent as well one application with an increasing interest. Beside, large cyclotrons are still 
used in many laboratories for research, and can deliver various ions, even at very large beam power (1.4 
MWatt proton beam has been obtained in PSI). 

The cyclotrons are classified as a function of their bending power Kb (see exercise 3). The main formula 
which drives all the concept of isochronism is the particle revolution frequency in the cyclotron magnet:  

𝜔௥௘௩ =  
𝑞  〈𝐵௭(𝑅, 𝜃)〉ఏ

𝑚𝛾
 

We have seen that several variations of the initial concept leads to 3 cyclotron kinds: 

Table 1: Summary of the cyclotron family 

Isochronous cyclotrons 
(the most diffused) 

Synchrocyclotrons FFAGs 

-Cw   (rev = Constant =H rf) 
100% duty cycle 
-Rather complex magnet (to guarantee 
Qz2>0 )  Bz=F(r,) 
-Azimuthal field modulation are 
required for vertical stability. 
-limited in energy (<2) 
Applications:  mainly Radio-isotope 
production, but also proton therapy, 
research in nuclear physics.     1300 
cyclotrons was operated in  the world in 
2021 

Possible future Application : 
accelerator-driven reactor (ADS) 

-RF cycled (rev≠ Constant ) 
typically ~1% duty cycle 
-Simpler magnets than the 
isochronous (no azimuthal 
field oscillations are required)   

-Optimal average field (very 
compact for a given energy) 

 

Applications : low intensity 
applications, proton therapy 
(250 MeV protons)  

 

 -RF cycled (rev ≠ Constant)      
typically ~1% duty cycle 
-Complex dipole magnets, certain 
have a reverse field. 
-Never competitive with the 
cyclotrons at low energy. 
-Faster cycling than a typical 
synchrotron (only RF is cycled) 
-Not limited in energy (except 
accelerator cost) and can accelerate 
light particles (electron or muon)  

Possible future Application : 
Muon acceleration project (20 
GeV), ADS  
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