

1

de juas
Cyclotrons : specific techniques

Example:

Cyclotrons : specific t

Chapter 3

Acceleration and RF cavities

maximal energy Acceleration and RF cavities maximal energy Turn separation δr **Bunch Strates Canadian:**

Cyclotrons : specific technique

Chapter 3

Acceleration and RF cavities

maximal energy

Turn separation or

Bunch size Ar and energy dispersion AE

Injection

Axial injection

Axial injection Injection Axial injection Radial injection **Extraction**

Stripping turn separation, precession, resonance

high field sector

Separated sector cyclotron

sectors

Spiraled

sectors

Cyclotrons Tutorial 4

Cyclotrons Tutorial 4
•An cyclotron is supposed to accelerate ions with A nucleons
and a charge state Q. **a** charge state Q.
•An cyclotron is supposed to accelerate ions with A nucleons
and a charge state Q.
•Demonstrate that the maximal kinetic energy E/A of a cyclotron is
 $E_V/A = K_b$. Q/A^2 Cyclotrons Tutorial 4

upposed to accelerate ions with A nucleons

Q.

: the maximal kinetic energy E/A of a cyclotrol
 $E_K/A = Kb$. $(Q/A)^2$

• An eyelotron is supposed to accelerate ions with A nucleons

and a charge state Q.

• Demonstrate that the maximal kinetic energy E/A of a cyclotron is
 $E_K/A = Kb$. $(Q/A)^2$

Nota: Give the Kb factor in a non relativistic a e Q.

it the maximal kinetic energy E/A of a cyclotron is
 $E_K/A = Kb$. $(Q/A)^2$

factor in a non relativistic approximation

using the extraction radius R,

the maximal average magnetic field B.

is m= Am₀ & the charge of t at the maximal kinetic energy E/A of a cyclotron is
 $EK/A = Kb$. $(Q/A)^2$

factor in a non relativistic approximation

using the extraction radius R,

the maximal average magnetic field B.

is m=Am₀ & the charge of the ions • Demonstrate that the maximal kinetic energy E/A of a cyclotron is
 $EK/A = Kb$. $(Q/A)^2$

Nota: Give the Kb factor in a non relativistic approximation

using the extraction radius R,

the maximal average magnetic field B.

T

Cyclotrons Tutorial 4

•An cyclotron accelerate ions with A nucleon and a charge state Q. $E_{K/A} = Kb$. $(Q/A)^2$? ? Cyclotrons Tutorial 4
An eyelotron accelerate ions with A nucleon and a charge state Q.
 $EK/A = Kb \cdot (Q/A)^2$?
Answer : $E_K=(\gamma -1)mc^2 \sim \frac{1}{2}mV^2 = \frac{1}{2}m (R\omega)^2$
 $EK = \frac{1}{2}m (R \omega R/m)^2 = \frac{1}{2}A m (R \omega R / A m)^2$

tron accelerate ions with A nucleon and a charge state Q.
 $E K / A = K b \cdot (Q/A)^2$?
 $E K = (\gamma - 1)mc^2 \sim \frac{1}{2} mV^2 = \frac{1}{2} m (R \omega)^2$
 $E K = \frac{1}{2} m (R q B / m)^2 = \frac{1}{2} A m_0 (R Q e_0 B / A m_0)^2$
 $E K / A = \frac{1}{2} (e_0 R B)^2 / m_0 (Q/A)^2$ on and a charge state Q.
 $(R\omega)^2$
 $(RQe_0 B/Am_0)^2$
 $(RQe_0 B/Am_0)^2$ $EK = \frac{1}{2}$ m (R qB/m)² = $\frac{1}{2}$ A m₀ (R Q e₀ B/A m₀)² tron accelerate ions with A nucleon and a charge state
 $EK/A = Kb$. $(Q/A)^2$?
 $E_K = (\gamma - 1)mc^2 \sim \frac{1}{2} mV^2 = \frac{1}{2} m (R\omega)^2$
 $EK = \frac{1}{2} m (R q B/m)^2 = \frac{1}{2} A m_0 (R Q e_0 B/A m_0)^2$
 $EK/A = \frac{1}{2} (e_0 R B)^2 / m_0 (Q/A)^2$ $/\mathbf{m}_0$ $(Q/A)^2$: $E_K = (\gamma - 1)mc^2$ ~ $\frac{1}{2}$ $mV^2 = \frac{1}{2}$ $m (R\omega)^2$
 $E_K = \frac{1}{2}$ $m (R q B/m)^2 = \frac{1}{2}$ $A m_0 (R Q e_0 B/A m_0)$
 $E_K/A = \frac{1}{2} (e_0 R B)^2 / m_0 (Q/A)^2$
 $E_K/A [MeV/A] = Kb. (Q/A)^2$
 $Kb \sim (Rextract. Bmax)^2$ $\frac{V_2}{A}$ **m** (R Q e₀ B / A m₀)²
0 (Q/A)²
Kb ~ (Rextract. Bmax)²

4

Cyclotrons Tutorial 5

Cyclotrons Tutorial 5
• A compact cyclotron have a Kb factor of 30 MeV
 $EKA = Kb$. $(Q/A)^2$:
 yclotrons Tutorial 5

yclotron have a Kb factor of 30 MeV

(*EK/A* = *Kb* . (*Q/A)²*)

pack with grah a gradation magnet (*Kb*=30 MoV)) and the state \mathcal{L} **Cyclotrons Tutorial 5**

• A compact cyclotron have a Kb factor of 30 MeV

(*EK/A* = *Kb* . (*Q/A)²*)
 *What is the maximal kinetic energy

we could reach with such a cyclotron magnet (Kb=30 MeV)* **Cyclotrons Tutorial 5**
mpact cyclotron have a Kb factor of 30 MeV
(*EKA* = *Kb* . $(QA)^2$)
s the maximal kinetic energy
we could reach with such a cyclotron magnet (Kb=30 MeV)
th a proton beam **Cyclotrons Tutorial 5**

• A compact cyclotron have a Kb factor of 30 l

(*EK/A* = *Kb* . (*Q/A)²*)
 *What is the maximal kinetic energy

we could reach with such a cyclotron magnet (Kb=2

<i>a)* With a proton beam
 b) **b)** With a compact cyclotron have a Kb factor of 30 MeV
 $(EK/A = Kb \cdot (Q/A)^2)$

What is the maximal kinetic energy

we could reach with such a cyclotron magnet (Kb=30 MeV)

a) With a proton beam

b) With a carbon beam (with Q

• A compact cyclotron have a Kb factor of 30 MeV
 $(EK/A = Kb \cdot (Q/A)^2)$

What is the maximal kinetic energy

we could reach with such a cyclotron magnet (Kb=30 MeV)

a) With a proton beam

b) With a carbon beam

The cyclotron m • A compact cyclotron have a Kb factor of 30 MeV
 $(EK/A = Kb \cdot (Q/A)^2$

What is the maximal kinetic energy

we could reach with such a cyclotron magnet (Kb=30 MeV)

a) With a proton beam

b) With a carbon beam (with $Q=6+$)

Th (EK/A = Kb . $(Q/A)^2$)

What is the maximal kinetic energy

we could reach with such a cyclotron magnet (l

(a) With a proton beam

(b) With a carbon beam

(with $Q=6+$)

The cyclotron magnet have $\langle B \rangle = 1$ Tesla, what is
 What is the maximal kinetic energy
we could reach with such a cyclotron magnet (Kb=30 MeV)
a) With a proton beam
b) With a carbon beam
d) With a carbon beam (with $Q= 6+$)
The cyclotron magnet have $\langle B \rangle$ =1Tesla, what is we could reach with such a cyclotron magnet (Kb=30 MeV)

a) With a proton beam

b) With a carbon beam (with $Q=6+)$

The cyclotron magnet have $\langle B \rangle$ =1Tesla, what is

the revolution frequency? (Frev = $\alpha/2\pi$)

c) of a pr

(or $f = h$ $\omega = h$ qB/m γ)

Max Energy for Superconducting Cyclotrons not limited by $(B \times$ Rextraction)

We can demonstrate that isochronism imply $\left| n\left(R\right) =\left(1-\gamma^{2}\right) <0\right|$

Stability : isochronous field condition compensated by Flutter \overline{a} $\frac{1}{2-1}Fl.$ $(1 + 2 \tan^2(\xi))$ +...

At high energy field index n compensation not possible $(Qz²<0)$ the max energy is not given by $Kb \sim 48$ (*B. Rextraction*)² but K_f the so-called "*focusing* factor":

•Focusing limitation (stronger than B limitation)

$$
\left[\frac{E}{A}\right]_{\text{max}} = Kf \cdot \left\{\frac{Q}{A}\right\}^2 < Kb \cdot \left\{\frac{Q}{A}\right\}^2
$$

 $Kb\sim 48$ (B.Rextract)²

Acceleration in a cyclotron and orbit separation δr

•The final energy is independent of the accelerating potential $\rm V$ = $\rm V^{}_0 \cos \varphi.$ If V_0 varies, the number of turn varies. (but $\mathsf B\rho$ final =.Rextraction) **if the cyclotron**
 if the final energy is independent of the accelerating potential $V = V_0 \cos \varphi$ **.**

If V_0 varies, the number of turn varies. (but $Bpfinal = \langle B \rangle$. Rextraction)
 if the cyclotron is isochronous (for a pa

• The energy gain per turn depends on the peak voltage V_{0} , ,

V₀ varies, the number of turn varies. (but Bpfinal = **RRetraction)
The energy gain per turn depends on the peak voltage V₀,
the cyclotron is isochronous (for a particle φ = const) δE = N_{gap} q V cos(φ):

$$
\frac{\delta r}{r} = \frac{\delta B \rho}{B \rho} = \frac{\delta p}{p} = \frac{\gamma}{\gamma + 1} \frac{\delta E}{E} \approx \frac{qV_0 \cos \varphi}{2 E} \propto \frac{1}{r^2}
$$

$$
V_0 \sim 1
$$
 E = V₂ m v² = V₂ m r² ω²**

• The radial separation δr between two turns varies as 1/r

r $\delta r \propto$ 1

At large radius r, the different orbits are very close

8

Harmonic number H =Frf/Frev

$$
H = 3 : 3
$$
 bunches by turn $\omega_{rf} = H \omega_{rev}$

 $\theta = \omega_{\text{rev}} t + constant$ Particle azimuth θ Rf phase

$$
\varphi_{gap1} = H \omega_{rev} \quad t + C
$$

10

Acceleration in a cyclotron and bunch size $\Delta r = f(\Delta t)$ bunch)

Two particles arriving at different time in accelerating gap **n a cyclotron**
 $\Delta r = f(\Delta t \text{ bunch})$

in accelerating gap

will get a different energy :
 $E_2 = E_0 + q V_0 \cdot \cos(\omega_{rf} \cdot \delta t)$ $E_1 = E_0 + qV_0 \cdot cos(0)$ and $E_2 = E_0 + qV_0 \cdot cos(\omega_{rf} \cdot \delta t)$ Two particles arriving at different time in accelerating gap

will get a different energy :
 $E_1 = E_0 + qV_0 \cdot \cos(0)$ and $E_2 = E_0 + qV_0 \cdot \cos(\omega_{rf} \cdot \delta t)$

The radial position of a particle evolves with energy : $R = B\rho_0/B_z$
 $\$ e in accelerating gap

will get a different energy :
 $E_2 = E_0 + qV_0 \cdot cos(\omega_{rf} \cdot \delta t)$

sives with energy : $R = B\rho_0/B_z$
 $\gamma(\gamma + 1) \cdot \Delta E / E$

: - induces a large energy dispersion ΔE

: - induces a large bunch size Δr
 E

The radial position of a particle evolves with energy : $R = B\rho_0/B_z$

$$
\Delta r/_{r} = \Delta B \rho / B \rho = \Delta p / p = \gamma / (\gamma + 1) . \Delta E / E
$$

The radial position of a particle evolves with energy : $R = B\rho_0/B_z$
 $\Delta r/_r = \Delta B\rho / B\rho = \Delta p / p = \gamma / (\gamma + 1)$. $\Delta E / E$

A long bunch length $\Delta \phi = H \omega_{rev} \Delta t$: - induces a large energy dispersion ΔE

: - induces a large bunch

$$
\Delta r/r \approx \frac{1}{2} \Delta E/E \approx \frac{1}{2} \Delta \cos(\varphi) = \frac{1}{2} (\cos(0^{\circ}) - \frac{\cos \Delta \varphi}{2}) \approx \frac{1}{4} \Delta \varphi^{2}
$$

(emittance)

Acceleration RF Technology

Magnetic structure \Rightarrow RF cavity's shape

"Curved sector"

For spiral AVF

"Triangle" shape

The choice of the pole shape and the number of sectors N have a great impact on the available space for RF systems. Dees have to fit into the gaps and/or valley sections

RF Cavities : example 1 for Separated Sectors Cyclotron

RF Cavities : example 1 for Separated Sectors Cyclo

Energy gain in 2 gaps $-cos(\phi - \mathbf{h}\alpha/2) + cos(\phi + \mathbf{h}\alpha/2)$

$$
\delta E_{turn} = N_{gap} q V_0 \sin\left(\frac{H\alpha_{cav}}{2}\right) \cos(\varphi_{mid})
$$

δ Eturn optimum is

for H. α cav / 2 = 90 degree

Ion Sources for cyclotron

- **1999 IDD Sources for cyclotre**
• Internal source (inside cyclotron)
PIG : Penning or Philips Ionization Gauge i*on soul-
for very light beam with low charge state H+,D* -PIG : Penning or Philips Ionization Gauge ion source for very light beam with low charge state H+,D+,He+ • Internal source (inside cyclotron)
• PIG : Penning or Philips Ionization Gauge i*on source
for very light beam with low charge state H+,D+,He+*
• External source (outside cyclotron with injection line)
– Multi-CUSP sourc
- External source (outside cyclotron with injection line)
- Multi-CUSP source ;: for negativ ion H or D-
-
- ECRIS (Electron cyclotron resonance) for high charge state He++ up to U^{35+}

Internal ion source: Cold cathode PIG Ion Source

-
- Electron confinement due to the magnetic field along the anode axis
- -
	-
- $\frac{1}{6}$

External ion source : Multi-CUSP source rnal ion source : Multi-CUSP source
for negativ ions : H-//D- with high current
t + filtering + extraction

- Larger Than the PIG source (Magnets)
- Better emittance
- Larger current (Magnet confinement+ Filter)

Larger Size \Rightarrow External Source

External ion source : ECR ion source
Heavy ions with high charge state Heavy ions with high charge state

Beam injection in cyclotron
• Low energy cyclotron : axial injection
Injection from the top Beam injection in cyclotron

Injection from the top

injection in compact cylotron

Beam Axial injection from the top of the cyclotron

Axial injection with inflector

Axial injection with inflector

Soal : Put the beam on the « good orbit » at the good phase

with a very compact geometry **n with inflector**
good orbit » at the good phase
with a very compact geometry
e with an electrostatic device

 $Rm = Bp / Bcenter$

 $RE = mV^2/Q / E$ inflector

Axial injection : the Spiral inflector $=$ Twisted electrodes with $E \cup v$

Trajectory Equations are very funny :

Parametric equation of the trajectory $\theta = [0,\pi/2]$

Two parameters : A the inflector Height k' the tilt

Farallettle equation of the trajectory $v = [0, h/2]$
 $x_c = \lambda(1 - \sin k\theta \sin \theta - \cos k\theta \cos \theta)$
 $y_c = \lambda(\sin k\theta \cos \theta - \cos k\theta \sin \theta)$
 $z_c = A(\sin \theta - 1)$
 $z_c = A(\sin \theta - 1)$
 $x_c = A(\sin \theta - 1$ Electric radius A =RE= mV²/Q / Eo Magnetic radius Rm= Br/ Bo

Radial injection in separated sector cyclotron

- elements.
-
- magnets
- horizontally.

Electrostatic Inflector for radial injection

Cyclotron Extraction

Extraction by stripping negative ions

simple and low cost

**Extraction by stripping negative ions
Extraction by stripping negative ions
simple and low cost
Extraction using the radial separation between turn n°N & n°N+1
turn separation** $\delta r >$ **bunch size** Δr

turn separation $\delta r >$ bunch size Δr method 2.a : natural acceleration method 2.b : precession method 2.c : resonance

Negative Hydrogene isotopes
for **proton & deuteron** beam
enviconvenient for stripping extraction for proton & deuteron beam Negative Hydrogene isotopes
for **proton & deuteron** beam
very convenient for stripping extraction

PIG sources or multiscup sources for negative ions of H,D

Extraction by stripping negativ ions
with a very thin carbon foil (stripper) with a very thin carbon foil (stripper)

The magnetic force is inverted when H⁻ loses its 2 electrons

 F_r ~ - v.Bz \Rightarrow + v.Bz

Extraction : 3 mechanisms possible

Goal : High extraction efficiency with well separated orbits

 δr = Acceleration + Precession + increase oscillation by a field bump (resonance extraction)

- a. Extraction by acceleration
- b. Precession extraction : radial oscillations help to separate orbits
- c. Resonant extraction : increase the precession by a field bump

If turn separation not enough then magnetic perturbations are used. Particles are forced to oscillate around their equilibrium orbit with a magnetic bump

a. Extraction by acceleration

Method 2.a : Extraction by acceleration in exit fringe field n<0) Maximise The radial δ R separation between 2 consecutive turns **a.** Extraction by acceleration

hod 2.a : Extraction by acceleration in exit fringe field n<0)

simise The radial δ R separation between 2 consecutive turns

• δE_{turn} : Energy gain per turn as high as possible (VRF)

- δ *Eturn* : Energy gain per turn as high as possible (VRF)
-

Demonstration : We have $Bp=****R****$ and $Bz⁻$ R⁻ⁿ -n

•
$$
\delta
$$
 Eturn : Energy gain per turn as high as possible (VRF)
\n• Accelerate the beam to fringing field (Bz decrease, n>0)
\nDemonstration : We have B_P=<-B> \times R[>] and B_Z \sim R⁻¹¹
\n
$$
\frac{\delta\langle R\rangle}{\langle R\rangle} = \delta \ln(R) = \delta \ln\left(\frac{B\rho}{\langle B\rangle}\right) = \frac{\delta B\rho}{B\rho} - \frac{\delta\langle B\rangle}{\langle B\rangle} = \frac{\delta p}{p} + n \frac{\delta\langle R\rangle}{\langle R\rangle}
$$
\nSo rearranging δ R on two side : $\frac{\delta\langle R\rangle}{\langle R\rangle} = \frac{\delta p}{p} \cdot \frac{1}{1-n} = \frac{1}{2} \cdot \frac{\delta E_{turn}}{E_N} \cdot \frac{1}{1-n}$

X0 given by injection tuning

 $X_0 = 0$ No precession $X_0 \neq 0$ precession

Radial Distance between bunches oscillates

At certain radii bunches are close

- At certain radii
- on
At certain radii
bunches are close
At certain radii
Bunches are well
separated
- Good for extraction separated on
At certain radii
bunches are close
At certain radii
Bunches are well
separated
- Good for extraction
-

c. Resonant extraction shown by equations **C. Resonant extraction shown by equations**
Radial Equation without magnetic Perturbation
 d^2x

c. Resonant extraction shown by equations

\nRadial Equation without magnetic Perturbation

\n
$$
\frac{d^2x}{dt^2} + \omega^2. Qr^2 x = 0 \qquad x(t) = x_0 \cos(Q_r \omega_r t)
$$
\nRadial Equation with magnetic Perturbation = cos(P ω t)*

\n
$$
\left[\frac{d^2x}{d\theta^2} + \omega^2 Q_r^2 x \right] = A \cos(P\theta)
$$
\nOriven oscillator excited at the « frequency » P

\nif the excitation is at the resonance frequency P = Qr

$$
\left[\frac{d^2x}{d\theta^2} + \omega^2 Q_r^2 x\right] = A \cos(P\theta)
$$

 $\frac{x}{2} + \omega^2$. $Qr^2 x = 0$ $x(t) = x_0 \cos(Q_r \omega_r t)$

adial Equation with magnetic Perturbation = cos(P ω t) *
 $\frac{dx}{dt^2} + \omega^2 Q_r^2 x = A \cos(P\theta)$

Driven oscillator excited at the « frequency » P

if the excitation is at the reso you get Large amplitude oscillations δr (easy extraction)

One field Bump correspond to harmonic P=1

coil for fieldbump

C. Extraction with resonance excitation
Close to extraction radius,

Close to extraction radius, a field bump Increase the bunch separation δr

Field bump

The excitation must correspond to e to extraction radius,

eld bump Increase the bunch separation δr

d bump

excitation must correspond to

the natural radial oscillation Q_r

small excitation is sufficient

Very small excitation is sufficient if resonance …..

if $Q_r \sim 1$ One field bump if $Q_r \sim 2$ two field bump