

Cyclotrons

Chapter 5 : theory versus reality,examples

- Cyclotron versus synchrotron or linac
-
- **Example:**
 Cyclotrons

 Cyclotron versus synchrotron or linac

 Isochronism and Phase measurement

 Radial probe and Intensity measurement

 Resonances and tunes in a cyclotron • Cyclotrons

• Cyclotrons

• Cyclotron versus reality, examples

• Cyclotron versus synchrotron or linac

• Isochronism and Phase measurement

• Radial probe and Intensity measurement

• Resonances and tunes in a cyclotro
- Resonances and tunes in a cyclotron Chapter 5 : theory versus reality,
• Cyclotron versus synchrotron c
• Isochronism and Phase measu
• Radial probe and Intensity mea
• Research applications
• Medical applications
- Research applications
-

Cyclotron vs other RF accelerators

LINAC VERSUS CYCLOTRON

I cw \degree up to $1-5$ mA Linac Cost["] up to 10 Meuros $+$ building (\degree 300m2)

- Not Compact (beam lines +linac) - Specific design $\epsilon \, \epsilon$

Proton | **The state of the UV** to get [~]20 MeV protons

TRON

TRON

Internal source

H- with stripping extraction

Rextraction ~0.4 m **TRON**

The protons
 Continued Source

H- with stripping extraction

Rextraction ~0.4 m

Total size < 2m TRON

Transformal

Superions

Internal source

H- with stripping extraction

Rextraction ~0.4 m

Total size < 2m

Total size < 2m

I cw \sim 0.05 up to 0.3 mA in H-CYCLO Cost ~ 1.5- 3 Meuros

Several industrial manufacturers **Compact** Standard design (1300 cyclo in the world) Operation easy

Phase measurement: Isochronism

Ganil, Caen (Fr) : CSS1

Radial probes useful tool for acceleration, precession study

Current measurement Ibeam=F(R) : Radial probe

Tune Q_r measurement with radial probes Turn separation δr gives $\mathbf{Q} \mathbf{r}$: $\mathbf{r}(\mathbf{t}) = \langle \mathbf{R}(\mathbf{t}) \rangle + \langle \mathbf{X}_0 \cos(\mathbf{Q}_r \omega \mathbf{t}) \rangle$ ω .t = phase = θ nt
 $\cos(\mathbf{Q}_r \omega t)$
 $\omega.t = \text{phase } = \theta$
 $\omega.\Delta t = 360^\circ = 1 \text{ turn}$ With radial probes

Turn separation δr gives **Qr** $r(t) = \langle R(t) \rangle + X_0 \cos(\theta)$
 $\therefore \delta r = \delta r$ acceleration + $X_0 \cos(Q_r \omega t)$

Centering error

Back to dynamics **Back to dynamics
and resonances at high energy
exparation, Q, and Q, change because** $Q_{\alpha} \propto \gamma(R)$ to dynamics
nces at high energy
change because $Q_{z} \propto \gamma(R)$
d the working point diagram.

During the acceleration, $\overline{\mathbf{Q}}_{\rm r}$ and $\overline{\mathbf{Q}}_{\rm z}$ change because

The plot of $\overline{\mathbf{Q}}_\text{r}$ vs $\overline{\mathbf{Q}}_\text{Z}$ is called the <mark>working point diagram.</mark>

Like any oscillatory phenomenon, the amplitude of a betatronic motion can grow Like any oscillatory phenomenon, the amplitude of a betatro
uncontrolled if an<code>external</code> source<code>excites</code> it with<code>its</code> own<code>frequency.</code>

$$
\frac{d^2x}{dt^2} + \omega^2 Q_r^2 x = 0
$$

Several kind of radial resonances

 $\mathbf{x}(t) = \mathbf{x}_0 \cos(\mathbf{Q}_r \omega t) = \mathbf{x}_0 \cos(\mathbf{Q}_r 2\pi \text{Nturn})$

can be excited with field defects, injection angle (unwanted)

with field bump, injection angle (desired)

Resonances on cyclotron and synchrotron

Systematic resonances : This resonance occurs as the betatronic frequency ${\sf Systematic\ resources}$: This resonances to cours as the betatronic frequency
(tune) is a multiple of the "magnetic frequency" of the machine. In this case, any kick (tune) is a multiple of the "magnetic frequency" of the machine. In this case, any kick
given to the particle because of its particular position will be experienced again and again.

$(K, Q_r = P)$ // $(L, Q_z = P)$

Coupling resonances: the 2 oscillations (vertical and horizontal) can be coupled and the energy stored in one motion, transferred to the other. These are coupling resonances ($K_v v_r + L_v v_z = P$). given to the particle because of its particular position will be experienced again and
again.

(K. Q_r = P) // (L. Q_z = P)

Coupling resonances: the 2 oscillations (vertical and horizontal) can be coupled

and the ener **(K. Q_r = P)** // **(L. Q_z = P)**

Coupling resonances: the 2 oscillations (vertical and horizontal) can be cour

resonances (K. $v_r + L$. v_z = P).
 K. Q_r + **L.** Q_z = P integer

The accelerator working point curve s

 $\mathbf{K} \cdot \mathbf{Q}_{\mathbf{r}} + \mathbf{L} \cdot \mathbf{Q}_{\mathbf{z}} = \mathbf{P}$ K, L and P integer

d resonances on a cyclotron
at Triumf (Canada)
 $Kb=520 \text{ MeV}, 6 \text{ separated sectors}$)
 $K. Q_r + L. Q_z = P$ Tunes and resonances on a cyclotron (H⁻ cyclo, Kb=520 MeV, 6 separated sectors) K. Q_r + L. Q_i = P $|K| + |L|$ is called the resonance order $(1, 2, 3 ...)$ Effect on the crossing of the resonance $2.Q_r = 3$ (order 2) Radial Oscillations : $2.Q_r = 3$ TUNE DIAGRAM FOR TRIUMF

Qr =3/2 = .6 400 $v_z = 1/2$ START OF $\nu_r = 3/2$.5 ESONANCE AT ~450 MeV 300 MeV

Resonances on Synchrotron : LHC example

 $\text{accelerator working point curve should}$
to those lines :
the quad such as K. Q_r + L. Q_z ≠ P
 \neq 64 Q_z \neq 59
Q_z \neq 59.33 = (3x59+1) /3

$$
Q_{r} \neq 64 \qquad Q_{z} \neq 59
$$

$$
Q_{z} \neq 59.33 = (3x59+1)/3
$$

Cyclotrons in the world

Some research laboratories with Cyclotron(s)

17 For radioactive ions 2 Separated Sectors cyclotrons $K_b = 380$ MeV

RIBF (Tokyo, Japan) : Uranium beam $^{238}U^{88+}$ @345 MeV/A cw

Mode (1): RILAC + RRC + (stripper2) + fRC + (stripper3) + IRC + SRC

RIBF (Japan) : SRC (Kb=2600 MeV) XIBF (Japan) : SRC (Kb=2600 MeV)
the strongest cyclotron in the world
Superconducting Ring Cyclo F (Japan) : SRC (Kb=2600 MeV)
strongest cyclotron in the world
Superconducting Ring Cyclo

Completed November 2005 - the 140-ton cold mass cooled to 4.5K.

PSI : K = 590 MeV ring cyclotron Pbeam = 1.4 Mwatt **PSI :K= 590 MeV ring cyclotron** Pbeam= 1.4 Mwat

1) Injection centering :

Watch the resonance $2.Q_z + Q_r = 2$
 $200 + \frac{2004 \text{ V}}{200} + \frac{2004 \text{ V}}{200}$

Watch the resonance $2.Q_z + Q_r = 2$ $300 + 1/2$

2) Extraction: Watch the beam losses!

A Flat top RF cavity has been added to reduce losses: $V_{RF} = \cos(\omega t) - \alpha \cos(3\omega t)$

 $100 -$

4100

vertical aperture

4200

 -20 mm \rightarrow \rightarrow 15mm

Radius
[mm]

Some Commercial Cyclotrons : manufacturers

GE-Scanditronix (USA-Sweden) MINI TRACE 9/18

Accel // VARIAN
250 MeV proton

Commercial Cyclotron Radioisotope production (5-20 MeV)

Radiotracer $18F*$ \ll Beta+ \gg emitter Fluorine 18 $T_{1/2}$ =109.7 min $18F*$ \Rightarrow $18O +$ positon + neutrino

 $\bigcup_{\gamma + \gamma}$

Production With cyclotrons

Proton $10-20$ MeV + 18 O \Rightarrow 18 F \ast + n

Injection of 18F* TEP camera

Reconstruction of the emitter position

Cyclone 10/5 MeV (IBA)

= 10 MeV proton (Kb=10MeV)

= 5 MeV Deuteron

cyclone 3D ("vertical implantation")

CYCLONE 18/9 (IBA) : H- 18 MeV

Designed for medical applications (radiotracers production)

Internal PIG source, H-stripping extraction

Kb=18 MeV

**HeV
ers production)
Kb=18 MeV
Fixed energy ;
4 straight sector 50°
 =1.35 Tesla
Hill //valley gap 3cm// 67cm** $\frac{1}{2}$

s production)
 $b=18$ MeV

xed energy ;

4 straight sector 50°

 =1.35 Tesla

II //valley gap 3cm// 67cm

fixed Frf =42Mhz =1.35 Tesla Hill //valley gap 3cm// 67cm **y**
 s production)
 o=18 MeV

(ed energy ;

4 straight sector 50°

(Factor 50°

(Factor 50°

fixed Frf =42Mhz

(Frf =42Mhz)

(Free = 30°, 32 kV

(Free = 30°, 32 kV)

(Free = 30°, 32 kV) **HeV**
 ers production)
 Kb=18 MeV

Fixed energy ;

4 straight sector 50°

 =1.35 Tesla

Hill //valley gap 3cm// 67cm

fixed Frf =42Mhz

2 Dee = 30°, 32 kV

Harmonic h=2(p),4 (D)

Internal source

Rextraction=0. Wev

ers production)

Kb=18 MeV

Fixed energy ;

4 straight sector 50°

 =1.35 Tesla

Hill //valley gap 3cm// 67cm

fixed Frf =42Mhz

2 Dee = 30°, 32 kV

Harmonic h=2(p),4 (D)

Internal source

Rextraction=0.46 m **ers production)**
 $Kb=18 \text{ MeV}$

Fixed energy ;

4 straight sector 50°

 =1.35 Tesla

Hill //valley gap 3cm// 67cm

fixed Frf =42Mhz

2 Dee = 30°, 32 kV

Harmonic h=2(p),4 (D)

Internal source

Rextraction=0.46 m

Rextraction=0.46 m

B_pmax=0.46x 1.35=0.62 T.m

Commercial Cyclotron: proton therapy (230-250 MeV)

2 technologies in competition :

a) AVF Isochronous cyclotron (superconducting: up 2 Tesla a) Synchro-cyclotron <Bz> up to 5 tesla (R=50cm)

Machine cost \sim infrastructure size

Commercial Cyclotron : For proton therapy (230 MeV)

Protons : Better than Radiotherapy (photons)

Dose inside the tumor

Bragg Peak

Brain tumor treatment with protons

Eyes tumor treatment

Proton therapy (230 MeV) Energy variation with degrader + Rotating gantry

Optimal dose delivery Scan the tumors :

patient body:

END

References & Acknowledgements :

F. Chautard, Juas 2015 M. Craddock lecture on Cyclo //FFAG W.Joho lecture on PSI facility S. Brandenburg lecture on beam optics **P. Heferences & Acknowledgements :

F. Chautard, Juas 2015

M. Craddock lecture on Cyclo //FFAG

W.Joho lecture on PSI facility

S. Brandenburg lecture on beam optics

P. Heikinnen, CAS Jyväskylä 1992, CERN 94-01 (1994) "**

"Injection and Extraction"

T. Stammbach, CAS La Hulpe, 1994, CERN 96-02 (1996) "Introduction to Cyclotrons"

... & Many others