

Cyclotrons

Chapter 5 : theory versus reality, examples

- Cyclotron versus synchrotron or linac
- Isochronism and Phase measurement
- Radial probe and Intensity measurement
- Resonances and tunes in a cyclotron
- Research applications
- Medical applications

Cyclotron vs other RF accelerators

lsochronous cyclotrons	Radius not constant	Frf constant :CW (isochronous)	Particle ^{Ions} limit γ<2
Synchro-cyclotrons	not constant	not constant pulsed, Frf (t)	Ions
Synchrotrons	constant	not constant pulsed Frf (t)	Ions, electrons no limits for γ , limit \in
Linacs	constant ∞	constant	Ions, electrons limit €

LINAC VERSUS CYCLOTRON

20 m total

I cw ~ up to 1-5 mA Linac Cost ~ up to 10 Meuros + building (~ 300m2)

Not Compact (beam lines +linac)
Specific design € €

to get ~20 MeV protons

Internal source H- with stripping extraction

Rextraction ~0.4 m Total size < 2m

I cw ~ 0.05 up to 0.3 mA in H– CYCLO Cost $\sim 1.5-$ 3 Meuros

Several industrial manufacturers *Compact* Standard design (1300 cyclo in the world) Operation easy

Phase measurement: Isochronism

Ganil, Caen (Fr) : CSS1

Radial probes useful tool for acceleration, precession study

. Radial probe ¹⁸⁰⁰ ¹⁹⁰⁰ ²⁰⁰⁰ ²¹⁰⁰ ²²⁰⁰ ²²⁰⁰ ²³⁰⁰ ²⁴⁰⁰ 3000 3100 2800 2900 Radius Radial probe : Intensity = F(Radius) Turn separation : $\delta r = R(turn N) - R(turn N-1)$ = Acceleration + Oscillation

 $\delta r \sim \alpha VRF \cos(\phi) + Oscillation$

Current measurement I_{beam}=F(R) : Radial probe

Tune Q_r measurement with radial probes

Turn separation $\delta \mathbf{r}$ gives $\mathbf{Q}\mathbf{r}$: $\mathbf{r}(t) = \langle \mathbf{R}(t) \rangle + X_0 \cos(\mathbf{Q}_r \omega t)$

 ω .t = phase = θ

 $\omega \Delta t = 360^\circ = 1 \text{ turn}$

9

Back to dynamics and resonances at high energy

During the acceleration, Q_r and Q_z change because $Q_{z} \propto \gamma(R)$

The plot of Q_r vs Q_z is called the working point diagram.

Like any oscillatory phenomenon, the amplitude of a betatronic motion can grow uncontrolled if an external source excites it with its own frequency.

$$\frac{d^2x}{dt^2} + \omega^2 Q_r^2 x = 0$$

Several kind of radial resonances

 $\mathbf{X}(t) = \mathbf{X}_0 \cos(\mathbf{Q}_r \omega t) = \mathbf{X}_0 \cos(\mathbf{Q}_r 2\pi \text{ Nturn})$

can be excited with field defects, injection angle (unwanted)

with field bump, injection angle (desired)

Resonances on cyclotron and synchrotron

Systematic resonances: This **resonance occurs as the betatronic** frequency (tune) is a multiple of the "magnetic frequency" of the machine. In this case, any kick given to the particle because of its particular position will be experienced again and again.

$(K. Q_r = P)$ // $(L. Q_z = P)$

Coupling resonances: the 2 oscillations (vertical and horizontal) can be coupled and the energy stored in one motion, transferred to the other. These are **coupling resonances** (\mathbf{K} . \mathbf{v}_r + \mathbf{L} . \mathbf{v}_z = P).

K. $\mathbf{Q}_{\mathbf{r}} + \mathbf{L} \cdot \mathbf{Q}_{\mathbf{z}} = \mathbf{P}$ K, L and P integer

The accelerator working point curve should avoid to those lines

We must tune the machine such as **K**. $Q_r + L$. $Q_z \neq P$

Tunes and resonances on a cyclotron at Triumf (Canada) (H⁻ cyclo, Kb=520 MeV, 6 separated sectors) K. Q_r + L. Q_z = P [K] + [L] is called the resonance order (1, 2, 3 ...)

Resonances on Synchrotron : LHC example

The accelerator working point curve should avoid to those lines :

Tune the quad such as **K**. $Q_r + L$. $Q_z \neq P$

$$Q_r \neq 64$$
 $Q_z \neq 59$

$$Q_z \neq 59.33 = (3x59+1)/3$$

14

Cyclotrons in the world

Some research laboratories with Cyclotron(s)

Some of the Research Facility in the world using cyclotrons

For radioactive ions

2 Separated Sectors cyclotrons 17 Kb =380 MeV

RIBF (Tokyo, Japan) : Uranium beam ²³⁸U⁸⁸⁺ @345 MeV/A cw

Mode (1): RILAC + RRC + (stripper2) + fRC + (stripper3) + IRC + SRC

RIBF (Japan) : SRC (Kb=2600 MeV) the strongest cyclotron in the world Superconducting Ring Cyclo

Completed November 2005 - the 140-ton cold mass cooled to 4.5K.

PSI :K= 590 MeV ring cyclotron Pbeam= 1.4 Mwatt

1) Injection centering :

Watch the resonance $2.Q_{z} + Q_{r} = 2$

2) Extraction: Watch the beam losses!

A Flat top RF cavity has been added to reduce losses: VRF= Cos(ω t) - α .cos(3 ω t)

current [nA]

300.

200

100 -

4100

490MeV

- 20mm - - 15mn

Resonances K= 2 Vz

not centered

4200

vertical aperture

525 535 MeV

centered beam

585 MeV

4300

Radius [mm]

Some Commercial Cyclotrons : manufacturers

IBA (Belgium)		Cost estimate 2010
Cyclone 5/10	proton/D	1 Meuros
Cyclone 9/18	H-/D-	1.5 Meuros
Cyclone 30	H-/D-	···.
S2C2 230 MeV	p synchro-cyclo superconducting	?
C70	p/D or H−/D−	?

Sumitomo H	I (Japan)
HM-12	
HM-18	

р

р

 EBCO (Canada)

 TR 9/18
 H-/D

 TR 15/30
 H-/D

>1300 commercial cyclotrons in the World (2021)

- (10-20MeV) protons

- (230MeV) protons : develloping market

GE-Scanditronix (USA-Sweden)MINI TRACE9/18

Accel // VARIAN 250 MeV proton

Commercial Cyclotron Radioisotope production (5-20 MeV)

Radiotracer ¹⁸F* : 《 Beta+ 》 emitter Fluorine 18 T_{1/2} =109.7 min

¹⁸F* \Rightarrow ¹⁸O + positon + neutrino $\downarrow \gamma + \gamma$

Production With cyclotrons

Proton 10-20MeV + ¹⁸O \Rightarrow ¹⁸F* + n

Injection of ¹⁸F* TEP camera

Reconstruction of the emitter position

Cyclone 10/5 MeV (IBA)

= 10 MeV proton (Kb=10MeV)

= 5 MeV Deuteron

cyclone 3D ("vertical implantation")

CYCLONE 18/9 (IBA) : H- 18 MeV

Designed for medical applications (radiotracers production)

Internal PIG source, H^- stripping extraction

Kb=18 MeV

Fixed energy ; 4 straight sector 50° =1.35 Tesla Hill //valley gap 3cm// 67cm fixed Frf =42Mhz

2 Dee = 30°, 32 kV Harmonic h=2(p),4 (D) Internal source Rextraction=0.46 m

Bpmax=0.46x 1.35=0.62 T.m

Commercial Cyclotron: proton therapy (230-250 MeV)

2 technologies in competition :

a) AVF Isochronous cyclotron (superconducting : up 2 Tesla
 a) Synchro-cyclotron <Bz> up to 5 tesla (R=50cm)

Machine cost ~ infrastructure size

Commercial Cyclotron : For proton therapy (230 MeV)

Protons : Better than Radiotherapy (photons)

Dose inside the tumor

Bragg Peak

Brain tumor treatment with protons

Eyes tumor treatment

Proton therapy (230 MeV) Energy variation with degrader + Rotating gantry

Optimal dose delivery Scan the tumors :

Depth variation in patient body: Tumor scanning

The gantry reduces dose in healthy tissues

END

References & Acknowledgements :

F. Chautard, Juas 2015
M. Craddock lecture on Cyclo //FFAG
W.Joho lecture on PSI facility
S. Brandenburg lecture on beam optics

P. Heikinnen, CAS Jyväskylä 1992, CERN 94-01 (1994) "Cyclotrons" and "Injection and Extraction"

T. Stammbach, CAS La Hulpe, 1994, CERN 96-02 (1996) "Introduction to Cyclotrons"

... & Many others