Beam dynamics for cyclotrons

Bertrand Jacquot

GANIL, Caen, France

Cyclotrons JUAS 2023

Chapter 1 : theory

- History & Principle
- isochronism
- Transverse dynamics (stability)

Chapter 2 : different cyclotrons

- AVF cyclotron
- Synchro-cyclotron
- FFAG

Chapter 3 :specific problems

- Acceleration, RF
- Injection
- Extraction

Chapter 4 : design

- Design strategy
- Tracking

Chapter 5 :

-Theory vs reality (cost, tunes, Isochronism,...)

-Examples Medical cyclotron Research facility

Chapter 1 : part a

Cyclotron history

The Inventor, **E. Lawrence**, get the **Nobel** in Physics (1939) (first nuclear reactions Without alpha source)

 Brilliant idea (E. Lawrence, Berkeley, 1929) : RF accelerating field is technically complex and expensive.

So Let 's use **only 1 RF cavity**, but many times

A device is put into a magnetic field, curving the ion trajectories and only one electrode is used several times.

From 1935-1980 : unique tool for Reseach facility (nuclear physics)

1980-today : Radio Isotope Production for the hospitals

In 2021 : 1300 cyclotrons in Operation !

What is a cyclotron ?

•RF accelerator for the ions :

from proton A=1 to Uranium A=238

- Energy range for proton 1MeV -1GeV (γ~1-2)
- Circular machine with 100% duty cycle
- Weak focusing
- Size Radius=30cm to R=6m
- RF Frequency : 10 MHz -60 MHz

APPLICATIONS : Nuclear physics

from fundamental to applied research Medical applications : Radio Isotopes production (for PET scan,....) Cancer treatment

Quality: Compact and Cost effective

Useful concepts for the cyclotrons

$$B\rho = \frac{P}{q} = \frac{\gamma \ m.v}{q}$$

$$E_K = (\gamma - 1).mc^2$$

Cyclotron coordinates

- r Radial = horizontal
- z Axial = vertical
- $\theta \ll Azimuth \gg = cylindrical angle$

MeV/A= kinetic energy unit in MeV per nucleon

Maxwell equations

 $\nabla \times B = 0$

Principle: spiraling trajectories

2 Copper boxes ≠ potential one is at the ground potential

A compact cyclotron in reality

Trajectory in uniform B field

$$\frac{d(\gamma \ m\vec{\mathrm{v}})}{dt} = \vec{F}$$

A ion with a charge q and a mass m circulating at a speed v_{θ} in a uniform induction field B.=(0,Bz,0)

The motion equation can be derived from the **Newton's law** in a cylindrical coordinate system (er,,ez, $e\theta$):

$$\frac{d p}{dt} = \vec{F} = q(\vec{v} \times \vec{B}) = -qv_{\theta}B_{z}\vec{e_{r}}$$
since $\vec{v} \times \vec{B} = \begin{vmatrix} \vec{e_{r}} & \vec{e_{z}} & \vec{e_{\theta}} \\ 0 & 0 & v_{\theta} \\ 0_{r} & B_{z} & 0 \end{vmatrix}$

$$\frac{d p}{dx} = m\gamma \frac{d v}{dt} = q(v_{\theta} \cdot B_{z}) \cdot e_{r}$$

$$\frac{d v}{dt} = \left(\frac{||v||^{2}}{R}\right) \cdot e_{r}$$

$$m\gamma \frac{v^{2}}{R}e_{r} = q(v_{\theta} \cdot B_{z}) \cdot e_{r}$$

$$R = \frac{\gamma mv}{qB_{z}}$$

Trajectory in uniform Bz field

The acceleration in cyclotron

Cyclotrons Tutorials 0

• Demonstrate that the revolution frequency ($F_{rev} = \omega_{rev}/2\pi$) of an ion in a perpendicular uniform field Bz is $\omega_{rev} = q Bz / m\gamma$

1) With the Newton-Lorentz equation (demo 1)

2) With magnetic rigidity (demo 2)

Nota: Electric field is supposed to be Zero

so ||V|| = constant and hence $\gamma = [1-v^2/c^2]^{-1/2} = constant$

Cyclotrons Tutorials 0

Demonstrate that the revolution frequency $Frev = \omega rev / 2\pi$ of an ion in a perpendicular uniform field Bz is $\omega rev = q Bz / m\gamma$

Demo N° 1 : Newton equation

d *p* /dt = q (**v x B**)

$$\mathbf{v} \times \mathbf{B} = \begin{vmatrix} \mathbf{e}_r & \mathbf{e}_z & \mathbf{e}_\theta \\ \mathbf{0} & \mathbf{0} & \mathbf{V}\theta \\ \mathbf{0} & B_z & \mathbf{0} \end{vmatrix}$$

m γ (d v/ dt) = - q v θ Bz er

m
$$\gamma$$
 (- v^2 /R) er = - q $v\theta$ Bz er

R = **q v Bz** / **m** γ Frevolution = $\frac{\mathbf{v}}{2\pi R} = \frac{1}{2\pi} \frac{qB}{\gamma m}$ Demo N°2 : Bp formula

$$R = \frac{B\rho}{B_z} = \frac{\gamma \ mv}{qB_z}$$

$$Frevolution = \frac{v}{2\pi R} = \frac{1}{2\pi} \frac{qB}{\gamma m}$$

$$\omega_{rev} = 2\pi Frev = q Bz / m \gamma$$

Desynchronization of bunches in uniform field cyclotron Bz=B0

$$\omega_{rev} = \frac{qB_0}{m\gamma} = \frac{qB_0}{m} \cdot \sqrt{1 - \frac{v^2}{c^2}} = \frac{qB_0}{m} \cdot \sqrt{1 - \frac{R^2 \omega^2}{c^2}}$$

How to get constant revolution frequency

The distance between magnet pole (gap) evolves with Radius : $B_z \sim 1/gap$

Isochronism $\ \Theta rev = constant$ $B_z(R) = B_0 / (1 - R^2 \omega^2 / c^2)^{1/2}$

Isochronism condition: ω_{rev} =constant

with $\omega_{rf} = H\omega_{rev}$, the particle is synchronous with the RF wave. In other words, the particle arrives always at the same RF phase in the middle of the accelerating gap.

Cyclotrons Tutorial 1

•<u>An isochronous cyclotron</u> uses a RF cavity at 60 MHz at the RF harmonic H=3

a. Compute the time needed to perform one turn Trev for the accelerated ions.

b. Compute the average field Bz needed to accelerate a proton beam

(in a non relativistic approximation)

Cyclotrons Tutorial 1

•An isochronous cyclotron uses a RF cavity at 60 MHz at the RF harmonic h=3

a. Compute the time needed to perform one turn for the accelerated ions.b. Compute the average field B needed to accelerate proton

in a non relativistic approximation

Answer *a* Revolution freq=60/3 = 20 MHz $\Delta T = 1/Frev = 50$ ns

b $\omega = qB/\gamma m = \omega rf/H$ and we have γ close to 1

proton mass~ $1.6 \ 10^{-27 \text{ kg}}$ // proton charge~ $1.6 \ 10^{-19} \text{ C}$

Frf=60 MHz= $\omega rf/2\pi$

 $B_z = m_p/q \cdot 2\pi F_{rf}/H = 10^{-8} \cdot 10^6 \cdot 20 \cdot 2\pi = 1.26$ Tesla

Cyclotrons Tutorial 2

•Demonstrate than in a uniform circular motion , the radial acceleration is

$$a_{r} = |V^{2} / R|$$
.

Nota : You can use parametric equations

 $X(t) = R \cos(\omega t)$ $Y(t) = R \sin(\omega t)$

Then compute **the velocity** and the **acceleration**. Demonstrate that the acceleration is radial

Nota : $\omega t = \theta$ $\omega = d\theta/dt$

Cyclotron Tutorial 2

uniform circular motion $X(t) = R cos(\omega t)$ $Y(t) = R sin(\omega t)$

compute the velocity and the acceleration.

ion. $e_{\theta} = |\mathbf{v}| = (Vx^{2} + Vy^{2})^{1/2} = \omega R$

Answer

 $Vx = -\omega R \sin(\omega t)$ $Vy = +\omega R \cos(\omega t)$

$$|a| = (ax^{2} + ay^{2})^{1/2} = \omega^{2} R = v^{2} / R$$

v perpendicular to a (since v.a = 0) $a = -v^2/R$

Radial vector $\mathbf{e}r$ and longitudinal vector \mathbf{e}_{θ}

$$er = \cos(\omega t) \qquad der / dt = \omega e\theta$$

$$sin(\omega t) \qquad d^2 er / dt^2 = -\omega^2 er = v^2 / R^2 er$$

Transverse dynamics in a cyclotron without acceleration

We will use cylindrical coordinates (er, $e\theta$, ez)

The reference trajectory is $\mathbf{r} = R_0 \, \mathbf{er}$ $R_0 = B\rho/B_z$ What happen to a particle with $\mathbf{r} = (R_0 + x_0) \, \mathbf{er} + \mathbf{z}_0 \, \mathbf{ez}$

In Radial plane (horizontal) :

 $\mathbf{r}(\mathbf{t}) = \mathbf{R}_0 + \mathbf{x}_0 \cos(\mathbf{Q}_r \ \boldsymbol{\omega}_{rev} \mathbf{t})$

Radial tune Q_r

In the Vertical (axial) plane :

$$\mathbf{z}(\mathbf{t}) = \mathbf{z}_0 \cos(\mathbf{Q}_z \, \boldsymbol{\omega}_{\mathsf{rev}} \, \mathbf{t})$$

<u>Axial tune</u> Q_z

Transverse dynamics with B_z (R) $B_z(R) = B_0/(1 - R^2 \omega^2/c^2)^{1/2}$

Cylindrical coordinates (er, eo, ez) and define x & z a small orbit deviation with Bz=Bz(r) (not constant)

Motion Equat. With $x \neq 0$ & $z \neq 0$?

$$m\frac{\overrightarrow{d(\mathbf{v})}}{dt} = m\frac{d^2(\mathbf{r})}{dt^2} = ?$$

Vertical dynamics with $B_z(R)$ (No RF)

• Taylor expansion of the field B₇ around the median plane:

definition of n(r) $B_z \sim B_0 (r/R_0)^{-n}$ n=field index Bz is not uniform)

with
$$n = -\frac{R_0}{B_0}\frac{\partial B_z}{\partial r} = -\frac{R_0}{B_0}\frac{\partial B_z}{\partial x}$$

SO $B_{Z}(R_{0}+x) = B_{0}(R_{0}) + (dB/dx) x + ... = B_{0}(1-nx/R_{0})$ How evolves an ion, in this non uniform Bz :

r(t) = (R + x(t)) er + z(t) ez

 $m \gamma d^2 (z e_z)/dt^2 = F_z e_z$ Vertical motion e_{θ}

Fz vertical plan: ez=constant

$$m\gamma \frac{d^2 z}{dt^2} = F_z = q (v \times B)_z = -q(r B_\theta - r \theta B_r)$$

Vertical dynamics with B (r) $m\gamma \frac{d^{2}z}{dt^{2}} = F_{z} = q (\mathbf{v} \times B)_{z} = -q(r B_{\theta} - r \theta B_{r})$ $\mathbf{v} \times \mathbf{B} = \begin{vmatrix} \mathbf{e}_{r} & \mathbf{e}_{z} & \mathbf{e}_{\theta} \\ \vdots & \vdots & \vdots \\ r & z & r \theta \\ B_{r} & B_{z} & \mathbf{0} \end{vmatrix}$

$$Br = ? \qquad \nabla \times \mathbf{B} = \mathbf{0} \qquad \frac{\partial B_r}{\partial z} - \frac{\partial B_z}{\partial r} = \mathbf{0} \qquad + \qquad Bz = \mathbf{B}_0 \mathbf{r}^{-\mathbf{n}}$$
$$\implies B_r = -n \frac{B_{oz}}{r} z$$

Motion equation

$$\frac{d^2z}{dt^2} = -\omega^2 \cdot Q_z^2 \cdot z$$

Harmonic oscillator ?

$$z(t) = z_0 \cos(\mathbf{Q}_z \, \omega_{\text{rev}} \, t)$$

For isochronism, we have n < 0 (therefore Q_z is imaginary)

$$Q_z^2 = n < 0$$
 $Q_z = i |n| ...$

Watch the <u>vertical oscillations</u> !!

2m2

Isochronism condition: n < 0 : Bz(r)~r⁻ⁿ : increase with Radius

Vertical tune $Q_z^2 = n < 0$

Isochronism condition will induce unstable oscillations

$$z(t) = z_0 \cos(\mathbf{Q}_z \omega_{rev} t)$$

$$z(t) \sim z_0 \exp(\pm |\mathbf{n}|^{1/2} \omega_{rev} t)$$

Unstable oscillations in Z

= exponential growth = beam losses

Radial (horizontal) dynamics with Bz(R) (No RF)

- Taylor expansion of the field B_z around the median plane:
- definition of n(R) $Bz (R) \sim B_0 (R /R_0)^{-n}$ n= called field index so $Bz (R_0+x) = B_0(R_0) + (dB/dx) x + ... = B_0 (1-nx/R_0)$

•How evolves an ion, in this non uniform Bz : $r(t) = R_0 + x(t)$ $m\gamma \frac{d^2 r}{dt^2} = -q \mathbf{v} \times \mathbf{B}$ $d^2 er/dt^2 = -\omega^2 er = v^2/r^2 er$ $\frac{d^2(r \cdot \vec{er})}{dt^2} = (x - \frac{v_{\theta}^2}{r})\vec{er} + 2xe_r \quad der/dt = \omega \ e\theta$ r = R(1 + x/R) $= \begin{bmatrix} \mathbf{v} \cdot \mathbf{v}_{\theta}^{2} (1 - \frac{x}{R}) \\ x - \frac{\mathbf{v}_{\theta}^{2}}{R} (1 - \frac{x}{R}) \end{bmatrix} \vec{\mathbf{er}} + 2 \vec{x} \cdot \vec{\mathbf{e}}_{\theta} \quad radial \ motion \ (projection \ on \ \mathbf{er})$ $\frac{1}{r} = \frac{1}{R (1 + \frac{x}{R})} \approx \frac{1}{R} (1 - \frac{x}{R}) \quad m\gamma \left(\mathbf{v}_{\theta}^{2} (1 - \frac{x}{R}) \right) = -q \mathbf{v}_{\theta} B_{0z} (1 - n \frac{x}{R})$

Radial dynamics with Bz(R)

$$m\gamma \left(\begin{array}{c} \bullet \bullet \\ x - \frac{v_{\theta}^{2}}{R} \left(1 - \frac{x}{R} \right) \right) = -q B_{0z} \left(1 - n \frac{x}{R} \right) v_{\theta}$$

After simplification :
and $\omega_{rev} = \frac{qB_{0z}}{\gamma m} = \omega_{0} \approx \frac{v_{\theta}}{R}$

$$\frac{d^2 x}{dt^2} = -\omega^2 Q_r^2 x \qquad Q_r = (1-n)^{1/2}$$

Horizontal stability condition (Qr real) :

17

n < 1

We have n < 0 for isochronism : therefore $Q_r^2 > 0$

Horizontal stability is guarantee in isochronous cyclotron

Radial dynamics (Qr real) : Stable oscillations

Harmonic oscillator with the frequency ($Q_r \omega_{rev}$)

$$\frac{d^2x}{dt^2} = -\omega^2(1-n)x$$

 $x(t) = x_0 \cos(Q_r \omega_{rev} t)$

Horizontal stability if n < 1: always satisfied $Qr^2 = 1 - n > 0$

n < 0 : isochronism condition Bz should increase Stability condition ($Qr^2 > 0$) OK

$$\mathbf{r} = \mathbf{R}_0 + \mathbf{x}_0 \cos(\mathbf{Q}_r \, \omega_{rev} \, t)$$

Tunes : $\mathbf{Q}_{r} \& \mathbf{Q}_{z}$

oscillations around reference trajectory

 $\mathbf{r}(\mathbf{t}) = \mathbf{R}_{0}(\mathbf{t}) + \mathbf{x}_{0} \cos(\mathbf{Q}_{r} \boldsymbol{\omega}_{rev} \mathbf{t})$

Q_r : Number of radial oscillations per cyclotron turn in horizontal (radial) plan

 $r = R_0(t) + x_0 \cos(2 \omega_0 t)$

 $Q_r^2 = 1 - n$ stable oscillations

$$Z(t) = z_0 \cos(Q_z \omega_{rev} t) = z_0 \cos(Q_z \theta)$$

$$Q_z^2 = n < 0 \quad \text{unstable oscillations}$$

$$(Q_z = i | Q_z |)$$

$$Z(t) \sim z_0 \exp(\pm | Q_z | \theta)$$

The vertical instability generated by B_z(R)

29

Vertical stability \neq Isochronism

 $\langle Fz \rangle = q \langle v_r | B_{\theta} \rangle$: additional Vertical focusing force

What is the azimuthal field B_{θ}

 $\langle F_z \rangle = q \langle v_r | B_{\theta} \rangle \sim -z$: Vertical focusing force

<u>Isochronism n < 0</u> : Bz(R) increases with Radius R

<u>Vertical stability</u> : Bz(R) Defocus in z + B₀ Focus in z

Bz should oscillate with θ to compensate the instability

Azimuthally varying Field (AVF) Exemple : 30 MeV compact proton cyclotron 4 straight sectors

C30 poles and valleys

-2 RF cavities
Inserted in the valleys
= 4 accelerating gaps

4 Hills + 4 Valleys B= $B(R,\theta)$

Bz Field varies with azimuth θ