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Disclaimer

❑ This course is based on material from the JUAS course on non-linear 

dynamics by Y. Papaphilippou from the past. 

❑ Parts of the slides were taken / inspired from the course on nonlinear 

dynamics of R. Bartolini (John Adams Institute, 2017) and the one of 

A. Wolski (Cockroft Institute, 2015).
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Example of a simple storage ring

■ To correct or control chromaticity in a storage ring we need 

to install sextupole magnets

■ Nonlinear elements such as sextupole magnets can have 

significant impact on the particle motion (as we will see)

■ To illustrate this, we start with a very simple example

❑ Assume a circular machine built of identical cells

❑ There is one sextupole per cell, which is located at a point where the 

horizontal beta function is 1m, and the alpha function is zero (to control 

chromaticity in both planes we would need at least 2 sextupoles)

❑ The phase advance per cell can be tuned 

❑ We consider for the moment only horizontal motion (i.e. y=0)

❑ We build a small simulation code to study the particle behavior in 

phase space turn-by-turn
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Example of a simple storage ring

❑ The map from the sextupole in one cell to the sextupole in the next cell 

is just a rotation in phase space (periodic linear transfer matrix with 

beta=1 and alpha=0)

❑ The change in the horizontal momentum of a particle moving through 

the sextupole is found by integrating the Lorentz force

with                            (assuming y = 0) 

❑ If the sextupole is short we can neglect the small change in the 

coordinate x as the particle moves through the sextupole, in which 

case we obtain (thin lens approximation)
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Example of a simple storage ring

❑ The map for a particle moving through a short sextupole can be 

represented by a “kick” in the horizontal momentum

❑ For the moment we consider a machine with a single cell, for which 

the map consists of the linear transfer map and one sextupole kick

❑ We choose a fixed value of k2L and look at the effects of the maps for 

different tunes (i.e. phase advances) of the machine

❑ For each case we construct a phase space portrait by plotting x, px

turn after turn for a range of initial conditions
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Example of a simple storage ring
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Example of a simple storage ring
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Example of a simple storage ring
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Example of a simple storage ring
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Example of a simple storage ring
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Some observations

■ There are some interesting features in these phase space portraits 
to which it is worth drawing attention: 

❑ For small amplitudes (small x and px), particles trace out closed loops 
around the origin: this is what we expect for a purely linear map. 

❑ As the amplitude is increased, “islands” appear in phase space: the 
phase advance (for the linear map) is often close to m/p where m is an 
integer and p is the number of islands. 

❑ Sometimes, a larger number of islands appears at larger amplitude. 

❑ Usually, there is a closed curve that divides a region of stable motion 
from a region of unstable motion. Outside that curve, the amplitude of 
particles increases without limit as the map is repeatedly applied.

❑ The area of the stable region depends strongly on the phase 
advance: for a phase advance close to 2π/3, it appears that the stable 
region almost vanishes altogether. 

❑ It appears that as the phase advance is increased towards π, the 
stable area becomes large, and distortions from the linear ellipse 
become less evident. 
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Impact of phase advance

❑ The effect of the phase advance on the sextupole “kicks” is similar to 

the effect on perturbations arising from dipole and quadrupole

errors in a storage ring

❑ In the case of dipole errors, the kicks add up if the phase advance is 

an integer, and cancel if the phase advance is a half integer

Eff ect of t he phase advance on t he nonlinear dynam ics

T he eff ect of t he phase advance on t he sext upole “ kicks” is

sim ilar t o t he eff ect on pert urbat ions arising from dipole and

quadrupole errors in a st orage ring.

In t he case of dipole errors, t he kicks add up if t he phase

advance is an int eger, and cancel if t he phase advance is a half

int eger.

CAS, B udapest , 2016 20 Nonlinear D ynamics: Part 2
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Impact of phase advance

❑ In the case of quadrupole errors, the kicks add up if the phase 

advance is a half integer times 2π

❑ Higher-order multipoles drive higher-order resonances but the 

effects are less easily illustrated on a phase space diagram

Eff ect of t he phase advance on t he nonlinear dynam ics

In t he case of quadrupole errors, t he kicks add up if t he phase

advance is a half int eger.

Higher-order mult ipoles drive higher-order resonances... but t he

eff ect s are less easily illust rat ed on a phase space diagram.

CAS, B udapest , 2016 21 Nonlinear D ynamics: Part 2
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Resonances

❑ If we include vertical as well as horizontal motion, then we find that 

resonances occur when the tunes satisfy 

where nx, ny and r are integers. The resonance is of order |nx| + |ny| 

normal resonances 

(= even ny)

skew resonances

(= odd ny)

Resonances up to order 2
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Resonances

❑ If we include vertical as well as horizontal motion, then we find that 

resonances occur when the tunes satisfy 

where nx, ny and r are integers. The resonance is of order |nx| + |ny| 

normal resonances 

(= even ny)

skew resonances

(= odd ny)

Resonances up to order 3
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Resonances

❑ If we include vertical as well as horizontal motion, then we find that 

resonances occur when the tunes satisfy 

where nx, ny and r are integers. The resonance is of order |nx| + |ny| 

normal resonances 

(= even ny)

skew resonances

(= odd ny)

Resonances up to order 4
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Resonances

❑ If we include vertical as well as horizontal motion, then we find that 

resonances occur when the tunes satisfy 

where nx, ny and r are integers. The resonance is of order |nx| + |ny| 

normal resonances 

(= even ny)

skew resonances

(= odd ny)

Resonances up to order 5
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Outline

■ Introduction – nonlinear effects from a single sextupole 

■ Hamiltonian of the nonlinear betatron motion

■ Resonance topology and onset of chaos

■ Resonances are everywhere – can we do something?

■ Non-linear map representation

■ Lattice optimization by tracking

■ Applications – making use of resonances 

■ Summary
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Hamiltonian mechanics

❑ Given a function H(x, p; t) (called the Hamiltonian), the equations of 

motion for a dynamical system are given by Hamilton’s equations

❑ In Hamiltonian mechanics, the “state” of a system at any time is 

defined by specifying values for the coordinates x (or more generally q) 

and the conjugate momentum p 

❑ “Physics” consists of writing down a Hamiltonian

❑ All Hamiltonian systems are “symplectic”: areas in phase space 

are conserved as the system evolves even when the dynamics are 

nonlinear. This important result is known as Liouville’s theorem.
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Hamiltonian mechanics

❑ It follows from Hamilton’s equations that the Hamiltonian itself is 

conserved if the independent (“time-like”) variable does not appear 

explicitly in the Hamiltonian: 

❑ Using Hamilton’s equations, we have 

❑ If the Hamiltonian does not depend explicitly on t, then the 

Hamiltonian is conserved 
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Hamiltonian for linear betatron motion

❑ In a lattice made from dipoles and quadrupoles the Hamiltonian reads 

(in our usual coordinate system)

where we have used the normalized momenta                 and

❑ The Hamiltonian consists of a kinetic term and a term for the vector 

potential accounting for the magnetic fields

❑ Using Hamilton’s equations                   and                    (for x and y) we 

find back Hill’s equations

dipole termkinetic term quadrupole term 

(quadratic in x and y!)
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Hamiltonian with nonlinear fields (I)

❑ The more general form of the Hamiltonian describing the motion of a 

charged particle in the accelerator coordinate system with any order of 

multipoles looks like this

❑ We have only a longitudinal component of the magnetic potential, i.e. 

As, since we restrict ourselves to pure transverse magnetic fields

(hard edge approximation), with the following multipole expansion:

normal multipoles skew multipoles
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Hamiltonian with nonlinear fields (II)

❑ The Hamiltonian for the nonlinear betatron motion is then written like 

this

❑ We define H0 the linear part (dependent only on dipoles and normal 

quadrupoles)

and V the nonlinear part dependent on the nonlinear multipoles

short hand notation collecting terms 

according to powers of x and y
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Normalizing linear part of Hamiltonian

❑ We define a canonical transformation that reduces the linear part of 

the Hamiltonian to a rotation

❑ In detail

❑ This transformation reduces 

ellipses in phase space to 

circles and the motion to a 

rotation along these circles

linear Courant-Snyder invariant
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Resonance driving terms (I)

❑ The new Hamiltonian in action angle variables reads

❑ The complex coefficients hjklm are called resonance driving terms –

they generate angle dependent terms in the Hamiltonian that 

are responsible for the resonant motion of the particles (i.e. motion 

on a chain of islands or on a separatrix)

❑ The resonant driving terms are integrals over the circumference of 

the accelerator of functions which depend on the s-location of the 

multipolar magnetic elements
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Resonance driving terms (II)

❑ The solution for the stable betatron motion can be written as a quasi 

periodic signal (to first order in the multipole strengths)

❑ On the islands the betatron tunes satisfy a resonant condition of 

type 

with

→ solutions for stable betatron motion contain the driving terms

resonance 

… to first order in the multipole strengths
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Resonance driving terms (III)

❑ Terms of type hjjll are independ of 

the angle. They produce detuning 

with amplitude to the lowest order in 

the multipolar gradient (resulting in 

a tune spread for a beam!)

❑ The dynamics with only detuning 

terms (amplitude dependent phase 

advance)

❑ Angle dependent terms excite 

resonances creating fixed points 

and island structures in phase 

space. E.g. for the fourth order 

resonance (4,0)

❑ The phase space for the (4,0) 

resonance looks like this
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Driving terms from sextupoles

❑ Starting from the general definition of driving terms we substitute the 

function that give the azimuthal distribution of the normal sextupoles

❑ Sextupoles generate the following resonant driving terms (see 

Guignard, Bengtsson)

from V30

from V12

resonances:    (3,0)     (1,0)

resonances:    (1,2)     (1,0)     (1,-2)

Note:

◼ No detuning terms (in first order 

of the sextupole strength) – they 

are generated only in second 

order 

◼ Pure horizontal but no pure 

vertical resonance terms (since 

no skew sextupoles)
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Driving terms from octupoles

❑ In an analogous way we can see that the normal octupoles in the 

circular ring generate the following resonant driving terms (see 

Guignard, Bengtsson)

from V40

resonances:    (4,0)     (2,0)     (det.)

from V22

resonances:    (2,2)     (0,2)     (2,0)     (det.)

from V04

resonances:    (0,4)     (0,2)     (det.)

Note:

◼ Detuning terms (in first 

order of octupole strength)

◼ Also pure vertical 

resonances excited
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❑ Let us consider the nonlinear Hill’s equation for the case of a linear 

lattice where a single sextupole kick is added

❑ Use perturbative procedure and solve this equation by successive 

approximations. The perturbation parameter  is proportional to the 

sextupole strength k2. We look for a solution of the type:

❑ Substituting, ordering the contributions with the same perturbative

order we have

order zero: 0 first order: 1 second order: 2

Sextupole excites 4-th order resonance
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❑ At each step we are using functions already calculated at the previous 

steps

❑ The series obtained from the successive approximation are in general 

divergent. However, the canonical perturbation method shows that 

sextupoles can excite 4th order resonances in second order with 

the sextupole strength k2

Linear solution

Term generated by the 3rd

order resonance; linear with 

k2 (first order)

Terms generated by the 

4th order and 2nd order 

resonance; quadratic with 

k2 (second order)

Sextupole excites 4-th order resonance
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Outline

■ Introduction – nonlinear effects from a single sextupole 

■ Hamiltonian of the nonlinear betatron motion

■ Resonance topology and onset of chaos

■ Resonances are everywhere – can we do something?

■ Non-linear map representation

■ Lattice optimization by tracking

■ Applications – making use of resonances 

■ Summary
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Topology of 3rd order resonance

❑ Regular motion near the center

❑ For increasing amplitudes the 

circles get deformed towards a 

triangular shape until the 

resonance condition is met

❑ The separatrix (barrier between 

stable and unstable motion) 

passes through 3 unstable fixed 

points
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Topology of 4th order resonance

❑ Regular motion near the 

center, with curves getting 

more deformed towards a 

rectangular shape 

❑ The separatrix passes through 

4 unstable fixed points, but 

motion seems well contained

❑ Four stable fixed points exist 

and they are surrounded by 

stable motion (islands of 

stability)

SFP

UFP
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❑ Simulation of simple storage ring with a single octupole close to 4th

order resonance

❑ Detuning with amplitude (linear in action) 

❑ Particles in the stable islands have tune locked to resonance

Particle trapped in 4th order resonance
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❑ Simulation of simple storage ring with a sextupole and an octupole 

close to 3rd order resonance

❑ The amplitude detuning induced by the octupole can create stable 

islands even for the 3rd order resonance (if the resonance is weak 

enough) – the tune of particles in islands is locked to the resonance 

while particles at higher amplitudes do not meet the resonance 

condition any longer → “stabilizing” effect

Particle trapped in 3rd order resonance
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Path to chaos

❑ When perturbation becomes higher, motion around the separatrix

becomes chaotic (producing tongues or splitting of the separatrix)

❑ Unstable fixed points are indeed the source of chaos when a 

perturbation is added
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Chaotic motion

❑ Poincare-Birkhoff theorem states that 

under perturbation of a resonance only an 

even number of fixed points survives (half 

stable and the other half unstable)

❑ Get destroyed when perturbation gets 

higher, etc. (self-similar fixed points)

❑ Resonance islands grow and resonances 

can overlap allowing diffusion of particles
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Resonance overlap criterion

❑ When perturbation grows, the resonance island width grows

❑ Chirikov (1960, 1979) proposed a criterion for the overlap of two 

neighboring resonances and the onset of orbit diffusion

❑ The distance between two resonances is

❑ The simple overlap criterion is

❑ Considering the width of chaotic layer and secondary islands, the 

“two thirds” rule applies

❑ The main limitation is the geometrical nature of the criterion 

(difficulty to be extended for > 2 degrees of freedom)
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Sources of nonlinear magnetic fields

❑ Resonances can be excited by nonlinear elements installed 

intentionally (e.g. sextupoles for chromaticity correction) and / or by 

unavoidable multipolar errors from magnet imperfections

❑ Especially superconducting magnets can have strong multipolar errors 

up to very high orders due to the finite size of the coils reproducing 

only partially the cos-θ dependence of the current distribution 

necessary to achieve pure dipole fields
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What can we do about resonances?

❑ The number of resonance lines in tune space is infinite: any point 

in tune space will be close to a resonance of some order

❑ Remember that the driving terms creating resonances are complex 

numbers that are obtained by integrating contributions from individual 

multipoles around the machine taking into account the phase advance. 

By properly arranging these nonlinear elements around the machine 

circumference, some resonance driving terms can be cancelled

❑ Cancellation of resonance driving terms can be achieved by 

1. Lattice periodicity or designing machine sections with symmetry (e.g. 

arranging sextupoles in families with certain phase advances, …)

2. Add sufficient multipole correctors to control driving terms
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Lattice periodicity

❑ Consider a machine built of a number of identical cells. If a particular 

resonance is excited or suppressed depends on the resonance 

harmonic and the periodicity. In fact, the dynamics of a machine with P 

identical cells and tune of Q is the same as the one of a single sector 

with tune Q/P.

❑ Let’s have a look what happens in our simple storage ring when we 

increase the number of cells but adjusting the phase advance per 

cell such that the overall tune remains unchanged. At the same time 

we compute the resonance driving term contribution for each sextupole 

of the machine and plot it together with the phase space obtained from 

tracking
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Simple storage ring with periodicity

3 Qx = 1 resonance
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Simple storage ring with periodicity

3 Qx = 2 resonance
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Resonance cancellation by periodicity

❑ By imposing a periodicity P in the lattice (i.e. building a machine from 

P identical cells) the resonance condition becomes

… the resonance condition needs to be satisfied by each cell, as 

conceptually there is no difference between passing one cell P turns or 

passing a lattice consisting of P identical cells only once

→
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Resonance cancellation by periodicity

❑ By imposing a periodicity P in the lattice (i.e. building a machine from 

P identical cells) the resonance condition becomes

❑ Resonances for which r is integer → systematic (resonance condition 

satisfied in each cell, driving terms add up constructively)

❑ If r is NOT integer, the driving term cancels → non-systematic

periodicity P=1 periodicity P=2 periodicity P=3

solid lines: normal resonances               dashed lines: skew resonances

→
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Real life example for periodicity: ALS 

D. Robin, C. Steier, J. Safranek, W. Decking, “Enhanced performance of 

the ALS through periodicity restoration of the lattice,” proc. EPAC 2000. 

Uncorrected optics Corrected optics

Synchrotron light beam spot

Simulated phase space

Measurement of beam 

loss as function of tune

Beta beating

Before optics correction: ~30%

After optics correction: <1%

Advanced Light Source design lattice periodicity: 12
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Real life example for periodicity: SPS 

❑ SPS (hadron machine) has design lattice periodicity of 6

❑ Some indication for the strength of individual resonance lines can be 

inferred from the beam loss rate during dynamic tune scans, i.e. the 

derivative of the beam intensity at the moment of resonance crossing

❑ Sextupole resonances can be clearly identified although they 

should be suppressed by lattice periodicity … but SPS has no 

individual quadrupoles to restore optics functions distortions

Measured losses during tune scan Measured loss rate in 2D scan

time
time
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Real life example for periodicity: LEIR

❑ The Low Energy Ion Ring (LEIR) at CERN is a small ion accumulator 

with lattice periodicity ≤ 2 (optics perturbations due to e-cooler distort 

2 fold symmetry)

❑ Many resonances observed in measurements

❑ Sources for some resonances not clear and presently under study (e.g. 

Qy = 2.66)

R
elative in

ten
sity

A. Saa Hernandez, D. Moreno, et al.
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Compensation of individual resonance

❑ If a resonance is sufficiently weak, one can try to globally minimize the 

corresponding resonance driving term 

❑ A pair of multipole correctors that are ~orthogonal in the corresponding 

resonance driving term is needed to cover all phases. Ideally these 

multipole correctors are installed in regions with zero / low dispersion in 

order not to change the (non-linear) chromaticity

❑ Note: A setting of multipole correctors that compensate a given 

resonance might unfortunately excite other resonances
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Figure 2: Normalised vertical phase space and Fourier

spectrum for the bare machine close to the 2Qy = 11

resonance condition.
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Figure 3: Normalised vertical phase space and Fourier

spectrum with compensation currents on.

Systematic third order resonance

The PSB consists of 16 identical periods, hence the ver-

tical third order 3Qy = 16 resonance is systematic and

the most perturbing in this working area. For the measure-

ments the vertical tune was set close to resonance condition

(Qy ≈ 5.345) and the vertical chromaticity was corrected.

Figs. 4 to 6 compare the bare machine with the compen-

sated case. For the bare machine, the triangular phase space

deformation, the corresponding resonance line (0,-2) and

the particle losses are clearly visible. When compensated,

the phase space is quasi free from perturbing terms and no

resonance line and particle losses occur.
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Figure 4: Normalised vertical phase space of the bare

machine (left) and with compensation (right) forQ y close

to the resonance condition.

The measured strength and phase of the bare machine
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and with compensation.
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Figure 6: Beam intensity over the first 1000 turns after

injection into the machine.

excitation

• |h0030 | = 9.0± 0.6 ·10− 3mm− 1
2

• ψ0030 = − 21.4◦ ± 13.9◦

was successfully compensated with two independent skew

sextupoles: I X SK 2L 4 = − 12.3 A, I X SK 9L 1 = + 15.3 A.

Third order coupling resonances

From the tune diagram of the PSB (Fig. 1) one notes that

three third order coupling resonances are covered by parti-

cles at injection. In standard operation the sum resonances

2Qx + Qy = 14 and Qx + 2Qy = 15 are compensated, the

difference resonance 2Qx − Qy = 3 was not compensated

so far. Measurements for all these resonances were made to

determine the corresponding driving terms. Tune and reso-

nance lines in Fourier spectra can only be measured during

the coherent oscillations of the beam in both planes. Un-

fortunately, large residual chromaticities (only one family

of chromaticity sextupoles in the PSB) induce a rapid deco-

herence of the beam oscillations. As a result the measured

FFT spectra do not show the expected resonance lines.

In case of the difference resonance 2Q x − Qy = 3 it is pos-

sible to adjust the chromaticities in both planes in a way

that the horizontal resonance line (-1/1) does not vanish.

For this the chromaticity was adjusted to be equal in both

planes. With this setting, a line for the bare machine exci-

tation is visible in the horizontal Fourier spectrum. In the

vertical plane the resonance line is covered by the back-

ground (Fig.7).

Proceedings of EPAC 2004, Lucerne, Switzerland

1919
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Figure 2: Normalised vertical phase space and Fourier

spectrum for the bare machine close to the 2Qy = 11

resonance condition.
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Figure 3: Normalised vertical phase space and Fourier

spectrum with compensation currents on.

Systematic third order resonance

The PSB consists of 16 identical periods, hence the ver-

tical third order 3Qy = 16 resonance is systematic and

the most perturbing in this working area. For the measure-

ments the vertical tune was set close to resonance condition

(Qy ≈ 5.345) and the vertical chromaticity was corrected.

Figs. 4 to 6 compare the bare machine with the compen-

sated case. For the bare machine, the triangular phase space

deformation, the corresponding resonance line (0,-2) and

the particle losses are clearly visible. When compensated,

the phase space is quasi free from perturbing terms and no

resonance line and particle losses occur.
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Figure 4: Normalised vertical phase space of the bare

machine (left) and with compensation (right) forQ y close

to the resonance condition.

The measured strength and phase of the bare machine
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Figure 5: Vertical Fourier spectra for the bare machine

and with compensation.
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Figure 6: Beam intensity over the first 1000 turns after

injection into the machine.

excitation

• |h0030 | = 9.0± 0.6 ·10− 3mm− 1
2

• ψ0030 = − 21.4◦ ± 13.9◦

was successfully compensated with two independent skew

sextupoles: I X SK 2L 4 = − 12.3 A, I X SK 9L 1 = + 15.3 A.

Third order coupling resonances

From the tune diagram of the PSB (Fig. 1) one notes that

three third order coupling resonances are covered by parti-

cles at injection. In standard operation the sum resonances

2Qx + Qy = 14 and Qx + 2Qy = 15 are compensated, the

difference resonance 2Qx − Qy = 3 was not compensated

so far. Measurements for all these resonances were made to

determine the corresponding driving terms. Tune and reso-

nance lines in Fourier spectra can only be measured during

the coherent oscillations of the beam in both planes. Un-

fortunately, large residual chromaticities (only one family

of chromaticity sextupoles in the PSB) induce a rapid deco-

herence of the beam oscillations. As a result the measured

FFT spectra do not show the expected resonance lines.

In case of the difference resonance 2Q x − Qy = 3 it is pos-

sible to adjust the chromaticities in both planes in a way

that the horizontal resonance line (-1/1) does not vanish.

For this the chromaticity was adjusted to be equal in both

planes. With this setting, a line for the bare machine exci-

tation is visible in the horizontal Fourier spectrum. In the

vertical plane the resonance line is covered by the back-

ground (Fig.7).

Proceedings of EPAC 2004, Lucerne, Switzerland

1919

Example: phase space reconstructed from measured turn-by-turn 

data in PSB ring 1 close to 3 Qy = 16 (systematic skew resonance)

bare machine after compensation

P. Urschütz et al.
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Resonance compensation at LEIR

❑ Brute force technique: sweep tune through resonance and observe 

beam loss for different settings of pair of multipole correctors

2 sextupole corrector acting on 

h1020 resonance driving term
Crossing Qy = 2.66

Crossing Qx+2Qy = 7

Crossing Qx+2Qy = 7

(XFN11 = 0 A, XFN32 = 0.4 A)

re
la

tiv
e

 tra
n

s
m

is
s
io

n

A. Saa Hernandez et al.



56

Resonance compensation at PSB

❑ PSB is a machine with 4 rings and periodicity 16

❑ Each ring has a stack of multipole correctors (quadrupoles, sextupoles

and octupoles, all normal and skew!) with appropriate phase advances 

❑ Allows to compensate various resonances around the working point 

(actually needed because tune spread is large due to space charge)

Non-linear effects 

• PSB is equipped with a complete set of multipoles to correct (empirically) 

any higher order errors 

• What if we include non-linearities in our model? 
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V. Forte et al.
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Outline

■ Introduction – nonlinear effects from a single sextupole 

■ Hamiltonian of the nonlinear betatron motion

■ Resonance topology and onset of chaos

■ Resonances are everywhere – can we do something?

■ Non-linear map representation

■ Lattice optimization by tracking

■ Applications – making use of resonances 

■ Summary
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Taylor maps

❑ For any dynamical variable      the Taylor map up to 3rd order can be 

written as

❑ Taylor series provide a convenient way of systematically representing 

transfer maps for beamline components, or sections of beamline

❑ The main drawback of Taylor series is that in general, transfer maps 

can only be represented exactly by series with an infinite number of 

terms

❑ In practice, we have to truncate a Taylor map at some order, and we 

then lose certain desirable properties of the map

❑ In particular, a truncated map will be usually non-symplectic
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Symplectic maps

❑ Consider two sets of canonical variables     ,      , which represent the 

evolution of the system between two points in phase space

❑ A map                         describes the transformation from one set to the 

other

❑ This map is symplectic, i.e. it conserves phase space volumes, if

Jacobian matrix 

of the map
antisymmetric matrix 

with block diagonals 

symplecticity condition

… this is Liouville’s theorem, and is a 

property of charged particles moving in 

electromagnetic fields, in the absence 

of radiation
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Symplectic maps

❑ The effect of losing symplecticity becomes apparent if we compare 

phase space portraits constructed using symplectic (below, left) and 

non-symplectic (below, right) transfer maps.

❑ Modelling a storage ring using non-symplectic maps can lead to an 

inaccurate estimate of the dynamic aperture and the beam lifetime

Thin lens approximation 

(is always symplectic!)
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Outline

■ Introduction – nonlinear effects from a single sextupole 

■ Hamiltonian of the nonlinear betatron motion

■ Resonance topology and onset of chaos

■ Resonances are everywhere – can we do something?

■ Non-linear map representation

■ Lattice optimization by tracking

■ Applications – making use of resonances 

■ Summary
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Dynamic aperture

❑ The most direct way to evaluate the non-linear dynamics performance 

of a ring is the computation of Dynamic Aperture (short: DA)

❑ Particle motion due to multi-pole errors is generally non-bounded, so 

chaotic particles can escape to infinity

❑ This is not true for all non-linearities (e.g. the beam-beam force)

❑ Need a symplectic tracking code to follow particle trajectories (a lot of 

initial conditions) for a number of turns (depending on the given 

problem) until the particles start getting lost. This boundary defines the 

Dynamic aperture

❑ As multi-pole errors may not be completely known, one has to track 

through several machine models built by random distribution of 

these errors

❑ One could start with 4D (only transverse) tracking but certainly needs 

to simulate 5D (constant energy deviation) and finally 6D (synchrotron 

motion included)
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Dynamic Aperture plots

❑ Dynamic aperture plots show the maximum initial values of stable 

trajectories in x-y coordinate space at a particular point in the lattice, 

for a range of energy errors

❑ The beam size can be shown on the same plot

❑ Generally, the goal is to allow some significant margin in the design –

the measured dynamic aperture is often smaller than the predicted 

dynamic aperture
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Dynamic Aperture of LHC

❑ During LHC design phase, 

DA target was 2x higher than 

collimator position, due to 

statistical fluctuation, finite 

mesh, linear imperfections, 

short tracking time, multi-

pole time dependence, ripple 

and a 20% safety margin

❑ Good knowledge of the 

model led to good 

agreement between 

measurements and 

simulations for actual LHC

E.Mclean, PhD thesis, 2014
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Genetic Algorithms

❑ MOGA – Multi Objective Genetic Algorithms are being used to optimise

linear but also non-linear dynamics of electron storage rings

❑ Use knobs quadrupole strengths, chromaticity sextupoles and 

correctors with some constraints

❑ Target ultra-low horizontal emittance, increased lifetime and high 

dynamic aperture
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Frequency Map Analysis

■ Frequency Map Analysis (FMA) is a numerical method which 

springs from the studies of J. Laskar (Paris Observatory) 

putting in evidence the chaotic motion in the Solar Systems 

■ FMA was successively applied to several dynamical systems

❑ Stability of Earth Obliquity and climate stabilization (Laskar, Robutel, 

1993)

❑ 4D maps (Laskar 1993)

❑ Galactic Dynamics (Y.P and Laskar, 1996 and 1998)

❑ Accelerator beam dynamics: lepton and hadron rings (Dumas, Laskar, 

1993, Laskar, Robin, 1996, Y.P, 1999, Nadolski and Laskar 2001)
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NAFF algorithm

❑ When a quasi-periodic function in the complex 

domain is given numerically, it is possible to recover a quasi-periodic 

approximation 

❑ in a very precise way over a finite time span              several orders of 

magnitude more precisely than simple Fourier techniques

❑ This approximation is provided by the Numerical Analysis of 

Fundamental Frequencies – NAFF algorithm

❑ The frequencies and complex amplitudes       are computed through 

an iterative scheme



68

Aspects of the frequency map

❑ In the vicinity of a resonance the system behaves like a pendulum

❑ Passing through the elliptic point for a fixed angle, a fixed frequency (or 

rotation number) is observed

❑ Passing through the hyperbolic point, a frequency jump is observed 
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Building the frequency map

❑ Choose coordinates (xi, yi) with px=py=0

❑ Numerically integrate the phase trajectories through the lattice for 

sufficient number of turns

❑ Compute through NAFF Qx and Qy after sufficient number of turns

❑ Plot them in the tune diagram
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Frequency Map for the ESRF

❑ All dynamics represented in two plots (Frequency Map / Diffusion Map)

■ Color indicates “Tune diffusion” (tune variation between two intervals)

■ Regular motion represented by blue colors

■ Resonances appear as distorted lines in frequency space (or curves 

in initial condition space)

■ Chaotic motion is represented by red scattered particles and defines 

dynamic aperture of the machine

❑ FMA shows nicely the detuning with amplitude

Frequency Map Diffusion Map
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Frequency Map for LHC in collision

❑ Frequency map analysis for LHC in collision

Large tune footprint 

and DA reduction due 

to “long range beam-

beam” forces 

(electromagnetic field of 

other beam in 

interaction region)

DA clearly improved 

when compensating 

long range beam-

beam with a wire 

S. Fartoukh et al., 

PRSTAB, 2015
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Experimental frequency maps

❑ Frequency analysis of turn-by-turn data of beam oscillations produced 

by a fast kicker magnet and recorded on a Beam Position Monitor

❑ Reproduction of the non-linear model of the Advanced Light Source 

storage ring and working point optimization for increasing beam lifetime

D. Robin, C. Steier, J. Laskar, and L. Nadolski, PRL 2000

experiment simulation
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Outline

■ Introduction – nonlinear effects from a single sextupole 

■ Hamiltonian of the nonlinear betatron motion

■ Resonance topology and onset of chaos

■ Resonances are everywhere – can we do something?

■ Non-linear map representation

■ Lattice optimization by tracking

■ Applications – making use of resonances 

■ Summary
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Where resonances can be of use 

■ Resonances can be exploited to extract the beam in a 

controlled way

❑ Many physicists would like to have a continuous flux of particles to 

perform experiments with high energy (~low intensity) particles. 

Resonant slow extraction using 3rd order resonance is widely used to 

create a “spill” of the order of seconds, i.e. the beam is extracted over 

many thousands of turns.

❑ Resonant multi-turn extraction (MTE) was invented to transfer the 

beam over 5 turns from the PS to the SPS at CERN with minimal 

losses based on exciting a 4th order resonance.

❑ Resonant fast extraction is based on excitation of the half integer 

resonance by octupoles and a fast discharge of a quadrupole that 

pushes the particle tune onto the resonance so that they are extracted 

on a few ms.
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Principle of resonant slow extraction
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Principle of resonant slow extraction

❑ Closed orbit bump to bring beam close to septum
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Principle of resonant slow extraction

❑ Closed orbit bump to bring beam close to septum

❑ Sextupole magnets excite 3rd order resonance. Large tune spread (e.g. from 

chromaticity and not octupoles since we do not want to stabilize the particles)
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Principle of resonant slow extraction

❑ Closed orbit bump to bring beam close to septum

❑ Sextupole magnets excite 3rd order resonance. Large tune spread (e.g. from 

chromaticity and not octupoles since we do not want to stabilize the particles)

❑ ΔQ (distance to resonance) small – large amplitude particles close to separatrix
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Principle of resonant slow extraction

Circulating (red, ±3σ) and extracted (blue) horizontal beam envelopes 
and apertures in the LSS2 extraction region.

❑ Closed orbit bump to bring beam close to septum

❑ Sextupole magnets excite 3rd order resonance. Large tune spread (e.g. from 

chromaticity and not octupoles since we do not want to stabilize the particles)

❑ ΔQ (distance to resonance) small – large amplitude particles close to separatrix 

❑ ΔQ small enough that largest amplitude particles are unstable and follow separatrix

with increasing amplitude - particles jump the septum and are extracted
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Principle of resonant slow extraction

Circulating (red, ±3σ) and extracted (blue) horizontal beam envelopes 
and apertures in the LSS2 extraction region.

❑ Closed orbit bump to bring beam close to septum

❑ Sextupole magnets excite 3rd order resonance. Large tune spread (e.g. from 

chromaticity and not octupoles since we do not want to stabilize the particles)

❑ ΔQ (distance to resonance) small – large amplitude particles close to separatrix 

❑ ΔQ small enough that largest amplitude particles are unstable and follow separatrix

with increasing amplitude - particles jump the septum and are extracted

❑ As ΔQ approaches zero, finally particles with very small amplitude are extracted 
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Slow extraction at SPS

Beam quality =

• constant spill

• Correct & constant 

intensity on target 

• good & constant 

steering on target 

(symmetry = 100%)

intensity
main field

4.8 s slow 

extraction to 

North Area 

experiments
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Multi-turn extraction – Introduction

■ Continuous Transfer (=non resonant multi-turn extraction) of 

high-intensity beams from CERN PS to SPS in use since 1973

❑ Drawback of high beam loss during the 

process due to physical slicing of the 

beam on septum

❑ Issues with machine activation (radiation) 

due to losses 

■ Resonant Multi-Turn Extraction (MTE) proposed in 2001 to 

reduce losses at PS-to-SPS transfer

❑ MTE based on concepts of non-linear beam dynamics (Crossing of a 

stable 4th order resonance and particle trapping inside islands) to 

perform a “magnetic splitting” of the beam to avoid losses on septum

❑ Unique extraction process, has never been done elsewhere

❑ Used in routine operation for transfer of fixed target beam since 2015

M. Giovannozzi et. al
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Resonant multi-turn extraction

Qx = 0.20 Qx = 0.25 Qx = 0.2505 Qx = 0.254

1) program non-linear elements to 

appropriate values to excite resonance 

(sextupole + octupole)

2) ramp horizontal tune across the 

resonant value

3) decrease current in the elements while 

increasing the tune

4) extract the beam once islands are 

sufficiently separated: 4 machine turns 

for the islands + 1 turn for the core M. Giovannozi, 

A. Huschauer et al.
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Resonant multi-turn extraction

A. Huschauer
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Resonant multi-turn extraction

❑ Calculation of the 4 islands in phase space around the PS machine
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Outline

■ Introduction – nonlinear effects from a single sextupole 

■ Hamiltonian of the nonlinear betatron motion

■ Resonance topology and onset of chaos

■ Resonances are everywhere – can we do something?

■ Non-linear map representation

■ Lattice optimization by tracking

■ Applications – making use of resonances 

■ Summary
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Summary

❑ Non-linear elements create detuning with amplitude and excite 

resonances

❑ Appearance of fixed points (periodic orbits) determine the topology of 

the phase space

❑ Perturbation of unstable (hyperbolic) points opens the path to chaotic 

motion 

❑ Resonances can overlap enabling the rapid diffusion of orbits

❑ Individual resonances can be compensated (to some extent) 

❑ Need numerical integration (tracking) for understanding impact of non-

linear effects on particle motion (dynamic aperture)

❑ Frequency map analysis is a powerful technique for analyzing particle 

motion in simulations but also in real accelerator experiments

❑ Resonances can be used for beam extraction


