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Some known properties of beam
dynamics
Let us consider some general statements

• Transverse emittances are an invariant of motion

• The transverse beam distribution is a Gaussian

Are these statements true in general?

No! They hold true in the absence of linear coupling
and non-linear effects.
This seminar is devoted to show how non-linear
effects can be used to manipulate emittances and
distributions.
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Transverse non-linear manipulations

• Exploit nonlinear effects in transverse motion:
• Change phase space topology (new separatrices,
islands)

• Use slow variation of parameters
• Change surfaces of phase-space regions
• Perform particle trapping & transport in
phase-space regions

• To manipulate the transverse distribution for:
• Beam splitting
• Sharing of transverse emittances
• Cooling of annular beams
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Theoretical frameworks
Hénon-like maps

(
xn+1

pn+1

)
= R(ω0)

(
xn

pn + f (xn)

)
Separatrix-crossing theory

ℓ2(λ)ℓ1(λ)
C

I IIIII PIII→i =
dAi/dt

dAIII/dt

Jf = Ai/2π

Poincaré-Birkhoff

Normal Forms
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ζ ζ′
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Φ

U

Φ
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Hénon-like maps(
xn+1

pn+1

)
= R(ω0)

(
xn

xn + f (xn)

)
M. Hénon was an astronomer

• A simple, although general model.
• It represents the transverse motion
using Courant-Snyder co-ordinates

• FODO cell → rotation matrix
• non-linear kick → f (xn), f is typically
a polynomial function

• It can be generalised to 4D.
Phase-space portrait for
ω0 = 0.205/(2π)
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Poincaré-Birkhoff theorem

Loosely speaking, it states that non-linear
maps feature chains of islands in phase space

• Each chain is made of:
• Stable (or elliptic) fixed points at the
centre of the islands.

• Unstable (or hyperbolic) fixed points
in between islands.

• The unstable fixed points are
connected by a separatrix.

Phase-space portrait for
ω0 = 0.205/(2π)
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Normal Forms
It is a perturbative technique that aims at finding a change of
co-ordinates so that in the new reference the symmetries of the
system are explicit.

z z′

ζ ζ ′

F

Φ

U

Φ

which is equivalent to

F ◦Φ = Φ ◦U

note the resemblance
with the similarity
relationship for matrices

F is the original transfer
map.
U is the Normal Form.
Ψ,Φ are the change of
co-ordinates.
All functions are expressed
as polynomial series.

• The form of U depends on the symmetries of the system and can be
non-resonant or resonant.

• A so-called interpolating Hamiltonian can be built from U

Link established between maps and Hamiltonians
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Normal Forms
Courant-Snyder
transformation → linear
Normal Form

Left: map
Right: Non-resonant
Normal Form

Left: map
Right: Resonant Normal
Form
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Separatrix-crossing theory
The following statements can be made rigorous from a
mathematical point of view...

• In a time-independent Hamiltonian
linear system, the action is an
invariant.

• In a time-independent Hamiltonian
non-linear system, the action is an
approximation of the true invariant.

• In a time-dependent Hamiltonian,
the action is an adiabatic invariant.

• The issue is due to the presence of
a separatrix in the phase space.

• In a time-independent Hamiltonian
system, the separatrix cannot be
crossed.

• In a time-dependent Hamiltonian
system, the separatrix can be crossed.

ℓ2(λ)ℓ1(λ)
C

I IIIII

PIII→i =
dAi/dt

dAIII/dt
, Jf = Ai/2π

All non-linear manipulations rely on all this!!!
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The origin of all this: Multi-Turn
Extraction (MTE)
Hénon map:(
xn+1

pn+1

)
= R(ω0)

(
xn

pn + x2n

)
ω0 ≈ 2πr/s: s islands.

• split beam in s + 1
beamlets

• used for beam transfer
from PS to SPS

ω0 = 0.249 · 2π ω0 = 0.251 · 2π ω0 = 0.255 · 2π
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Split beam structure along the ring

Animation from numerical simulations

Animation from beam measurements
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From theory to practice: beam
splitting in the CERN PS

The main ingredients of MTE

• Sextupoles and
octupoles → stables
islands

• Quadrupoles → vary the
tune to cross 4th-order
resonance
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From theory to practice: beam
splitting in the CERN PS

 

 

ONLC

X55

X39

O55

O39

e
x
tr
a
c
ti
o
n

c
ro

ss
in

g
re

so
n
a
n
c
e

C
u
rr
e
n
t
[A

]

Cycle time [ms]
600 650 700 750 800 850

−200

0

200

400

Evolution of sextupoles
and octupoles strength

A
m
p
li
tu

d
e
[a
rb

.
u
n
it
s]

x
[m

m
]

Cycle time [ms]
760 780 800 820

0

0.2

0.4

0.6

−30

−20

−10

0

10

20

30

Waterfall measurement of
the horizontal distribution

JUAS Seminar - 27 January 2023 Transverse non-linear manipulations 13



Digression: intensity-dependent effects
in split beams
Beam splitting has been studied as single-particle process. Space-charge

effects have been probed experimentally:

Measured distribution after splitting

for different beam intensities:

beamlets position changes!

• Keep magnetic settings constant

• Change total beam beam intensity

• Perform splitting

• Check properties of split beam

Numerical studies have been performed,

but this field is still in its infancy!
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Extending MTE: other resonances
Any resonance can be used to perform beam splitting!

NB: the higher the order the smaller the islands. Hence, the larger

is size and intensity of the core.
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Reversing MTE: Multi-Turn Injection
(MTI)
The splitting process can be reversed: the beam is injected in the islands

and the tune is used to merge them. Two variants are possible: with

or without beam injected in the core.

 

FIG. 1. (Color) Multiturn injection by means of trapping in stable islands of transverse phase space. Four turns are injected and the
beamlets merged by crossing the fourth-order resonance. The tune variation is reported in the upper part of each plot. As a result a
hollow beam in the transverse phase space is generated.

PRINCIPLE AND ANALYSIS OF MULTITURN INJECTION . . . Phys. Rev. ST Accel. Beams 10, 034001 (2007)

034001-3

Beamlets merged without
core

The projected beam distribution along the horizontal
phase space axis is shown in Fig. 2, where the beamlets
just after injection (left part) as well as the final beam (right
part) are shown. The three peaks visible in the left part are
indeed the result of the projection of the four injected turns
shown in Fig. 1 (center right part). Therefore, the single
central peak is indeed the superposition of two injected

turns. The different width of the three distributions is an
effect of the distortion of the beam ellipse induced by the
nonlinear effects. The hollow beam distribution shown in
the right part of Fig. 2 reflects the observation made that the
final beam is not at all Gaussian.

A possible solution to this issue is rather straightfor-
ward. As the fourth-order resonance is stable an additional

 

FIG. 2. Projected distribution functions for the four-turn injection right after the injection (left) and at the end of the merging process
(right). The two islands centered at the origin with opposite angles are projected onto the central peak visible in the initial distribution
function.

 

FIG. 3. (Color) Final distribution function for a variant of the proposed four-turn injection with a fifth injected turn so to generate an
almost uniform distribution. The beam distribution after the end of the injection process is shown on the upper left part, while the final
distribution is reported on the upper right part. The projected beam distribution is shown in the lower part: the final profile for the
configuration plotted in Fig. 2 is also shown for comparison (shaded area).

M. GIOVANNOZZI AND J. MOREL Phys. Rev. ST Accel. Beams 10, 034001 (2007)

034001-4

Beamlets merged with
core
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Extending MTE: an external exciter
• Splitting a beam and transporting beamlets
works well in both simulations and real
machines.

• Excellent agreement between theoretical
predictions, numerical simulations, and
measurements.

• This technique implies the possibility of accurate
tune control and the possibility to set the tune
close to a resonant value.

• What if the tune value is imposed by other
considerations, e.g. space-charge effect?
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Extending MTE: an external exciter
• The solution consists in using an external
exciter.

• A so-called AC dipole generates an oscillating
dipole field at a given frequency.

• Such a device is used to perform optics
measurements. It allows kicking a bunch
avoiding the filamentation of its transverse
emittances.

• In this scheme, the resonance condition is
generated between the machine tune and
the frequency of the AC element.
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Extending MTE: an external exciter

(
xn+1

pn+1

)
= R(ω0)

(
xn

pn + x2n + εx ℓ−1
n cosωn

)
NB: it is assumed that a generic AC 2ℓ-pole
can be built.
ω0 fixed, ω varies, ω ≈ mω0 → m islands.
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qε > 0, ω = ωf < ωi

JUAS Seminar - 27 January 2023 Transverse non-linear manipulations 19



Extending MTE: an external exciter

(
xn+1

pn+1

)
= R(ω0)

(
xn

pn + x2n + εx ℓ−1
n cosωn

)
NB: it is assumed that a generic AC 2ℓ-pole
can be built.
ω0 fixed, ω varies, ω ≈ mω0 → m islands.

−0.15

0

0.15

−0.15 0 0.2

p

qε = 0, ω = ωi < ω0

−0.15

0

0.15

−0.15 0 0.2

p

qε > 0, ω = ωi

−0.15

0

0.15

−0.15 0 0.2

p

qε > 0, ω = ωf < ωiJUAS Seminar - 27 January 2023 Transverse non-linear manipulations 19



Extending MTE: an external exciter
• A detailed analysis has been carried out of both
the map and the Hamiltonian models.

• General agreement between the two models.

• Trapping is fully explained via the time variation
of islands’ surface for maps and Hamiltonians.

• Scaling laws of key quantities on the models
parameters have been established.

This confirms the possibility of performing
beam splitting without varying the
accelerator’s tune
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Intermediate summary
• It should be clear that non-linear effects allow

• Breaking the conservation of the emittance.
• Generating multiple Gaussian beamlets.

• This can be achieved in a controlled way.
• There is another essential consequence

• Multiple closed orbits are present in the particle
accelerator: one is the standard one, then there
is the additional closed orbit linked with the
fixed points.

• This aspect is not discussed further, but is at the
heart of a novel gamma-transition gymnastics.

Let us move forward to 2 degrees of freedom...
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Crossing a 2D resonance

• MTE and its extensions are all based on
resonance crossing in a single plane, i.e.
mωx ≈ p .

• In reality, the transverse dynamics has two
degrees of freedom, each with a tune. In this
case, the resonance condition reads
mωx + nωy ≈ p.

What could we achieve by crossing a 2D
resonance?

Sharing of transverse emittances
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Sharing transverse emittances
The Hamiltonian model for this case is

H(ϕx , Jx , ϕy , Jy ) = ωxJx + ωyJy + αxxJ
2
x + 2αxyJxJy + αyyJ

2
y+

+GJm/2
x Jn/2y cos(mϕx − nϕy )

αxx , αxy , αyy → amplitude-detuning parameters.
mωx − nωy ≈ 0 → quasi-resonant condition.
The canonical transformation

Jx = mJ1 , ϕ1 = mϕx − nϕy ,

Jy = J2 − nJ1 , ϕ2 = ϕy ,

casts the Hamiltonian into the form

H(ϕ1, J1) = (δ + α12J2) J1+α11J
2
1+G (mJ1)

m
2 (J2−nJ1)

n
2 cosϕ1+

[
ωyJ2 + α22J

2
2

]
δ = mωx − nωy → resonance-distance parameter
α11, α12, α22 → functions of αxx , αxy , αyy
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Sharing transverse emittances
• Jy > 0 =⇒ J1 < J2/n → the dynamics is
limited to an allowed circle.

• J2 = nJx/m+ Jy is approximately conserved.

• The 4D system reduces to a 2D one
dependent on a parameter (J2).

• The phase-space topology can be studied
• Existence and stability of fixed points.
• Existence of separatrices.

• Not easy to perform analytically. The topology
depends on m, n.
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Sharing transverse emittances

−1.5 −0.75 0 0.75 1.5

X

−1.5

−0.75

0
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1.5

Y

• Vary ωx , ωy → separatrix
crossing

• For each particle, can we
make Jy ,f = (m/n)Jx ,i =⇒
εx ,f = (m/n)εy ,i?

4D Hénon-like map(
x ′

p′x
y ′

p′y

)
= R(ωx , ωy)

(
x
px +Re f (x , y)
y
py − Im f (x , y)

)
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Sharing transverse emittances
m = 1, n = 2 :

δ ↘
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Sharing transverse emittances
• Studied 2D Hamiltonian and 4D map
models: exchange mechanism explained via
separatrix crossing theory.

• Resonances higher than 3: presence of
additional fixed points → more phase-space
regions.

• Improved adiabatic theory: error on final J
depends on adiabaticity:

• Resonance (1, 2) and higher: power-law.
• Resonance (1, 1) (coupling resonance):
exponential.
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Digression: sharing transverse
emittances with linear coupling

• Observed features linked to the
analytical properties of the
Hamiltonian.

• Exponential behaviour of emittance
exchange already observed: now
fully explained by adiabatic theory.

• Relationship between coupling
strength and adiabaticity
established.
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Intermediate summary

• It should be clear that non-linear effects allow
• Manipulating transverse emittances.
• The emittance sharing process depends on the
properties of the 2D resonance used.

• Hamiltonian and adiabatic theories provide a detailed
explanation of the process.

• The emittance sharing can be achieved in
a controlled way.

Let us move back to 1 degree of freedom and
the use of the exciter...
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Trapping, transporting and external
exciters

• Non-linear effects can be used to create stable
islands

• Slow variation of the tune can be used to cross
a separatrix so that

• Trapping inside islands can occur.
• Transport of trapped particles inside the islands can
be performed.

Let us assume to have an annular beam
distribution, generated by kicking a beam and
let it filament, what could we do with that?

Emittance cooling!
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Let us assume to have an annular beam
distribution, generated by kicking a beam and
let it filament, what could we do with that?
Emittance cooling!
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Cooling an annular beam
• AC dipole and nonlinearity:
H = ω0J +Ω2J

2/2 + ε
√
2J cosϕ cosωt

• Vary ω, ε as a function of time;

• Engineer areas to optimise trapping and transport;

• As a result: up to 90% cooling

Animations from numerical simulations available here
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Cooling an annular beam

0

λmax

t1 2t1

0

µmax

t1 2t1

λ

µ

Time

0

0.2

0.4

0.6

0.8

1

0 3 6 9 12 15 18

〈J
〉/
J
0

10−3 µ∗

simulated
expected

An alternative cooling
protocol has been devised

JUAS Seminar - 27 January 2023 Transverse non-linear manipulations 32



Conclusions and outlook
• Non-linear effects can be used efficiently to
manipulate the transverse beam emittances and
distributions.

• Hamiltonian and adiabatic theories are the ideal
framework to develop this field.

• Design experimental configurations to perform
beam tests of some of these techniques
(mainly at the CERN PS).

• More beam manipulations are expected to
be studied in the near future.
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Thank you for your attention!!!
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