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EQUATION OF MOTION

Charged particles in a transport channel or in a circular/linear accelerator are
accelerated, guided and confined by external electromagnetic fields. The motion of
a single charge is governed by the Lorentz force through the equation:

Where m0 is the rest mass, g is the relativistic factor and v is the particle velocity.

Acceleration is usually provided by the electric field inside of RF cavities. Magnetic
fields are produced in the bending magnets for guiding the charges on the reference
trajectory (orbit), in the quadrupoles for the transverse confinement, in the sextupoles
for the chromaticity correction.

However, there is another source of e.m. fields, the beam itself…
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In a real accelerator, in particular at high currents, there is an important source of e.m.
fields to be considered, the beam itself, which circulating inside the vacuum chamber,
produces additional e.m. fields:

Direct space charge

Image space charge

Wakefields

SPACE CHARGE AND WAKEFIELDS

Space Charge



• betatron tune shift
• synchrotron tune shift   
• energy loss
• energy spread and emittance degradation
• instabilities.

These self induced fields depend on:
• the beam current and beam distribution
• the surrounding geometry and the beam pipe 
• the surrounding  material.

They are responsible of many phenomena of beam dynamics:
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Fields of a point charge with uniform motion

• In O’ the charge is at rest
• The electric field is radial with spherical symmetry
• The magnetic field is zero: !! = 0
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Relativistic transformations of the fields and coordinates from O’ to O
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We now transform the electric and magnetic fields and the coordinates from '’ to '
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We can study the properties of the fields at time 1 = 0 because the fields move along &
together with the charge. The fields at any time 1 are just the fields at 1 = 0 shifted by 01
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Due to the # − % symmetry (cylindrical symmetry), we can consider % = 0
(# − & plane) and use

# = ! cos 8 , & = ! sin 8
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Electric field lines of a charge moving with velocity ;<
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B is transverse to the motion direction

g >> 1
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Quiz # 1 - 2



What is the source of space charge 
and wakefields?
1) The conducting material of the 

beam pipe
2) The beam
3) The external electromagnetic 

fields of the many accelerator 
devices (as the electric field in 
RF cavities and magnetic field 
in magnets)

Is it possible that a pure magnetic field seen by one observer in one reference system is 
transformed into an electric and magnetic field in another reference system? (yes, no, you can 
never tell)

For reflection: are you able to repeat in few words the passages to obtain the electric and magnetic 
field of a point charge moving with constant velocity? Can we apply the same method to an 
accelerating charge?
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Two point charges with same velocity on parallel trajectories
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Two point charges with same velocity on parallel trajectories
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The same force can also be obtained considering the Lorentz force 
acting on a charged particle moving with velocity %⃗
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This force is important in low energy accelerators for space 
charge effects

If the two charged particles are counter-rotating:
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This force is important for beam beam effects in colliders
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Space Charge
The effect of the Coulomb interactions in a multi-particle system can be classified  
into two regimes:

1) Collisional Regime ==> dominated by binary collisions between particles ==> 
Single Particle Effects (e.g. intra-beam scattering, but this is another story …)

2) Space Charge Regime ==> dominated by the self fields produced by the entire 
distribution ==> Collective Effects



Collisional and Space Charge regimes

• The interaction of the charged particles in a beam can be represented by the sum of a
“collisional” and a “smooth” force. The collisional part of the interaction force arises
when a particle “sees” its immediate neighbours and is affected by their individual
positions. This force will cause small random displacements of the particle’s trajectory
and statistical fluctuations in the particle distribution as a whole. In most practical
beams, however, this is a small effect, and the mutual interaction between particles is
described largely by a smoothed force.

• A measure for the relative importance of collisional versus smoothed interaction, of
single-particle versus collective effects, is the Debye length, λD: it is a distance over
which a local perturbation in the equilibrium charge distribution of a beam with
transverse temperature T and density n, confined by external focusing fields, is
screened off.



Collisional and Space Charge regimes

If the Debye length is large compared with the beam radius (E1 ≫ G), the screening
will be ineffective and single-particle behaviour will dominate (motion of particles is
influenced by local perturbations): collisional regime.

On the other hand, if the Debye length is small compared to the beam radius (E1 ≪ G),
smooth functions for the charge and field distributions can be used, and collective
effects due to the self fields of the entire beam will play an important role: space
charge regime.

The charges surrounding a test particle 
have a screening effect at a distance λD

I2 = Boltzman constant
J = Temperature
I2J = average kinetic energy of the particles = *K$ 0/"

L = particle density (N/V)

lD
J/ =

*"K0L
M'N



Quiz # 3 - 7



Why have we introduced the Debye 
length?
1) It represents the maximum distance 
of action of the space charge force 
beyond which we can neglect it 
2) It allows to understand if collective 
effects are important over collisions 
3) It tells us what is the force between 
two particles with the same velocity

In simulation codes taking into account collective effects, do we must 
include the collisions between particles? (Yes always, no never, it depends)
The space charge force is more important:
1) At low energy
2) At high energy
3) It is independent on the beam energy
4) I prefer not to respond



A bunch of particles with the same type of charge does not ‘explode’ in a 
particle accelerator due to the Coulomb forces because:
1) The space charge (Coulomb) forces are always negligible
2) Focusing forces, such as those due to the quadrupoles, help to 

counteract the space charge defocusing effect
3) Counter rotating beam focuses the bunch
4) I’m too tired to answer this question

Let’s consider the force acting on one of the 
two charges moving with the same velocity in 
the same direction. If two observers are 
measuring this force in the reference system S, 
where we see the charges moving with 
constant velocity, and in S’, where the charges 
are at rest, do they measure the same 
amplitude of the force?

(Yes, no, I don’t know)



CONTENTS (SPACE CHARGE)
• Introduction, self induced fields
• !, " of a point charge with uniform velocity
• Forces between two charges
• Collisional and space charge regimes, Debye length
• !, " of a uniform infinite beam in free space
• Boundary conditions: image charges and currents
• Examples: beam in a circular pipe, in parallel plates
• Betatron motion with self induced forces
• Linear force and incoherent tune shift
• Tune spread and necktie diagram
• Coherent tune shift: beam off axis in a circular pipe
• Longitudinal space charge forces
• Simulation codes



Example 1. Relativistic Uniform Cylindrical Beam

Gauss’s law

Ampere’s law
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The combination of these fields 
on a moving charge gives the 

Lorentz Force

The attractive magnetic force, which becomes significant at high velocities,
tends to compensate the repulsive electric force. Therefore, space charge
defocusing is primarily a non-relativistic effect.

• has only radial component

• is a linear function of the transverse coordinate
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Static Fields: conducting or magnetic screens

Let us consider a point charge q close to a conducting screen. 

The electrostatic field can be derived through the "image method". Since 
the metallic screen is an equi-potential plane, it can be removed provided 
that a "virtual" charge is introduced such that the potential is constant at the 
position of the screen

q q - q



A constant current in the free space produces a circular magnetic field. 

If µr»1, the material, even in the case of a good conductor, does not affect 
the field lines.

I



For ferromagnetic materials, with µr>>1, the very high magnetic
permeability makes the tangent magnetic field zero at the boundary so that
the magnetic field is perpendicular to the surface, just like the electric field
lines close to a conductor.

In analogy with the image method we get the magnetic field, in the region
outside of the material, as superposition of the fields due to two symmetric
equal currents flowing in the same direction.

Law of refraction of 
magnetic field lines:

tanθ1
tanθ2

=
µr1

µr2

T." → ∞
yields

80 → 0



Satisfying a magnetic boundary condition by an image current.

ferromagnetic
wall

direct
current

image
current

g g

!
Bd

!
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!
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Time-varying fields

Static electric fields vanish inside a conductor for any finite conductivity,
while magnetic fields pass through unless of high permeability.
This is no longer true for time changing fields, which can penetrate
inside the material in a region characterized by a quantity called skin
depth dw. Inside the conducting material we write the following
Maxwell’s equations:

Copper s = 5.8 107 (Wm)-1

Aluminium s = 3.5 107 (Wm)-1

Stainless steel s = 1.4 106 (Wm)-1

Constitutive 
relations
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Consider a plane wave (Hy , Ex) propagating in the material

(the same equation holds for ^%). Assuming that fields propagate  
in the z-direction with the law:

We say that the material behaves like a conductor if  ` ≫ b* thus:
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Fields propagating along “z” are attenuated. 
The attenuation constant measured in meters is called skin depth dw:

The skin depth depends on the material properties and on the frequency.
Fields pass through the conductor wall if the skin depth is larger than 
the wall thickness Dw. This happens at relatively low frequencies.

At higher frequencies, for a good conductor  dw<< Dw and both 
electric and magnetic fields vanish inside the wall.  

For a pipe 2mm thick, the fields pass through the wall up to 1 kHz.
(Skin depth of Aluminium is larger by a factor 1.28)

For the copper
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Ratio σ/ωε as a function of frequency f for some common media (log-log plot)

Note that copper behaves
like a conductor at
frequencies far above the
microwave region. On the
other hand, fresh water acts
like a dielectrics at
frequencies above about
10MHz

M = log σ
εω

=

= log σ
ε2π

− log f

= log σ
ε2π

− N



• Compare the wall thickness and the skin depth (region of penetration
of the e.m. fields) in the conductor.

• If the fields penetrate and pass through the material, they can  
interact with bodies in the outer region. 

• If the skin depth is very small (rapidly varying fields), fields do not 
penetrate, the electric field lines are perpendicular to the wall, as in the 
static case, while the magnetic field lines are tangent to the surface.

I -II

Method to use for time-varying fields
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When is it convenient to use the method 
of image charges?
1) Any time we have a conducting 

material
2) When we have two or more particles, 

as in a beam
3) When we have a charge close to a 

conducting plane
4) I don’t know what the method of 

image charges isCan a uniform, infinite beam in the free 
space produce an electromagnetic wave?
1) Yes, always
2) No, since it only produces an electric field
3) No, since it produces static electric and magnetic fields
The skin depth
1) Exists only in a perfect conductor
2) It depends on the frequency of the electromagnetic wave
3) It is a quantity of no interest for a particle accelerator
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Example 2: Circular  Perfectly Conducting  Pipe 
(Uniform Beam at Center)

If we take the previous uniform cylindrical beam and
enclose it into a cylindric perfectly conducting pipe, the
field lines are not perturbed because the electric ones are
already radial and then perpendicular to the pipe, and the
magnetic ones remain circular. The presence of the pipe
does not affect the fields.

r
a

z

In the case of cylindrical charge distribution, with g>>1, the electric field lines can be
considered perpendicular to the direction of motion. The intensities of the transverse
fields can be computed as in the static case, applying the Gauss’s and Ampere’s laws.

This direct space charge force does not depend on the longitudinal
position along the beam. If l is not constant, one should consider
the local charge density l(z) (some examples in the exercises).
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Defocusing transverse self-induced forces produced by direct space
charge in case of uniform (left) and Gaussian (right) distributions.

If the transverse distribution is not uniform, we can still apply 
Gauss’s and Ampere’s laws (example in the exercises).
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Relativistic  Uniform Cylindrical Beam – finite length 

Beam pipe radius b
Bunch length l0
Widening at the wall ds 

dsl0

e.g.: 
b = 1 cm 
l0 = 100 μm

γ >> 100

ds

b
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-
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q
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∝
q
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Parallel Plates (Beam at Center)

In some cases, the beam pipe cross
section is such that we can consider
only the surfaces closer to the beam,
which behave like two parallel plates. In
this case, we use the image method to a
charge distribution of radius a between
two conducting plates 2h apart. By
applying the superposition principle, we
get the total image field at a position y
inside the beam.

2h

x

y

z



Parallel Plates (Beam at Center)

In some cases, the beam pipe cross
section is such that we can consider
only the surfaces closer to the beam,
which behave like two parallel plates. In
this case, we use the image method to a
charge distribution of radius a between
two conducting plates 2h apart. By
applying the superposition principle, we
get the total image field at a position y
inside the beam.
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Parallel Plates (Beam at Center)

In some cases, the beam pipe cross
section is such that we can consider
only the surfaces closer to the beam,
which behave like two parallel plates. In
this case, we use the image method to a
charge distribution of radius a between
two conducting plates 2h apart. By
applying the superposition principle, we
get the total image field at a position y
inside the beam.
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Parallel Plates (Beam at Center)

In some cases, the beam pipe cross
section is such that we can consider
only the surfaces closer to the beam,
which behave like two parallel plates. In
this case, we use the image method to a
charge distribution of radius a between
two conducting plates 2h apart. By
applying the superposition principle, we
get the total image field at a position y
inside the beam.
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Parallel Plates (Beam at Center)

In some cases, the beam pipe cross
section is such that we can consider
only the surfaces closer to the beam,
which behave like two parallel plates. In
this case, we use the image method to a
charge distribution of radius a between
two conducting plates 2h apart. By
applying the superposition principle, we
get the total image field at a position y
inside the beam.
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Where we have assumed h ≫ W ≥ 6. 

For d.c. or slowly varying currents, the boundary conditions imposed by
the conducting plates do not affect the magnetic field.

There is no magnetic field which can compensate the electric field due to
the "image" charges.
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From the divergence equation \ ⋅ &18 = ;56

<7
= 0 we derive also the 

other transverse component:

Including also the direct space charge force, we get:

Therefore, for g>>1, and for d.c. or slowly varying currents the cancellation effect applies
only for the direct space charge forces. There is no cancellation of the electric and magnetic
forces due to the "image" charges.
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Usually, the frequency spectrum of a beam is quite rich of harmonics, especially
for bunched beams.

To simplify our study it is convenient to decompose the current into a d.c.
component, I, and an a.c. component, Î, for which we consider dw<< Dw.

The d.c. component of the magnetic field is not affected by the presence of the
material, and only the ‘image’ electric field must be considered.

The a.c. component of the magnetic field must be tangent to the pipe wall, and it
can be obtained by using an infinite sum of image currents with alternating
directions as we did for the electric field.

We can see that this magnetic field is able to cancel the effect of the electric
force.

Parallel Plates (Beam at Center) a.c. currents

Dw

dw



For the a.c. current there is cancellation of the electric and
magnetic forces.
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Is there an indirect space charge 
effect for an infinite cylindrical 
beam in the centre of a circular, 
perfectly conducting pipe? (yes 
always, no never, it depends on 
the beam energy)

When is the direct 
space charge force 

linear with the 
distance from beam 

centre?

1) When the 
transverse beam 
distribution is 

uniform

2) Only very close 
to the centre, even 

with uniform 
transverse 

distribution

3) We did not afford 
this question in the 

lecture



1) Direct space charge force in 
free space for a dc beam

2) Indirect space charge force in 
free space for a dc beam

3) Direct space charge force in a 
circular perfectly conducting 
pipe for a dc beam

4) Indirect space charge force in a circular perfectly conducting pipe for a 
dc beam

5) Indirect space charge force in parallel plates for a dc beam
6) - 10): as 1) - 5) for the ac component of a bunched beam

Up to this point of the lecture which points have we studied?



Parallel Plates - General expression of the force

Taking into account all the boundary conditions for d.c. and a.c.
currents, considering also the presence of ferromagnetic materials in
dipoles, we can write the expression of the force as:

where l is the total current divided by βc, l its d.c. part, g the gap in a 
dipole, and we take the sign (+) if u=y, and the sign (–) if u=x.

It is interesting to note that these forces are linear in the transverse
displacement x and y.

 

-L. J. Laslett, LBL Document PUB-616, 1987, vol III
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Space Charge Force - General expression

One often finds the space charge force written in terms of the Laslett
form factors f0, f1 and f2

where the Laslett form factors have been obtained for different pipe 
geometries (as elliptical and rectangular, with more complicated 
reasoning).

For example, for our case of parallel plates, we have:

f0=1/2,   f1=π2/48,    f2=π2/24
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Space charge effects in 

circular accelerators
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Consider a perfectly circular accelerator with radius rx. The beam
circulates inside the beam pipe. The transverse single particle motion in
the linear regime, is derived from the equation of motion. Including the
self field forces in the motion equation, we have:

Self fields and betatron motion
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Following the same steps of the "transverse dynamics" lectures, we 
write:

For the motion along x:

which is rewritten with respect to the azimuthal position p = %&9:
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We assume a small transverse displacement x so that:

The external force is due to the magnetic guiding fields. We suppose to
have only dipoles and quadrupoles, or, equivalently, we expand the
external guiding fields in a Taylor series up to the quadrupole component:

the dipolar magnetic field !/0 is responsible of the circular motion along
the reference trajectory of radius rx according to the equation :
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We finally get:

where we have introduced the normalized gradient

which can also be written as:

with g the quadrupole gradient in [T/m] and p the charge momentum 
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Both the curvature radius and the normalized gradient depend on the
azimuthal position ‘s’. By using the focusing constant Kx(s) we then can
write:

Putting %& = 3&1 ≃ 31 (small beam divergence), we get

where E0 is the particle energy.

In absence of self fields, the solution of the free equation, known as 
Hill’s equation gives the betatron oscillations.
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• In the analysis of the motion of the particles in presence of the self
fields, we will adopt a simplified model where particles execute simple
harmonic oscillations around the reference orbit.

• This is the case for which the focusing term is constant along the
machine. Although this condition is never fulfilled in a real accelerator,
it provides a reliable model for the description of the effects due to the
self fields .

Free betatron motion:

Perturbed motion:
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Quiz # 14 - 15



You have already studied the 
previous equations in the lectures 
of:
1) Longitudinal beam dynamics
2) Transverse beam dynamics
3) Special relativity and 

electromagnetism
4) Classic literature

The goal of this part of the lecture was to:
• Obtain the space charge force
• Obtain the transverse single particle equation of motion with the inclusion of the 

space charge force
• Obtain the longitudinal single particle equation of motion with the inclusion of 

the space charge force
• Evaluate the betatron tune 
• I don’t see a goal in this part of the lecture
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Transverse incoherent effects

We take the linear term of the self induced transverse force in the 
betatron equation:
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Transverse incoherent effects

The shift of betatron wave number (tune shift) is negative since the
space charge forces are defocusing on both planes (the betatron
wavelength increases). Remember that the space charge force, and
then the tune shift, is, in general, function of “z”, J(7), therefore this
expression represents a tune spread inside the beam. This is why we
call it incoherent. This conclusion is generally true also for more
realistic non-uniform transverse beam distributions, which are
characterized by a tune shift dependent also on the betatron
oscillation amplitude. When ΔQx is not constant in the beam, instead
of tune shift the effect is called tune spread.
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Example: incoherent betatron tune shift for a uniform electron beam
of radius a=100μm, length lo=100μm, inside a circular perfectly
conducting pipe (energy E0=1GeV, N=1010, ρx=20m, Qxo=4.15)
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Remember that for real bunched beams the space charge forces depend 
on the longitudinal and radial position of the charge => tune spread.
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DQ as function of beam emittance and filling factor of the ring

This expression is valid also in the general case of non-uniform focusing
along the accelerator for a uniform beam inside a circular pipe.
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General expression of the incoherent tune shift

We have seen that the equation of the betatron oscillations in presence of
self forces is linearized as
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From beam optics, it is possible to demonstrate that, having a circular
machine with design quadrupole stength á$(p) and gradient errors
Δá$ p distributed along the machine, these errors lead to a tune shift of
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General expression of the incoherent tune shift
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This is a general expression. The only assumption is the linearization of
the self field forces. For a uniform transverse distribution, 3$ p = W'/*$

ΔÜ$ = −
1

4)3'*$&"
SW'

]H$
?>@A

]5 $:"
>p

ΔÜ$ = −
2)Q$

4)3'*$&"
W'

]H$
?>@A

]5 $:"

where means averaged over the machine circumference. With this
expression we can account for the variation of the beam dimensions along
the machine due to the betatron function.



Quiz # 16 - 17



What is the dependence of the 
incoherent transverse tune with the 
particle transverse displacement in 
the linear approximation?
1) I do not understand the question
2) Independent
3) Linear
4) Inversely proportional

The linearization of the space charge force:
• Cannot be used in the study of beam dynamics because its motion is not linear
• Allows to obtain the amplitude of the single particle transverse motion
• Allows to obtain the tune of single particle transverse motion
• Allows to obtain the single particle betatron tune shift
• More than one answer is correct
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Shift and spread of the incoherent  tunes
If the beam is located at the centre of symmetry of the pipe, the e.m. forces
due to space charge and images cannot affect the motion of the centre of
mass (coherent), but they change the trajectory of individual charges in the
beam (incoherent).

These forces may have a complicate dependence on the charge position.
Our simple analysis is done by considering only the linear expansion of
the self-fields forces around the equilibrium trajectory.

The consequences are a shift and a spread of the incoherent tunes.



Consequences of the space charge tune spreads

In circular accelerators the values of the betatron tunes should not be close to
rational numbers in order to avoid the crossing of linear and non-linear
resonances where the beam becomes unstable. The spread induced by the space
charge force can make hard to satisfy this basic requirement. Typically, in order
to avoid major resonances, the stability requires

Δ"! < 0.5∗

If the tune spread exceeds this limit, it is possible to reduce the effects of space
charge tune spread, e.g. by increasing the injection energy or the transverse beam
size.

The incoherent tune spread produces also a beneficial effect, called Landau
damping, which can cure the coherent instabilities, provided that the coherent
tune remains inside the incoherent spread.

*See, for example, J. Rossbach, P. Schmüser, ‘Basic course on accelerator optics’, CAS Jyväskylä 1992, CERN 
94–01, p. 76.
J. P. Delahaye, et al., Proc. 11th Int. Conf. on High Energy Accelerators, Geneva, 1980, p. 299.



CERN PS Booster accelerated proton bunches
from 50 to 800 MeV in about 0.6 s. The tunes
occupied by the particles are indicated in the
diagram by the shaded area. As time goes on, the
energy increases and the space charge tune
spread gets smaller covering at t=100 ms the tune
area shown by the darker area. The point of
highest tune corresponds to the particles which
are least affected by the space charge. This point
moves in the Q diagram since the external
focusing is adjusted such that the reduced tune
spread lies in a region free of harmful
resonances.

The small red area shows the situation at t=600 ms when the beam has reached the
energy of 800 MeV. The tune spread reduction is lower than expected with the
energy increase (1/g3) dependence since the bunch dimensions also decrease during
the acceleration.

Example from A. Hofmann in CAS 1992 (General Course - Jyväskylä Finland)



CERN PS Booster accelerated proton bunches
from 50 to 800 MeV in about 0.6 s. The tunes
occupied by the particles are indicated in the
diagram by the shaded area. As time goes on, the
energy increases and the space charge tune
spread gets smaller covering at t=100 ms the tune
area shown by the darker area. The point of
highest tune corresponds to the particles which
are least affected by the space charge. This point
moves in the Q diagram since the external
focusing is adjusted such that the reduced tune
spread lies in a region free of harmful
resonances.

The small red area shows the situation at t=600 ms when the beam has reached the
energy of 800 MeV. The tune spread reduction is lower than expected with the
energy increase (1/g3) dependence since the bunch dimensions also decrease during
the acceleration.

Example from A. Hofmann in CAS 1992 (General Course - Jyväskylä Finland)
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Transverse coherent effects

If the beam experiences a transverse deflection kick, it starts to perform
betatron oscillations as a whole. The beam, source of the space charge
fields moves transversely inside the pipe, but its centre of mass (X), due to
simmetry, cannot be affected by the direct space charge. Only image space
charge can affect its motion.

X
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The image charge is at a distance “d” such that
the pipe surface is at constant voltage, and pulls
the beam away from the center of the pipe.



Courtesy of E. Métral



The effect is defocusing: the horizontal electric image
field E and the horizontal force F are: 
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Example 4: coherent betatron tune shift for a uniform electron beam
of length lo=100μm, inside a circular perfectly conducting pipe of
radius b=14cm, (energy E0=1GeV, N=1010, ρx=20m, Qxo=4.15)
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Quiz # 18 - 19



What is the difference between incoherent and coherent tune shift?
1) They are the same since they both refer to the particles inside a beam
2) The first one refers to the particles inside the beam, the second one to 

the centre of mass
3) The coherent tune shift can produce a tune spread, while the 

incoherent one no
4) I do not have any idea

Is the coherent tune shift due to 
the direct or indirect space 
charge?
1) Direct
2) Indirect
3) Both
4) None of the two
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Consequences of the space charge forces on LINACS

For the stability it is required anyway that the defocusing space charge
forces must not be larger than the external focusing forces.

In a LINAC or a beam transport line, the space charge forces cause energy spread and
perturb the equilibrium beam size.

They can also lead to a significant longitudinal-transverse correlation of the bunch
parameters, which may produce mismatch with the focusing and accelerating devices,
thus contributing to emittance growth.

The dynamics can be studied by considering the beam as an ensemble of longitudinal
slices, for each of which it is possible to write a differential equation giving the
behaviour of the transverse dimension along the machine (envelope equation).



LONGITUDINAL FORCES

We choose as path a rectangle
going through the beam pipe
and the beam, parallel to the
axis.

Longitudinal forces can be obtained from the knowledge of the transverse
ones.
In order to derive the relationship between the longitudinal and transverse
forces inside a beam, let us consider the case of cylindrical symmetry and
ultra-relativistic bunches. We know from Faraday's law of induction that a
varying magnetic field produces a rotational electric field:
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where (1-b2)=1/g2. For perfectly conducting walls Ez=0. 

r

b

Transverse uniform beam in a circular p.c. pipe. 
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Longitudinal self fields and synchrotron motion

Δê is the phase difference with respect to the synchronous particle. 
Including longitudinal space charge forces the equation becomes:

Longitudinal equations of motion for constant energy and circular machine, 
ignoring radiation damping

ϕ is the RF phase, h the harmonic number, η the slippage factor, Δ& the
energy difference with respect to the synchronous particle
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There are numerical codes used to evaluate the space charge effects in circular accelerators and
Linacs:

ORBIT: Objective Ring Beam Injection and Tracking Code 
https://oraweb.cern.ch/pls/hhh/code_website.disp_code?code_name=ORBIT
ORBIT is a computer code designed for beam dynamics calculations in high-intensity rings. Its
intended use is the detailed simulation of realistic accelerator problems, although it is equally
applicable to idealized situations. ORBIT is a particle-in-cell tracking code in 6D phase space that
transports bunches of interacting particles through a series of nodes representing elements, dynamic
effects, or diagnostics that occur in the accelerator lattice. It can be used in combination with PTC, a
6D integrator as tracker.

GPT: General Particle Tracer
http://www.pulsar.nl/gpt/

GPT is based on full 3D particle tracking techniques, providing a basis for the study of all 3D and
non-linear effects of charged particles dynamics in electromagnetic fields. All built-in beam line
components and external 2D/3D field-maps can be arbitrarily positioned and oriented to simulate a
complicated setup-up and study the effects of misalignments. An embedded fifth order Runge-Kutta
driver with adaptive stepsize control ensures accuracy while computation time is kept to a minimum.
GPT provides various 2D and 3D space-charge models.

Numerical Analysis - 1



PARMELA: Phase and Radial Motion in Electron Linear Accelerators
http://laacg.lanl.gov/laacg/services/serv_codes.phtml#parmela

PARMELA is a multi-particle beam dynamics code used primarily for electron-linac beam
simulations. It is a versatile code that transports the beam, represented by a collection of particles,
through a user-specified linac and/or transport system. It includes several space-charge calculation
methods. Particle trajectories are determined by numerical integration through the fields. This
approach is particularly important for electrons where some of the approximations used by other
codes (e.g. the "drift-kick" method commonly used for low-energy protons) would not hold.

PARMILA: Phase And Radial Motion in Ion Linear Accelerators 
http://www.lanl.gov/projects/feynman-center/technologies/software/parmila.php

Parmila has been the standard code for the design of RF linacs for many years. The enhanced, second
generation, PARMILA 2 program is utilized in the PBO Lab PARMILA-2 Module. The Module is
ideally suited for the design of complex ion accelerator components such as drift tube linacs (DTLs),
coupled cavity linacs (CCLs), coupled-cavity drift tube linacs (CC-DTLs) and superconducting linacs
(SCLs). The program offers two different multi-particle space charge algorthims which permits
comparing different high beam current modeling approximations. The PARMILA-2 Module is also
useful for the simulation of intense beams in transport channels and for studying beam loss,
misalignments, cavity mispowering, and similar off-nominal operation.

Numerical Analysis - 2



Last quiz on space charge



1) too easy 

2) too difficult 
4) I don’t 
know 
because I 
didn’t 
understand 
anything 

3) too interesting 

This first part of 
the lecture on space 
charge was:



Wakefields and Instabilities
Mauro Migliorati

LA SAPIENZA - Università di Roma and INFN

• Introduction to wakefields/potentials

• Instability mechanism

• Instability in Linacs

•Instability in Circular Accelerators

•Other effects not discussed here





This force depends on the longitudinal and transverse position of the two 
particles. It is useful to distinguish two effects on the test charge : 

1) a longitudinal force which changes its energy, 

2) a transverse force which deflects its trajectory. 

Wakefields and Wake Potentials
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2) The impulse approximation: although the test charge sees a force coming from the
electromagnetic field all along the structure, what it cares is the impulse

as the charge completes the traversal through the discontinuity at its fixed velocity v.

Two approximations
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If we consider a device of length L, we can perform the integral of the 
force acting on the test charge along the longitudinal path and get:

the Energy Gain (J):

These quantities are both function of the distance z between the two
particles. The transverse deflecting kick depends also on r0, the
transverse position of the source charge.

Note that the integration is performed over a given path of the trajectory.

These quantities, normalised to the charges, are called wakefields

the Transverse Deflecting Kick (N·m):
(dipolar)
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Longitudinal wakefield 
(Volt/Coulomb)

Transverse dipole wakefield    
(Volt/Coulomb/meter)

The minus sign in the longitudinal wakefield means that the test
charge loses energy when the wake is positive.

Positive transverse wake means that the transverse force is
defocusing.

The wakefields are the important quantities to study the beam
dynamics.

ï∥ 7 = −ì 7
''

ï, 7 =
î 7
''



Longitudinal wakefield 
(Volt/Coulomb)

Transverse dipole wakefield    
(Volt/Coulomb/meter)

The minus sign in the longitudinal wakefield means that the test
charge loses energy when the wake is positive.

Positive transverse wake means that the transverse force is
defocusing.

The wakefields are the important quantities to study the beam
dynamics.

What is the physical 
meaning of 7(0)?
Can it be different 
from 0?

ï∥ 7 = −ì 7
''

ï, 7 =
î 7
''
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The longitudinal wakefield gives
• The force acting on the test charge due to the source one
• The transverse deflecting kick of the test charge due to the source one
• The energy lost by the test charge due to the electromagnetic field of 

the leading one normalized by the two charges
• Wakefield is a cathedral city and the administrative center of the City 

of Wakefield district in West Yorkshire, England



We know that em fields transport energy. Who does supply this
energy to the fields? When a charge interacts with the surrounding
environment generating these fields, the particle loses a bit of its
energy.

It is therefore useful to define the loss factor K as the energy lost by
the source charge q due to the em fields of the charge itself
normalised to ''. From the definition of wakefield we have then

K = −ì 7 = 0
'' = ï∥(7 = 0)

Although in general the loss factor is given by the longitudinal wake
at z=0, for charges travelling with the speed of light, the longitudinal
wakefield is discontinuous at z=0

The loss factor
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The exact relationship between K and ï∥(7 → 0) is given by the
beam loading theorem:
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β<1

Causality requires that the longitudinal wakefield of a charge travelling with
the speed of light is discontinuous in the origin.

K =
ï∥ 7 → 0*

2

NB: this is true only in the longitudinal plane.

- -



€ 

UA = qA
2 k =

q2

4
k

UB = qB
2k + qAqBw// z( )

=
q2

4
k + q

2

4
w// z( )

UA +UB =
q2

2
k + q

2

4
w// z( )

z→ 0    UA +UB = q
2k

q2

2
k + q

2

4
w// 0( ) = q2k

€ 

w// 0( )
4

=
k
2

k =
w// 0( )
2

q/2q/2

q

AB

w//

k

z

Demonstration of 
the beam loading 
theorem



Wake potential and energy loss of a bunched distribution
When we have a bunch with longitudinal charge density M+/M& = E(&), we may want to
get the amount of energy lost or gained by a single charge e in the beam.

To this end let us evaluate the effect on
the charge e in a posizion z due to a slice
of the bunch in a position z’ so thin
(width dz’) that it can be considered as a
point charge:

e

We now use the superposition principle to obtain the energy lost or
gained by the charge e due to the entire distribution.

>ì 7 = −M>' 7! ï∥ 7 − 7! = −Mï∥ 7 − 7! J 7! >7′

f∥ &! − &



Wake potential and energy loss of a bunched distribution

The energy lost allows to define the longitudinal wake potential of a distribution

The total energy lost by the bunch is computed summing up the losses of all the particles:

NB: we have
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Some comments on the wake potential

• Observe that if we know the wakefield, we can obtain the wake potential of any
distribution, but if we know the wake potential, we are limited to a particular beam
distribution.

• In a LINAC, with particles moving at the speed of light, the longitudinal distribution
does not change, and the wake potential can be used to evaluate the energy variation of
particles inside the bunch (energy spread). In this situation, the knowledge of the wake
potential can be sufficient to study the beam dynamics.

• In a circular accelerator the longitudinal position of a charge depends on its energy
through the slippage factor, and this energy is modified by the wake potential. As a
consequence, the wake potential changes the longitudinal distribution which, on its turn,
changes the wake potential. In this case we have to study the beam dynamics in a self
consistent way, and the knowledge of the wake potential is not sufficient.
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The study of the em fields requires to solve the Maxwell’s equations in a 
given structure taking the beam current as source of fields. This is a quite 
complicated task for which it has been necessary to develop dedicated 
computer codes, which solve the e.m. problem in the frequency or in the 
time domain. There are several useful codes for the em design of accelerator 
devices, and new ones are developed. Examples of codes: CST STUDIO 
SUITE, GDFIDL, ACE3P, ECHO(2D, 3D), ABCI, …

The wake potentials given by numerical codes depend on the particular 
charge distribution of the beam. It is therefore desirable to know what is the 
effect produced by a single charge, i.e. find the Green function (wakefield), 
in order to reconstruct the fields produced by any charge distribution. 

Numerical Analysis

Theoretical Analysis

However, the result of the codes is a wake potential and not a wakefield …
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What is the difference between the wakefield and the wake 
potential?

• They are the same: they both refer to the electromagnetic field produced by a 
source on a test charge divided by both the charges

• I do not understand the difference
• They are different: the wakefield refers to two charges, the wake potential to 

the entire bunch acting on a charge
• I don’t know because I was reading comics during this part of the lecture



Coupling Impedance

The wakefields are generally useful to study the beam dynamics in the time
domain (for example instabilities in a LINAC). If we take the equation of
motion in the frequency domain (a trick generally used to study instabilities
in circular accelerators), we need the Fourier transforms of the wakefields.
Since these quantities have ohms units they are called coupling impedances:

Longitudinal impedance (W)

Transverse  dipolar impedance (Ω/m)

ó∥ =
1
%=*+

+

ï∥ 7 M*1
4&
K >7

ó⃗, =
−e
% =

*+

+

ï, 7 M*1
4&
K >7



Example of longitudinal wakefield and coupling impedance: 
finite conductivity of a circular pipe wall (resistive wall)

ℓ

b

Hp: high conductivity
such that the skin depth
is much smaller than the
wall thickness and
1ô /q ≪ b ≪ 1ô*(/#/q

ô(/#q ≪ 7 ≪ q/ô

with
Example: aluminum σc=3.5x107 [Ωm]-1, b=5 cm:
9 ≪ b ≪ 5.2×10(' rad/s 5.7×10*F ≪ 7 ≪ 3.3×10L [m]
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ℓ
2)q
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Example of longitudinal wakefield and coupling impedance: 
finite conductivity of a circular pipe wall (resistive wall)

ó∥ b = 1 − e
ℓ
2)q
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For a good conductor we have defined the skin depth

@7 =
2
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q

Surface impedance



Example of longitudinal wakefield and coupling impedance: 
finite conductivity of a circular pipe wall (resistive wall)

ℓ

b

The real part of impedance can be justified in this way

£ = ℓ
F C̀

current
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Example of longitudinal wakefield and coupling impedance: 
finite conductivity of a circular pipe wall (resistive wall)

The imaginary part of impedance can be justified in this 
way: the current is flowing through the area of 
thickness @7 ≪ q. From the Ampere’s law 
(2)+ ≃ 2)q)

2)q! = UV2)q + − q → ! = UV + − q
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Example of longitudinal wakefield and coupling impedance: 
finite conductivity of a circular pipe wall (resistive wall)

Impedance comparison

Wake potential comparison

P = Q − RS

-
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The resistive wall impedance
• Is a circuit inserted in the accelerator generating a resistance 

and an inductance
• Is the Fourier transform of the wakefield in frequency domain 

due to the finite conductivity of the pipe wall
• Can be known analytically in a certain frequency range only in 

case of perfectly conducting beam pipe



Example of longitudinal wakefield and coupling impedance: 
space charge

Even if in the ultra-relativistic limit with γ⟶ ∞, we have seen that there is
no space charge effect, we can still define a wakefield by considering a
moderately relativistic beam with γ>>1 but not infinite. It turns out that the
space charge forces can fit into the definition of wakefield, and when that
is done, we find that the wake depends on beam properties such as the
transverse beam radius a and the beam energy γ. Let us consider a
relativistic beam with cylindrical symmetry and uniform transverse
distribution. We have already obtained the longitudinal force acting on a
charge of the beam travelling inside a cylindrical pipe of radius b:

H∥ +, 7 =
−'

4)*"-'
1 −

+'
W' + 2 ln

q
W

]
]7 J(7)



Example of longitudinal wakefield and coupling impedance: 
space charge

We can define the longitudinal wakefield of a piece of pipe of length ℓ
with constant radius. Assuming r®0 (particle on axis), and a charge line
density given by J 7 = '"@ 7 , we obtain
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What happens when we consider an entire machine? 
In many cases we can ignore the em interference between different devices, 
which can then be evaluated individually.
The impedance (and wakefield) of the machine is simply the sum of that of 
all the elements
Example of wake potential and longitudinal coupling impedance for
DAΦNE accumulator

o

Z
n

Z
ww
ww )()( |||| =

DAΦNE accumulator wake potential of
a 2.5 mm Gaussian bunch.

-



Short range wakefield/potential acts over the bunch length

• Vanishes after a distance 
of few bunch lengths

• Influences the single 
bunch beam dynamics

• Poor frequency resolution 
of Fourier transform of 
coupling impedance => 
broad band impedance

DAΦNE wake potential of
a 2.5 mm Gaussian bunch.

Another important necessary distinction is between short and 
long range wakefield/potential

-



Re[Z]
Im[Z]

Long range wakefield/potential acts on many 
bunches/multi-turn

• Field oscillates over long distances
• High peak impedance
• Produced by high quality resonant modes 
• Described by only 3 parameters: Q, ωr and Rs



Longitudinal wakefield of a resonant mode

When a charge crosses a resonant structure, as an RF cavity, it excites
resonant modes (fundamental and HOMs).

Each mode can be treated as an electric RLC circuit loaded by an impulsive 
current. Just after the charge passage, the capacitor is charged with a voltage 
Vo=qo /C and the electric field is Eso= Vo/lo. 

The passage of the impulsive current charges only the capacitor, which
changes its potential by an amount V0. This potential will oscillate and decay
producing a current flow in the resistor and inductance.
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Equivalent circuit

PC 1 = +$j(1)
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The time evolution of the electric field is governed by the same differential
equation of the voltage

R̈ + 1
£™ Ṙ +

1
¶™ R = 0

For 9 > 0 the potential satisfies the following equations and initial
conditions:

putting z = -ct (z is negative behind the 
source charge),
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Coupling impedances of a resonant mode

shunt resistance: quality factor:

Transverse wakefield and impedance of a resonant mode:

Longitudinal Impedance:

The parameters m9, a and n., that can be evaluated by computer codes, can be
related to the parameters RLC of the parallel circuit
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Broad Band Resonator Model DAΦNE Accumulator Impedance

Some remarks on the longitudinal impedance of a resonant mode

This impedance can be also used as a
simplified impedance model of a whole
machine for the short range wakefields
assuming Q ~ 1 (it is called Broad Band
Impedance Model)

ó∥ b =
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Another Broad Band Impedance model

Another simple Broad Band Impedance Model is obtained by a
phenomenological expansion over b of the different contributions to a
machine impedance. By considering only the first two terms of the
expansion, we have the so called £¶ impedance model

ó∥ b = £ − eb¶
The resistive term £ takes into account the losses of the beam, and the
second term, which represents an inductive impedance, gives the low
frequency behaviour typical of tapers, shielded bellows and vacuum
ports, small discontinuities as slots, shallow cavities in flanges …

The wakefield of the resistive impedance is just proportional to the Dirac
delta function ï∥(7) = 1£@(7), while that of the inductance is similar to
what we have obtained for the space charge.
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How can we obtain the wakefield of a resonant mode?
• From the voltage across the capacitor of an RLC circuit excited by 

an impulsive current
• Only by using an electromagnetic solver (as CST Microwave 

Studio)
• From the broad band R-L impedance model of an accelerator
• None of the above answers is correct



Wakefields effects in LINACS
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Example: Energy lost by a finite uniform beam due to a resonant mode  
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Example: Energy lost by a finite uniform beam due to a resonant mode  
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What is the wake potential?
What is the energy spread?



Energy loss 
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Consider a harmonic oscillator with natural
frequency w and with an external excitation at
frequency W. Instead of time, let us use, as
independent variable, p = 19:

General solution:

Instability: driven oscillator

substitution in the diff. equation:
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The general solution has to satisfy the initial conditions at s=0. In our case
we assume that the oscillator is at rest for s=0:

thus we get:

taking only the real part:

NB: if the initial
conditions are different,
we just need to add to our
solution a sinusoidal term
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This expression is suitable for deriving the response of the oscillator
driven at resonance or at frequency very close:
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Single Bunch Beam Break Up in Linacs

A beam injected off-centre in a LINAC, because of the focusing
quadrupoles, executes betatron oscillations. The displacement produces a
transverse wakefield in all the devices crossed during the flight, which
deflects the trailing charges.



In order to understand the effect, we consider a simple model with only
two charges q1=Ne/2 (source charge = half bunch) and q2=e (test charge =
single charge).

q1=Ne/2q2=e

lw

the source charge executes free betatron oscillations:
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This force drives the motion of the test charge:

This is the typical equation of a harmonic oscillator driven at the resonant
frequency. The solution is given by the superposition of the “free” oscillation
and a “driven” oscillation, which, being driven at the resonant frequency,
grows linearly with s.

the test charge, at a distance z behind, over a length Lw experiences a
deflecting force proportional to the displacement y1, and dependent on the
distance z:
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At the end of the LINAC of length LL, the oscillation amplitude of the tail
with respect to the head is grown by ( ç6( = ç6')
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Balakin-Novokhatsky-Smirnov Damping

The BBU instability can be quite harmful and hard to take under control
even at high energy, with a strong focusing, and after a careful injection and
steering.

A simple method to cure it has been proposed observing that the strong
oscillation amplitude of the bunch tail is due to the “resonant” driving
force.

If the tail and the head of the bunch oscillate with different frequencies,
this effect can be significantly removed.

Let us assume that the tail oscillates with a frequency b% + Δb% , the
equation of motion becomes:
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the solution of which is ( ç6( = ç6')
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by a suitable choice of Δb%, it is possible to fully depress the oscillations of
the tail.

The extra focusing on the tail can be obtained by:

• Using an RFQ, where head and tail see a different focusing strength.

• Creating a correlated energy distribution along the bunch which, because
of the chromaticity, induces a spread in the betatron frequencies. An energy
spread correlated with the longitudinal position is attainable with the
external accelerating voltage, or with the longitudinal wakefields.
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What have we studied in this part of the lecture?
• Two effects of wakefields in LINACS: driven oscillator and BNS 

damping
• Nothing interesting
• The transverse betatron motion of a particle inside a Linac
• Two effects of wakefields in LINACS: energy spread (and loss) 

and a type of instability (BBU)



Instabilities in Circular Accelerators



Longitudinal effects on beam dynamics

• Robinson instability (RF fundamental mode)
• Coupled bunch instability (HOMs)

• Potential well distortion è deformation of the longitudinal 
distribution
• Longitudinal emittance growth, microwave instability

Short range wakefields:

Long range wakefields:



Robinson instability of the RF fundamental mode
Let us consider the real part of the RF
fundamental mode, and a bunch with
revolution period T0. The bunch
spectrum has lines every ω0 (we
suppose the bunch as a point charge),
and its lost energy due to the mode is
proportional to the real part of the
impedance at hω0. If the bunch, during
the synchrotron oscillations, has an
increasing energy, and we are above
transition, its revolution period
increases and the frequency decreases.
If (hω0 > ωr), as in the figure, the resistance found by the beam is higher,
producing a higer energy loss, which reduces the energy increase giving a
stabilizing effect.

Re[Z(ω)]

ωωr hω0



Robinson instability of the RF fundamental mode

Longitudinal equations of motion of the bunch centre of mass, for constant 
energy in a circular machine, ignoring radiation damping

Combining the two equations, for small oscillation amplitudes, we obtain 
a second order linear differential equation 

with
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Robinson instability of the RF fundamental mode
By including also the wakefield of 
the fundamental resonant mode 
(beam loading effect) the equation
of motion becomes

Re[Z(ω)]

ωωr hω0

hω0+ωshω0-ωs

damping/exciting term 
due to the resonant mode

If ≥- < b? → b9 = b?' − ≥-'

Solution

#(ΔS
#((

+ 2U4
#ΔS

#(
+ :)(ΔS = 0

Δê = Δê8S$ exp −≥-9 cos b99 + ≤"

≥- =
MâEëℎb"

2b? &"/M L"'
Re πó Re πó = Re ó ℎb" + b? − ó ℎb" − b?



OTHER EFFECTS NOT DISCUSSED HERE: 
LANDAU DAMPING

• There is a natural stabilising effect against the collective instabilities called
“Landau Damping”. The basic mechanism relies on the fact that if the particles
in a beam have a spread in their natural frequencies (synchrotron or betatron),
their motion can’t be coherent for a long time.

• The mechanism is in general triggered when an infinite set of identical systems
oscillates at different frequencies, spread over some range of values. Under
these conditions, if any periodic force has its frequency within the considered
range, the oscillation amplitude, averaged over all the systems, instead of
growing as one should expect, remains constant.

• Even if a periodic force pumps energy into the system, this energy is not
converted into an increase of the average oscillation amplitude: the number of
particles in resonance with the external force decreases with time, so that the
net contribution to the average oscillation amplitude remains constant.



OTHER EFFECTS NOT DISCUSSED HERE: 

Shaking force
at frequencyW

LANDAU DAMPING ACTIVE FEEDBACK SYSTEMS



OTHER EFFECTS NOT DISCUSSED HERE 

• Vlasov and Fokker-Plank equations

These equations are used to study analytically the collective effects in circular accelerators. 

The Vlasov equation describes the collective behaviour of a multiparticle system under the 
influence of electromagnetic forces.
It is valid if we can ignore diffusion or external damping effects, such as, for example, 
longitudinal and transverse beam dynamics of proton beams.

For electron beams, synchrotron radiation cannot be neglected and we obtain another 
equation called Fokker-Planck equation. It’s stationary solution in the longitudinal plane is 
called Haissinski equation.

Vlasov equation is sometimes loosely referred to as the Liouville theorem. However it applies 
to a system of many particles when collisions among particles are excluded. 

Strictly, the Liouville theorem applies to an ensemble of many systems, each containing many 
particles. It describes the conservation of density of the ensemble in the 2N-dimensional 
space and applies to situations much more general than that considered here, such as when 
collisions among discrete particles are included.



OTHER EFFECTS NOT DISCUSSED HERE 

• Touschek effect and intra-beam scattering: they describe the scattering and
loss of particles in a circular machine in the collisional regime. (See, e.g. A. Piwinski,
in Proceedings of the 9th International Conference on High Energy Accelerators, Stanford, CA,
1974 (SLAC, Stanford, 1974), p. 405)

• Electron cloud
Positive charges disturb electrons
already in the tube, and bounce
them into the wall. These electrons
can be photo-electrons from
synchrotron radiation or electrons
from ionized gas molecules. When an electron hits the wall, the wall emits more
electrons due to secondary emission. These electrons in turn hit another wall, releasing
more and more electrons into the accelerator chamber.

(See, e.g. ELECTRON CLOUD STUDIES FOR CERN PARTICLE ACCELERATORS AND
SIMULATION CODE DEVELOPMENT, Doctoral Thesis by G. Iadarola, CERN-THESIS-2014-047)



• Beam-beam

(See, e.g. W. Herr, T. Pieloni, Beam-beam effects,
DOI: 10.5170/CERN-2014-009.431)

• Beam Ion Instabilities
(See, e.g. C. Li , S. Tian, N. Wang, H. Xu,
Beam-ion instability and its mitigation
with feedback system, Phys. Rev. AB 23,
074401 – 2020).

OTHER EFFECTS NOT DISCUSSED HERE 



Quiz # 25



The Landau damping:
• Does not regard the beam dynamics of an accelerator
• Describes the scattering and loss of particles in a circular machine in the 

collisional regime
• It is a stabilizing effect happening when a beam has a spread in the 

synchrotron or betatron frequencies
• Is an instability mechanism that can be derived from the Vlasov equation



Relationship between transverse and longitudinal forces:

The transverse gradient of the longitudinal force is equal to the 
longitudinal gradient of the transverse force

“Panofsky-Wenzel theorem”.

  

€ 

∇⊥F// =
∂
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F⊥
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∂
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Appendix
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