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Your boss:

Really?! Can you send me a picture please?
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Interesting. It is in horizontal plane.

) 05 . s : 25 What was the chroma? Coupling? Octupoles?

Great. And let's compare with the impedance model predictions




Introduction

- The beam coupling impedance represents the electromagnetic interaction
of a particle beam with its surrounding space.

- By definition, it is inherently present in every accelerators.

- It contributes to the intensity limitations of a machine, together with other
collective effects (space charge, IBS, electron cloud, beam-beam, etc..).

- Itis important to build a machine impedance model to:

1.

2.
3.
4

predict the impedance-related machine performance limitations.
prepare for machine upgrades (adding/removing impedances).
optimize beam parameters for existing machine operation modes.
be ready to address expected and unexpected instabilities.




Real machine Impedance model
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Transverse plane
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Tune shift versus intensity

We use the beam as an impedance-measurement tool looking at the
perturbation that the impedance induces on its motion.

In the transverse plane (for example on the y-plane) beam motion is given by:

%%(s) t Ho(s)yi(s) =0 ——  y,(s) = Ai(s) cos(2mpy(s) + 6;)

| |

Unperturbed focusing strength Phase advance

When the impedance perturbation is negligible, the particles oscillate at the
machine programmed tune Q,,.




Tune shift versus intensity

When the impedance perturbation is not negligible, the beam motion is affected by
the additional driving force the impedance is producing.

¥

ﬁyz(s) + K(S)yz(s) — < F; > <«—— Perturbing force (wakefields)
S

To first approximation (and not in general') the impedance effect can be modeled as
an additional defocusing quadrupole with strength linearly dependent on beam intensity.
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Tune shift versus intensity

Looking at the tune change versus intensity, we can infer the total machine
transverse impedance (imaginary part) as  AQ,
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Example from the SPS

A carefully developed impedance model of a machine can reach excellent
agreement to beam measurements, as for the SPS:
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C. Zannini, “ Electromagnetic Simulation of CERN accelerator Components and
Experimental Applications”, CERN-THESIS-2013-076 (2013)




Impedance localization

So far we have access to the total machine impedance via tune shift measurements.
But, can we measure the impedance of single elements installed the machine?

YES!

We can look at the variation of phase advance vs intensity
We can perform local orbit bumps around the device
If the device is movable (like collimators) we can change its gap

1.
2.
3.
4.




Impedance localization

So far we have access to the total machine impedance via tune shift measurements.
But, can we measure the impedance of single elements installed the machine?

YES!

1. We can look at the variation of phase advance vs intensity




Phase advance w/o impedance effect

When the impedance perturbation is negligible, the phase advance can be
compared to the MADX model.

A Beam Position Monitor (BPM) system allows for the
measurement of the optics functions (tune, phase advance).
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Phase advance w/o impedance effect

When the impedance perturbation is not negligible, the phase advance exhibits
a kink at the impedance location with amplitude proportional to the impedance.
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Phase advance w/ impedance effect

Comparing the effect of a (series of) localized thin lens to the measurent, one can
reconstruct the impedance location and strength.
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Impedance localization

So far we have access to the total machine impedance via tune shift measurements.
But, can we measure the impedance of single elements installed the machine?

YES!

2. We can perform local orbit bumps around the device




Local bump method

The impedance kick at the a ring location is proportional to the beam orbit displacement.
Scanning the local orbit bump we can probe the device transverse impedance.
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L. Emery et al. "Local bump method for measurement of transverse
impedance of narrow-gap ID chambers in storage rings",
PACS2001. Proc. of 2001 Particle Accelerator Conference, 2001

V.Smaluk et al. “AC orbit bump method of local impedance measurement”,
Nuclear Inst. and Methods in Physics Research, A 871 (2017) 59-62

See also “Transverse Linear Imperfections” lectures from H.Bartosik
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Impedance localization

So far we have access to the total machine impedance via tune shift measurements.
But, can we measure the impedance of single elements installed the machine?

YES!

3. If the device is movable (like collimators) we can change its gap




Movable devices

Let’s consider a collimator as an example of movable device.
This is typically installed to clear the beam halo and protect the machine from
uncontrolled beam losses.

>
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Courtesy of S.Redaelli, Beam Cleaning and Collimation Systems, arXiv:1608.03159




Movable devices

Let’s consider a collimator as an example of movable device.

This is typically installed to clear the beam halo and protect the machine from
uncontrolled beam losses.

The gap between jaws is set up in order to optimize
the collimator system cleaning efficiency.

Changing the gap < changes the impedance

Zyoc\/—/g3




Movable devices

Let’s consider a collimator as an example of movable device.

This is typically installed to clear the beam halo and protect the machine from
uncontrolled beam losses.

The gap between jaws is set up in order to optimize

150 Seeomdone the collimator system cleaning efficiency.
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resistivity o typically used for the absorbing jaws.

Courtesy of S.Antipov




Example: low impedance collimators

The tune shift of a collimator was measured in the LHC in order to test different coating
materials on the jaws (low resistivity — low impedance).
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Bonus: impedance measurement versus energy

- Measuring the transverse impedance (tune shift) versus intensity at various energies
allows to disentangle the role of the energy-dependent contribution to the impedance.

Typically the indirect space charge is dominant w.r.t. to the rest of the machine.
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Beam-based impedance
measurements

Transverse plane
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Beam-based impedance
measurements

Transverse plane
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Rise time measurements

Looking at the dependence of rise time T on chromaticity, one can deduce the real
part of the machine impedance.
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o Data

4+ ';'"""Envelope p T Ae t/T T_l X Re(zfgtf

== Exp. fit.: tau=3.0439

Risetime —1 —s
Growth rate - 771 — s71

<x> [arb. units]

Larger the impedance, shorter the rise time
25 (larger the growth rate)

Turns N 105




Rise time measurements

- Looking at the dependence of rise time T on chromaticity, one can deduce the real
part of the machine impedance.
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Rise time measurements

A beam undergoing oscillations with exponentially increasing amplitude will eventually hit the
vacuum chamber and be lost.

Rise time measurements are therefore “easier” in fast cycling machines, as one can inject new
bunches each time. In large colliders, like the LHC, a refill can take hours.

- : [ I |
[ I I

LHC exampl
. C exa pe Damper normalized gain back at

0.015, i.e. 2/0.015 ~ 133 turns

A transverse feedback can help!

Damper normalized gain at 0.008,

. - -6 i.e. 2/0.008 ~ 250 turns awor x|
Feedback off — instability grows : ;

002 )

Feedback on — instability damps ’ 5 Opened collmators |~
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If beam properties are not significantly affected, one can repeat the experiment.
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Beam-based impedance
measurements
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Synchronous phase shift

Under the effect of a longitudinal impedance, the beam looses energy which
needs to be supplied back by the RF cavities.

62

N
AE = TopgRe[Z(pwomz (Pwo)

The additional energy is recovered by a (synchronous) phase shift given by

AE = ApVgxE cos @

See A. Chao, Physics of Collective Beam Instabilities in High Energy Accelerators, Wiley Publishers, 1993




Synchronous phase shift

Measuring, for example, the delay between a high intensity bunch and
a small intensity one (probe), it is possible to infer the total real part of the
longitudinal impedance.

+ 2 bunches, digitizer
o 2 bunches, oscilloscope
0.3+ 40 MHz, digitizer *
o 40 MHz oscilloscope

y =(0.0880.012)x-0.041£0.027

=

40 MHz cavity

ol

pick-up +=_A_

Example from the PS
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M.Migliorati et al, “Measurements of the CERN PS Longitudinal Resistive Coupling Impedance” "
in proceedings of IPAC2016, Busan, Korea N, [107]
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Beam-based impedance

measurements
Transverse plane Longitudinal plane
Real part Imaginary part Real part Imaginary part
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Quadrupolar frequency shift

The quadrupole mode of oscillations can be effectively used to measure the
imaginary part of the longitudinal impedance.
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Example from the SPS
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A.Lasheen, E.Shaposhnikova, PRAB 20, 064401 (2017)
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Many more methods, e.g.:

 Loss Landau damping Beam-based impedance
- BIFE measurements
* AC-dipole
* Schottky
« Debunched beams / \
Transverse plane Longitudinal plane
Real part Imaginary part Real part Imaginary part
Rise time vs Q' « Tune shift vs intensity Synchronous phase Quadrupole frequency
« Phase advance shift” shift vs intensity shift vs intensity

*  Orbit distortion *
* Tune shift vs energy




Debunched beams




Schottky spectrum: powerful measurement tool

A coasting (or debunched) beam is constituted by a DC current with random fluctuation

.2
Longitudinal signal .o W/o collective effects

—

T T T T T T T T 0.0
2000 4000 6000 8000 10000 0.0 0.5 1.0 -4 - 2] - o
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Current (A)

Norm. power spectrum
(=] [=] [=] [=] =

Norm. power spectrum
=] (=]

0.2

0.0

W/o collective effects, the power spectrum (“Schottky” spectrum) directly relates to:
v Intensity

j Momentum spread —> Powerful tool to retrieve the beam parameters!

W/ collective effects (e.g. impedance), the Schottky spectrum is deformed with intensity.
The deformation can be “used” to retrieve the impedance of a machine.
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Example from LEIR

No, not another intro ©




Reconstructing the longitudinal impedance

In LEIR we can experimentally measure the Longitudinal SC (LSC).

oo Emittance evolution s Longitudinal Schottky Spectrum
’ — H | 12000 ' = data —— best fit
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Similar approaches can be used for the transverse space charge ...
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Many more methods, e.g.:

 Loss Landau damping Beam-based impedance
* BTF _ measurements Better the synergy between methods
« AC-dipole better the machine impedance model is!
* Schottky
« Debunched beams / \
Transverse plane Longitudinal plane
Real part Imaginary part Real part Imaginary part
Rise time vs Q' « Tune shift vs intensity Synchronous phase Quadrupole frequency
« Phase advance shift” shift vs intensity shift vs intensity

*  Orbit distortion *
* Tune shift vs energy




Synergy of methods can help identifying issues

Example: The TDI (Target Dump Injection) is a special device installed in the LHC aiming at
protecting the machine from injection failures.

* There is one device per beam: TDI8 (for beam 2) and TDI2 (for beam1)

* The absorbing blocks should sustain the impact of a full LHC beam!

« The jaw was made of a series of Ti-coated hBN blocks, NEG coated Al and CuBe

Run 1 + 2015:

- 28 i g
. 7¢) 0.6 m o ‘
(14 blo, 0.7
" Titanium (5 pm) ) CuBe p, .
-\ el A TDI under “impedance” test
Boron nitride

Courtesy l.Llamas Garcia




Synergy of methods can help identifying issues

In 2015 an anomalous behaviour was oberved on TDI8 (excessive vacuum spikes)
Correlated with:

» X2 higher synch. phase shift -> longitudinal impedance

* X4 higher tune shift -> transverse impedance
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Synergy of methods can help identifying issues

Further confirmed by impedance bench measurements (see JUAS course Il)
and visual inspection (Ti coating on hBN partly removed).

2500
—TDI8 2016

—— TDI& 2015
| ——TDI2 2016
— TDI2Z 2015

2000

1500

Re{Zl}I 1€

._

=

=

=
T

500

f[GHz|

The issue triggered the device upgrade
and installation of alternative absorbers.
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Thanks for your attention!

Questions?




