Exercises on Space Charge



Exercise 1

Compute the transverse space charge forces and the incoherent tune
shifts for a cylindrical beam in a circular beam pipe, having the
following longitudinal distributions: parabolic, sinusoidal modulation,
Gaussian.

Evaluate also the tune spread (max tune shift — min tune shift)
produced by the space charge forces with the same distributions.
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b) Sinusoidal modulation (A, =Ne/l,)
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Longitudinal phase-space
(Ag@, AE) scatter plot of
the bunch tune footprint.
The black dot is the bare
tune. Particles at the edges
of the bunch have tunes
close to the bare tune in
the necktie.

Indeed, in this longitudinal
region, the beam line
density is smaller with
respect to the centre of the
bunch, therefore also the
space charge detuning is
small.

(Courtesy of V. Forte, ‘Performance
of the CERN PSB at 160 MeV with
H- charge exchange injection’, PhD
thesis, Université Blaise Pascal,
Clermont-Ferrand, France, 2016)



Exercise 2

Compute the transverse space charge force and the incoherent tune
shift for a cylindrical beam in a circular beam pipe, having a bi-

Gaussian longitudinal and transverse distribution.
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If the charge distribution is Gaussian but with different o, and o, (not
cylindrical geometry), it is still possible to obtain the transverse electric field.

The expression is known as Bassetti-Erskine formula: M. Bassetti and G.A.

Erskine, “Closed expression for the electrical field of a two-dimensional Gaussian charge”,
CERN-ISR-TH/80-06 (1980).
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with the complex error function w(z) given by
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NB: here Q is the line density.
In the limit o,, — 0, the above electric field is the one that we have obtained previously



This complicated expression is highly non-linear. It is however possible to
obtain a simple expression in the linear approximation which gives
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As for the cylindrical symmetry case, there are also magnetic fields associated
with the electric fields, so that the transverse force 1s
e
E., =~ =E
Xy 2 xRy
and, as in the previous cases, it i1s possible to obtain the incoherent tune shift
(but remember that we are in the linear approximation).



Exercise 3

Evaluate the dependence of the longitudinal and transverse
space charge force with z at fixed r (e.g. << 0,) for the bi-
Gaussian distribution
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Exercise 3

Evaluate the dependence of the longitudinal and transverse

space charge force with z at fixed r (e.g. << 0,) for the bi-
Gaussian distribution
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The effect of the longitudinal force is an energy spread: the head of the beam gains energy

(positive force) and the tail loses energy. The consequences on beam dynamics depends on
the machine



Exercise 3
Evaluate the dependence of the longitudinal and transverse

space charge force with z at fixed r (e.g. << 0,) for the bi-
Gaussian distribution
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In a LINAC at ultra-relativistic velocity the beam is frozen and there is only an energy spread

In a circular accelerator, it depends on slippage factor 1): above transition, higher energy

means higher revolution time, the head of the bunch delays, the tail anticipates and the bunch
1s shortened



Exercise 4
Compute the longitudinal space charge force of a transverse uniform
cylindrical beam in a circular perfectly conducting beam pipe
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Exercise 4
Compute the longitudinal space charge force of a transverse uniform
cylindrical beam in a circular perfectly conducting beam pipe
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Exercise 4
Compute the longitudinal space charge force of a transverse uniform
cylindrical beam in a circular perfectly conducting beam pipe
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Exercise 4
Compute the longitudinal space charge force of a transverse uniform
cylindrical beam in a circular perfectly conducting beam pipe
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Exercise 4
Compute the longitudinal space charge force of a transverse uniform
cylindrical beam in a circular perfectly conducting beam pipe
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Exercise 5

Compute the longitudinal space charge forces for a cylindrical beam

in a circular beam pipe, having the following longitudinal
distributions: parabolic, sinusoidal modulation, Gaussian
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Exercise 5

Compute the longitudinal space charge forces for a cylindrical beam

in a circular beam pipe, having the following longitudinal
distributions: parabolic, sinusoidal modulation, Gaussian
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Exercise 6
Compute the incoherent betatron tune shift of a uniform proton beam
inside two perfectly conducting parallel plates
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Exercise 6
Compute the incoherent betatron tune shift of a uniform proton beam
inside two perfectly conducting parallel plates
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Exercises on Wake Fields
and Instabilities



Exercise 1:
Show that the impedance of an RLC parallel circuit is that of a
resonant mode and relate R, L and C to Q, R, and w,
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Exercise 1:

Show that the impedance of an RLC parallel circuit is that of a
resonant mode and relate R, L and C to Q, R, and w,

Z,=R ZC=L Z, =-loL Z(w)= a
wC N 1) 7))
. | 1+1Q( r—)
—=——iwC +i— = R
Z R wL
. 2 o
wL—-iw"LCR+IR _ 1 1+i(£—a)CR)= 1 1 Ao o
Z(w) R, w o,
LI P 9( L, CL)
Z R L\w~CL




Exercise 1:

Show that the impedance of an RLC parallel circuit is that of a
resonant mode and relate R, L and C to Q, R, and w,
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Exercise 2:

Calculate the amplitude of the resonator wake field given R, = 1 k2,
w,=5GHz, QO = 10¢

Calculate the ratio |Z(w, )| / \Z(2w,) for Q = 1, 10°, 10°




Exercise 2:

Calculate the amplitude of the resonator wake field given R, = 1 k2,
w,=5GHz, Q=10¢ (w,R,/Q= 5*%10%V/C)

Calculate the ratio \Z(w,)| / \Z(2w,)| for Q = 1, 10°, 10° |1-i 3Q/2

Q=1 - 1.8
Q =103 - 1.5x103
0 =10° - 1.5x10°




Exercise 3: Beam Break Up

Consider a beam 1n a linac at 1 GeV without acceleration. Obtain the
growth of the oscillation amplitude of the tail with respect to the head
after 3 km 1f:

N =5el0,w, (-1 mm) = 63 V/(pC m), L, =3.5 cm, k,=0.06 1/m



Exercise 3: Beam Break Up

Consider a beam 1n a linac at 1 GeV without acceleration. Obtain the
growth of the oscillation amplitude of the tail with respect to the head
after 3 km 1f:

N =5el0,w, (-1 mm) = 63 V/(pC m), L, =3.5 cm, k,=0.06 1/m
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To preserve the beam emittance, it 1s necessary to have
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This means that the beam must be injected onto the linac axis with an
accuracy better than a fraction of a per cent of the beam size, which 1s
difficult to achieve.



Exercise 4: Beam Break Up (2)

Consider the same beam of the previous exercise being now
accelerated from 1 GeV with a gradient g =16.7 MeV/m. Obtain the
growth of the oscillation amplitude of the tail with respect to the
head. With a constant acceleration, if Ef = Eq + gL, = gL,, the
expression 1s the same of that with constant energy multiplied by a
factor

Eg
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Ef
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Exercise 4: Beam Break Up (2)

Consider the same beam of the previous exercise being now
accelerated from 1 GeV with a gradient g =16.7 MeV/m. Obtain the
growth of the oscillation amplitude of the tail with respect to the
head. With a constant acceleration, if Ef = Eq + gL, = gL,, the
expression 1s the same of that with constant energy multiplied by a
factor
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In this case Ef =1+ 16.7 * 3000 = 51.1 = 50.1 so the factor is
yo (L) — 3’1(LL)]
V1

F=10.078 —» [ = 180 % 0.078 = 14

max

Acceleration 1s helpful to reduce the instability



Exercise 5: Evaluate the energy lost per unit length by a charge
due to the longitudinal wake field of the space charge and
compare it with the longitudinal space charge force in r=0



Exercise 5: Evaluate the energy lost per unit length by a charge
due to the longitudinal wake field of the space charge and
compare it with the longitudinal space charge force in r=0
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Exercise 6: Evaluate the energy spread (U_max-U_min) of a
Gaussian bunch of RMS length ¢ due to the longitudinal wake
field of the space charge in a structure of length L



Exercise 6: Evaluate the energy spread (U_max-U_min) of a
Gaussian bunch of RMS length ¢ due to the longitudinal wake
field of the space charge in a structure of length L
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Exercise 7: Evaluate the energy lost by a charge inside a
uniform beam of length 1, due to the longitudinal wake field of
a pill box cavity of length g at high frequency w>>c/b
(diffraction model), with a pipe radius b.

Zocy/2g 1
2m%h  z1/2

w) (2) =



Exercise 7: Evaluate the energy lost by a charge inside a
uniform beam of length 1, due to the longitudinal wake field of
a pill box cavity of length g at high frequency w>>c/b
(diffraction model), with a pipe radius b.
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