

Thursday 09 February

- 10h15 10:45 Welcome coffee
- 10h50-11h20: ESRF introduction (Yannick Lacaze)
- 11h20-12h00: The ESRF facility...from yesterday to EBS (JLR)
- 12h00-12h30: ESRF operation as of today (JLR)
- 12h30-13h30: Lunch at the canteen
- 13h45-14h30: Visit of the control room (JLR, Andrea Franchi)
- 14h30-14h50: Visit of a beamline (ID32, Kurt Kummer 2029)
- 14h50-15h15: Visit of the ID Laboratory (Gael LeBec)
- 15h15-15h45: Visit of the RF (Vincent Serriere)
- 15h45-16h00: Wrap up
- 16h00: Departure

Joint Universities Accelerator School

The European Synchrotron

- 1) Introduction
- 2) The ESRF from yesterday to EBS
- 3) The ESRF-EBS Upgrade
- 4) ESRF operation today

Thursday 9 February 2023 JUAS 2023 Revol Jean-Luc

THE ESRF IN GRENOBLE – GIANT INNOVATION CAMPUS

WELCOME TO THE EPN SCIENCE CAMPUS

A MODEL OF INTERNATIONAL COOPERATION: 22 PARTNER NATIONS

13 Member states			Mart		
France	27.5 %	and the second second	and the second		
Germany	24 %		4.9		
Italy	13.2 %			and a start	
United Kingdom	10.5 %		12		45.5
Russia	6 %	2	and a	1	in frank
Benesync	5.8 %				1
(Belgium, The Netherlan	ds)				Sec. 1
Nordsync	5 %			1 5	1.2
(Denmark, Finland, Norw	/ay, Sweden)		2	1. S. S.	K.a.
Spain	4 %				and the second
Switzerland	4 %				100
			1 m		
9 Associate coun	tries:				
Israel	1.5 %				
Austria	1.3 %				
Centralsync	1.05 %		*		۲

22 partner nations Annual budget: 100 million euros Staff: 650 people, 40 different nationalities Legal status: Private civil company subject to French law

(Czech Republic, Hungary, Slovakia)

1 %

1 %

0.66 %

0.3 %

Poland

India

Portugal

South Africa

Super microscope producing X-rays 10 trillion times brighter than in hospitals

ESRF The European Synchrotron

Principle and science

PRINCIPLE

 When a charged particle is deviated in a magnetic field, it loose energy by emitting electromagnetic radiation (photons),call synchrotron radiation, tangent to the trajectory.

$$P \propto \left(\frac{E}{mc^2}\right)^4 \frac{I}{\rho}$$

Large difference between electrons and protons ! Scale with the square of the energy!

EMISSION OF SYNCHROTRON RADIATION IN CIRCULAR MACHINE

1947: First observation of synchrotron radiation

« Nina », first beamline at Daresburry in1966 (synchrotron 6 GeV électron). 1st generation

1981: SRS (UK) 1st dedicated X ray light source 2nd generation

1994: Inauguration of the I'ESRF, The first X ray light source of the 3rd generation

A TYPICAL USER FACILITY

Insert permanent magnets to provide an alternative magnetic field to bend the trajectory.

Progress of X ray light sources are summarized in the evolution of the brilliance

Brilliance = photons /s / mm² /mrad² /0.1% bandepassante

Number of photons per second

Size horizontale*vertical

> Divergence horizontal *vertical

> > In a bandwith of 0.1 % around the considered energy.

MORE THAN 50 SYNCHROTRON LIGHT SOURCES AROUND THE WORLD

DIFFERENT TYPE OF SOURCES

Many Medium energy rings :2.7-3.5 GeV

SOLEIL, DIAMOND, CLS, ALBA, SSRF, TPS , Australian Synchrotron, NSLS II, MAXIV ...

High energy rings (≥ 6.GeV)

SPRING 8

ESRF Upgrade

APS Upgrade

Petra III

I CI S

European XFEL

SACLA

Fermi

X FELs

- LCLS (Stanford)
- SACLA (SPRING8)
- Flash, European XFEL (Hamburg)
- Fermi@ elettra

Laser plasma acceleration: 5th generation light source

How does it work?

- Committees to select the best proposals
- 9000 scientific visits each year
- Public research and industrial research

How does it work?

- Committees to select the best proposals
- 9000 scientific visits each year
- Public research and industrial research

How much does it cost?

	Partner countries	Other countries
Public research	Free + All travel expenses are covered	Free
Proprietary research	450€/hour	540€/hour

SCIENCE AT THE ESRF

Fields

Health, Biology

Chemistry, Energy, Materials

Earth Sciences, Paleontology

Nanosciences, Information technologies

Cultural heritage

Techniques

Diffusion Diffraction

Spectroscopy

Imaging

DIFFUSION – Protein crystallography

Page 19 JUAS, 09 February 2023, ESRF presentation Jean-Luc Revol

SPECTROSCOPY – X-Ray Fluorescence spectrometry (XRF)

IMAGING – Phase contrast microtomography

Sample

Microtomography

3D model

HEALTH - BIOLOGY

Dolphins antibacterial peptides: a way to new antibiotics?

ID23-2 – 2018

Mardirossian et al., Cell Chemical Biology, 8th March 2018.

ENERGY

Using CZTSe Kesterite to improve solar cells efficiency

ID16B - 2020

PALEONTOLOGY

Massospondylus carinatus' eggs

ID19 - 2020

The European Synchrotron | ESRF

Chapelle et al, Scientific Reports, 2020, 10, 4224.

NANOCIENCES

Ophiocoma wendtii helps ceramic materials engineering

ID13, ID16B, ID22 - 2017

Polishchuk et al, Science, 2017, 358.

CULTURAL HERITAGE

Virtual exploration of a 17th Century metal box

BM05 – 2015

THE ACCELERATOR COMPLEX

THE LINEAR ACCELERATOR

The Linac consists in one **TRIODE** (cathod – anod – grid) powered with 100 KV. Electrons produced have then an energy of 100 keV.

The electrons are then accelerated in 2 sections (each section = 6 meters), accelerating the beam by 100 MeV, i.e., a total of 200 MeV.

Operation mode	Long pulses	Short pulses
Peak current	25 mA	250 mA
Pulse length	1µs	2ns
Energy spread	+/- 1%	+/- 0.5%

ESRF

THE TRANSFER LINE FROM THE LINAC TO THE BOOSTER: TL1

- Length: 16 metres
- Main components: 2 bending magnets, 7 quadrupoles, 2 pairs of steerers
- Diagnostics: insertable screens + synchrotron radiation

screens

THE SYNCHROTRON (OR BOOSTER)

Goal: Accelerate the electrons from 200 MeV to 6 GeV

Cycle: period of 250 msec

Length: 300 metres

THE TRANSFER LINE FROM THE BOOSTER TO THE STORAGE RING: TL2

Goal:

Transfer the 6 GeV electrons from the Synchrotron to the storage ring:

- 5 bending magnets (powered in serie with Booster dipoles)
- 14 quadrupoles
- 9 insertable screens
- Beam Position Monitors
- Synchrotron radiation screens (1 screen / dipole)
- Length: 65 metres

THE STORAGE RING YESTERDAY

- Circumference: 844 metres
- 16 super-periods of 2 mirror cells → 32 cells
- Energy: 6 GeV
- Nominal intensity: 200 mA
- Emittance: 4nm rad
- Usual coupling : 0.1 %

The European Synchrotron

THE STORAGE RING BENDING MAGNETS

64 bending magnets (dipoles)

Numbers : 64 (2 per	^r cells)
Bending angle :	5.625 °
Magnetic field :	0.8612 Tesla
Number of family :	1
Nominal intensity :	714.993 A

 $B=0.8 T \rho = 25 m$ Energy lost per turn of ring by one electron $\Delta E_{[keV]} = 88.5 \frac{E^{4}_{[GeV]}}{\rho_{[m]}} = 4.6 \text{ MeV}$

The power radiated around the length of the ring bending magnets by a current of 200 mA = 920 kW

GENERATION OF AN HORIZONTAL EMITTANCE BY RADIATION

Electron 2 emits Δe at the exit of the bending magnet.

→ same energy when crossing the magnet

→ stay on the reference trajectory

Electron 1 emits ΔE at the entrance of the bending magnet.

→ lower energy when crossing the magnet

→ larger curvature

<u>A horizontal beam size and divergence</u> (or emittance) and an energy spread is created.

Angle or divergence or X' in radian The beam emittance is the <u>surface</u> occupied by the beam in size and divergence.

 $\varepsilon_{x[m^*rad]} = \frac{1}{\pi} \oint dx dx'$

THE STORAGE RING QUADRUPOLE MAGNETS

256 quadrupoles shared in 6 families

Name	Number
QF2	32
QD3	32
QD4	64
QF5	64
QD6	32
QF7	32

The goal of the **quadrupoles** is to focus the electron beam so as to maintain its size as small as possible

The quadrupole settings are also important for:

- the tune values,
- the beam size,
- the injection efficiency,
- the betatronic resonances, etc

The European Synchrotron

224 <u>sextupoles</u> shared in 7 families

Their settings are important for:

- A focusing quadrupole for the electrons which have a higher energy
- A defocusing quadrupole for the electrons which have a lower energy

THE ESRF STORAGE RING LATTICE

INSERTION DEVICES ... IN THE STRAIGHT SECTIONS...

<u>Goal</u>: produce X-rays with specific properties which are different from those emitted by the dipoles, for example, tuneable energy spectrum, polarisation, higher brilliance...

INSERTION DEVICES

<u>In-air</u> length =1.64 m

(2.4 m flenge to flange , 2m magnetic asembly)

Power generated by one undulator (1.6 m) = 3 kW

Available power = 250 kW But less than 100 kW is used!! 2kW/mm² at 200 mA

8000 kW of Electrical power is needed to produce it!! Efficiency: 2% !

IN-VACUUM UNDULATORS

The jaws of the in-vacuum undulators can be closed down to 5 mm

STRAIGHT SECTIONS INSTALLATION : 4 TYPES

THE STORAGE RING FRONT ENDS

Goal: Drive the X-rays produced either by the dipoles, or by the insertion devices, from the storage ring to the beam line.

THE VACUUM SYSTEM

Goal: control and maintain an excellent vacuum level in the storage ring:

10⁻¹⁰ mbar without beam (static pressure) 10⁻⁹ mbar with beam (dynamic pressure)

- This vacuum level is ensured by the ionic pumps, NEG coating
- The pressure control is done with Penning gauges.

Length = 5 metres et 6 metres

• Extruded aluminium

• The internal side of these vacuum vessels is covered with a thin coat of NEG material (Non Evaporable Getter) made of an alloy of Titanium, Zirconium, Vanadium. The particularity of this alloy is to trap chemically certain molecules (mainly CO and CO2) acting as vacuum pumps.

THE STORAGE RADIOFREQUENCY SYSTEM

Goal: compensate the energy loss turn / turn by the electrons, following the synchrotron radiation emission, i.e., 4.8 MeV (with all insertion devices)

The ESRF-EBS Upgrade

OVERVIEW OF THE PROJECT

BRILLIANCE AND COHERENCE INCREASE

Brilliance

Hor. Emittance [nm]	4	0.135
Vert. Emittance [pm]	4	5
Energy spread [%]	0.1	0.09
β _x [m]/β _z [m]	37/3	6.9/2.6

Source performances will improve by a factor 50 to100

LOW EMITTANCE RINGS TREND

DECREASING THE HORIZONTAL EMITTANCE

THE EVOLUTION TO MULTI-BEND LATTICE

THE HYBRID MULTI-BEND (HMB) LATTICE

ESRF existing DBA cell

- Ex = 4 nm•rad
- tunes (36.44,13.39)
- nat. chromaticity (-130, -58)

ESRF HMB cell

- Ex = 140 pm•rad
- tunes (76.21, 27.34)
- nat. chromaticity (-99, -82)

- Multi-bend for lower emittance
- Dispersion bump for efficient chromaticity correction => "weak" sextupoles (<0.6kT/m)
- Fewer sextupoles than in DBA
- Longer and weaker dipoles => less SR
- No need of "large" dispersion on the inner

dipoles => small Hx and Ex

Main constraints were:

- Horizontal equilibrium emittance < 150 pm.rad
- Keep the electron energy (6 GeV)
- Fit existing tunnel and infrastructure
- Maintain IDs and bending magnets beamlines
- Use existing injector chain
- Preserve the time structure operation and a multibunch current of 200 mA
- Minimize power consumption
- Maintain standard User-Mode Operations until the day of shut-down for installation
- Limit the downtime for installation and commissioning to less than 18 months

THE ESRF-EBS UPGRADE LATTICE

Free space between magnets (for one cell): 3.4m instead of 8m

Project approval: January 2015

Old ESRF-Storage Ring

October 2017	Start of girder assembly
10 December 2018	End USM, start shutdown
	Dismantling
	Installation
8 November 2019	Tunnel closed
	Tests & Injector restart
28 November 2019	Accelerator commissioning
2 March 2020	Beamline commissioning
25 August 2020	Start User Mode Operation

ESRF-EBS

EBS COMPONENTS: MAGNETS

EBS COMPONENTS: DIPOLES

• Each dipole based on 5 PM modules

Dipole assembly area

PM assembly tool

- •Strength 0.67-0.17 T &
- •Iron length 1788 mm
- 25.5 30.5 mm GAP
- •Iron: Pure Iron
- •Permanent magnet Sm₂Co₁₇

Around 6000kg of PM, 660 Iron modules

EBS COMPONENTS: GIRDERS

- 49 Hz measured

Vertical movement

Х

Motorized Wedge Airloc

Preload springs (2x0.7T)

Horizontal movement
Wedge
Nivell DK2

«Pushing back» spring (3.5T) 5100mm

DISMANTLING + INSTALLATION: DEC 2018 – NOV 2019

Dismantling

+ all the activities in the technical areas

- Dismantling done in 2 shifts
- Installation done in normal days + late evenings for roof opening/closure

10 December 2018 ESRF-Storage Ring

Dismantling in the tunnel

Non activation measurements

Installation of the girders

Straight sections Reconstruction

ESRF-EBS: EQUIPMENT TEST AND STARTUP

 Control software, optics tools, commissioning scripts validated prior and during shutdown on the Storage Ring simulator

ecto

- Low and high level control for all equipment (including vacuum):
 - → Started as soon as the cabling is done
- **Power test of the magnets** from August to November with tunnel not accessible
- During last weeks of the shutdown with tunnel close (14/10 to 28/11):
 - ➔ Final alignment & survey
 - ➔ Validation of the personal safety system
 - ➔ Global power test of the magnets
 - Interlocks
 - Injection/extraction elements
 - ➔ Radio-frequency power commissioning
 - Injector commissioning

Commissioning

Mon Jul 06 14	:05:03		EC.		Bendin	j 4
SR Carvest (110)	1		3			- 111
100 5/	1 mA	-	11 TH		and A	
199.9.	a muse	0			14.14	1 (Pr)
Undition	There are the second		1	8414	18 01	* 20
19h 1.	3mn	23. 5355	20 24	8721	mm 2	1
Filling reside	and the second	100		25	26	2.20
7/8 mult	bunch	259		29	30 30	12
USM	R III	Ref	III in 0	0.54	158	
1						
54 (210)	Correct 2.01		Lifetins			
50 (c101	Carrore 2.01 Horizental) = 0	L¥ctim Sh L4a Vertical	:		
30 (c.00) 30 (c.00)	Carrot 2.01 Rotueta 0.18		Lifetime Sh I de Vertical 0.32	-		
Se (clu)	Carrot 2.03 Recurstal 0.118 No.1 am		Lifetins bh 14a 0.32 0.5 un			
SR (c)01 Tories Inhibit (rout) Orbit (peak)	2.01 9.18 86.1 am 1043.5 um	2	Utetins Sh 14e 0.32 0.3 up 2.4 up			
SR 6200 SR 6200 Dold Dress Orbit Seeki Saltzance	Carrot 2.01 Poliveta 96.1 am 1043.5 am 154.37 pm	0	tVetiss Sh 14a 8.32 un 2.4 un 1.04 pr			
Sill Colling Sill Colling Debit (see all Colling Sill (see all Sill Same Energy Special	Durrent 2.03 Bollwerdd 0:18 B6.1 gan 1043.5 gan 1363.7 pen 1363.7 pen 1,71e-	0	Lifetins Sh 14a 9.32 0.3 van 2.4 van 2.4 van 0.01 pa		1.2 (u) 2 (u) 2 (u) 2 (u)	
SR (c10) SR (c10) Ubb (root) Orde (peak) Finitures Descriptions Average pressure	Correct 2.01 Beilyets 0.18 B6.1 can 1043.37 pen 1363.37 pen 13.7.1e 2.1e 2.1e 3.4	2 07 03 09	Ureties Sh 14a Vertical 5.32 0.3 van 2.4 van 0.01 pa		11 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	

ESRF-EBS: BEAM COMMISSIONING

3 physical obstacles on the beam path and poor vacuum in a few ID NEG coated chambers slowed down the overall commissioning.

The European Synchrotron | ESRF

ESRF-EBS: BEAM COMMISSIONING

Short bending magnet

- No BM sources at the start of commissioning
- Most of the sources installed during shutdown (First installations done on a running machine)
- Optic readjusted after each installation
- Installation delayed due to lock-down Delay in the beamline commissioning Necessity to run one shift at low current for initial RP validation

25 February MDT	BM 05	2PW
25 February MDT	BM 16	SB
March 8 MDT	BM 29	2PW
March 8 MDT	BM 30	SB
June Shutdown	BM 01	2PW
June Shutdown	BM 02	SB
June Shutdown	BM 08	SB
June Shutdown	BM 20	SB
June Shutdown	BM 31	2PW
June Shutdown	BM 32	SB
August Shutdown	BM 23	2PW
August Shutdown	BM 25	2PW
August Shutdown	BM 26	SB
August Shutdown	BM 28	SB
October Shutdown	BM 07	2PW
October Shutdown	BM 14	2PW
October Shutdown	BM 18	3PW

And ... the 25th August 2020, first official USM shift starts !

- 28 beamlines take beam
- 200 mA
- $\varepsilon_v = 20 \text{ pm rad}$

THE ESRF TODAY

ESRF

Operation

\$

儫

OPERATION SCHEDULE 2022 (01/01 → 31/12)

	Run 1		Ru	n 2	R	un 3		Ru	n 4		
janv 2022	févr 2022	mars 2022	avr 2022	mai 2022	juin 2022	juil 2022	août 2022	sept 2022	oct 2022	nov 2022	déc 2022
sam 01 s s s	mar 01	mar 01	ven 01	dim 01	mer 01	ven 01	lun 01 s s s	jeu 01	sam 01	mar 01 M M 🗖	ui¶ ¹ 5 ¹ · · ·
dim 02 s s s	mer 02	mer 02	sam 02	lun 02 <mark>M M M</mark>	jeu 02	sam 02	mar 02 s s s	ven 02	dim 02	mer 02	ven 02
lun 03 s s s	jeu 03	jeu 03	dim 03	mar 03	ven 03	dim 03	mer 03 s s s	sam 03	lun 03 <mark>M M M</mark>	jeu 03	sam 03
mar 04 s s s	ven 04	ven 04	lun 04 <mark>M M M</mark>	mer 04	sam 04	lun 04 <mark>M M M</mark>	jeu 04 s s s	dim 04	mar 04	ven 04	dim 04
mer 05 s s s	sam 05	sam 05	mar 05	jeu 05	dim 05	mar 05	ven 05 s s s	lun 05 <mark>M M M</mark>	mer 05	sam 05	lun 05 <mark>M M M</mark>
jeu 06 s s s	dim 06	dim 06	mer 06	ven 06	lun 06	mer 06	sam 06 s s s	mar 06	jeu 06	dim 06	mar 06
ven 07 s s s	lun 07	lun 07 <mark>M M M</mark>	jeu 07	sam 07	mar 07 <mark>M M M</mark>	jeu 07	dim 07 s s s	mer 07	ven 07	lun 07 <mark>M M M</mark>	mer 07
sam 08 s s s	mar 08 <mark>M M M</mark>	mar 08	ven 08	dim 08	mer 08	ven 08	lun 08 s s s	jeu 08	sam 08	mar 08	jeu 08
dim 09 s s s	mer 09 <mark>M M M</mark>	mer 09	sam 09	lun 09	jeu 09	sam 09	mar 09 s s s	ven 09	dim 09	mer 09	ven 09
lun 10 s s s	jeu 10	jeu 10	dim 10	mar 10	ven 10	dim 10	mer 10 s s s	sam 10	lun 10	jeu 10	sam 10
mar 11 s s s	ven 11	ven 11	lun 11 <mark>M M M</mark>	mer 11 s s s	sam 11	lun 11 <mark>M M M</mark>	jeu 11 s s s	dim 11	mar 11	ven 11	dim 11
mer 12 s s s	sam 12	sam 12	mar 12	jeu 12 s s s	dim 12	mar 12	ven 12 s s s	lun 12 <mark>M M M</mark>	mer 12 s s s	sam 12	lun 12
jeu 13 s MM	dim 13	dim 13	mer 13	ven 13 s s s	lun 13 <mark>M M M</mark>	mer 13	sam 13 s s s	mar 13	jeu 13 s s s	dim 13	mar 13 s s s
ven 14 <mark>M M M</mark>	lun 14 M M M	lun 14	jeu 14	sam 14 s s s	mar 14	jeu 14	dim 14 s s s	mer 14	ven 14 s s s	lun 14 <mark>M M M</mark>	mer 14 s s s
sam 15 <mark>M M M</mark>	mar 15	mar 15 s s s	ven 15	dim 15 s s s	mer 15	ven 15	lun 15 s s s	jeu 15	sam 15 s s s	mar 15	jeu 15 s s s
dim 16 <mark>M M M</mark>	mer 16	mer 16 s s s	sam 16	lun 16 s s s	jeu 16	sam 16	mar 16 s s s	ven 16	dim 16 s s s	mer 16	ven 16 s s s
lun 17 <mark>M M M</mark>	jeu 17	jeu 17 s s s	dim 17	mar 17 s s s	ven 17	dim 17	mer 17 s s s	sam 17	lun 17 s s s	jeu 17	sam 17 s s s
mar 18	ven 18	ven 18 s s s	lun 18	mer 18 s s s	sam 18	lun 18	jeu 18 s <mark>M M</mark>	dim 18	mar 18 s s s	ven 18	dim 18 s s s
mer 19	sam 19	sam 19 s s s	mar 19 M M M	jeu 19 s <mark>M M</mark>	dim 19	mar 19 <mark>M M M</mark>	ven 19 <mark>M M M</mark>	lun 19 <mark>M M M</mark>	mer 19 s s s	sam 19	lun 19 s s s
jeu 20	dim 20	dim 20 s s s	mer 20	ven 20 <mark>M M M</mark>	lun 20 <mark>M M M</mark>	mer 20	sam 20 <mark>M M M</mark>	mar 20	jeu 20 s <mark>M M</mark>	dim 20	mar 20 s s s
ven 21	lun 21 M M M	lun 21 s s s	jeu 21	sam 21 <mark>M M M</mark>	mar 21	jeu 21	dim 21 M M M	mer 21	ven 21 <mark>M M M</mark>	lun 21 <mark>M M M</mark>	mer 21 s s s
sam 22	mar 22	mar 22 s s s	ven 22	dim 22 <mark>M M M</mark>	mer 22	ven 22	lun 22 <mark>M M M</mark>	jeu 22	sam 22 <mark>M M M</mark>	mar 22	jeu 22 s s s
dim 23	mer 23	mer 23 s s s	sam 23	lun 23 <mark>M M M</mark>	jeu 23	sam 23	mar 23	ven 23	dim 23 <mark>M M M</mark>	mer 23	ven 23 s s s
lun 24 <mark>M M M</mark>	jeu 24	jeu 24 s <mark>M M</mark>	dim 24	mar 24	ven 24	dim 24	mer 24	sam 24	lun 24 <mark>M M M</mark>	jeu 24	sam 24 s s s
mar 25	ven 25	ven 25 <mark>M M M</mark>	lun 25 M M M	mer 25	sam 25	lun 25	jeu 25	dim 25	mar 25	ven 25	dim 25 s s s
mer 26	sam 26	sam 26 <mark>M M M</mark>	mar 26	jeu 26	dim 26	mar 26	ven 26	lun 26 <mark>M M M</mark>	mer 26	sam 26	lun 26 s s s
jeu 27	dim 27	dim 27 <mark>M M M</mark>	mer 27	ven 27	lun 27 <mark>M M M</mark>	mer 27 s s s	sam 27	mar 27	jeu 27	dim 27	mar 27 s s s
ven 28	lun 28 <mark>M M M</mark>	lun 28 <mark>M M M</mark>	jeu 28	sam 28	mar 28	jeu 28 s s s	dim 28	mer 28	ven 28	lun 28 <mark>M M M</mark>	mer 28 s s s
sam 29		mar 29	ven 29	dim 29	mer 29	ven 29 s s s	lun 29 M M M	jeu 29	sam 29	mar 29	jeu 29 s s s
dim 30		mer 30	sam 30	lun 30 <mark>M M M</mark>	jeu 30	sam 30 s s s	mar 30	ven 30	dim 30	mer 30	ven 30 s s s
lun 31 MMM		jeu 31		mar 31		dim 31 s s s	mer 31		lun 31		sam 31 s s s

A standard year = 5600 USM hours

	7/8 + 1	Uniform	28*12+1 (Hybrid)	16 bunch	4 bunch
I _{max} (mA)	192+8	200	192 + 8	75	40
Lifetime (h)	> 20	~ 25	> 16	~ 5.5	~ 5
ε_v (pm)	10	10	20	20	40
Nominal Reached on	13/09/22	21/11/20	14/11/22	23/08/22	05/12/22

* Intensity limitation for timing modes due to mechanical weakness of the kicker ceramic chambers

* Vertical emittance artificially increased from 1 pm rad for an operational lifetime

* All timing modes delivered with a purity of 10⁻⁹ with cleaning process in the booster

2022

2022 : DELIVERY MODES : WHAT THEY LOOK LIKE ?

3.7%

Machine Statistics for 2018 at the ESRF and for 2020 – 2022 (EBS)

- 4978 hours of beam delivered in 2021 out of 4648 scheduled
- Overall availability in 2021: 96.35 %
- 5438 hours of beam delivered in 2022 out of 5490 scheduled
- Overall availability in 2022: 99.06 %

MACHINE – USM	2018	2020	2021	2022
Availability (%)	98.47	96.08	96.35	99.06
Mean Time Between Failures (hrs)	104.30	46.00	66.4	88.5
Mean duration of a failure (hrs)	1.60	1.80	2.42	0.83

The European Synchrotron

ECO mode: Reduction of total accelerating voltage from 6.0 to 5.5 MV

And Increase AC to RF conversion efficiency:

10 years old 150 kW SSA in cell 25 operated way below nominal power, at 90 ... 100 kW, where the efficiency is low.

- \Rightarrow Increase the share of Klystron power by increasing Cav 1 to 10 voltage from 4.5 to 5.0 MV
- \Rightarrow Operate with only 1 SSA e.g. Cav 13 at 0.5 MV

RESULT:

- 200 kW AC power savings at 200 mA
- Same beam lifetime for typical ID losses around 0.4 ... 0.5 MeV/turn
- 500 kW total savings possible if operation at 100 mA

LIMITATION IN CURRENT

Intensity limited for all timing modes (i.e. high intensity / bunch)

• Abnormal temperature of the ceramic chambers observed

Existing ceramic kicker and shaker chambers fragile: present design does not withstand thermal stress

→ Cause: assembly from several parts with glazing joints (bubbles)

Delay in the procurement of new chambers

→ impose to implement a mitigation strategy

increase of the coating (reduced impedance) thanks to the implementation of slow ramping kicker power supply

- Additional spare, with original design should allow test at full current in 16bunch in May-23
- New design deliveries should allow installation in 2024

New Kicker Design : One Single Piece Eliminate ceramic junction All 4 same geometry

DASHBOARD - PERFORMANCES

- Still conditioning
- Reaching lowest measurable limit at some locations

JUAS, 09 February 2023, ESRF presentation Jean-Luc Revol

INJECTION PERTURBATION BY KICKERS AND SEPTA

- Off-axis injection scheme very similar to the one of the previous machine proved to be very efficient for the commission and the restart but:
- Perturbations of the closed orbit during top-up injections and a greater sensitivity of the beamlines due to the reduced beam size of the stored beam prevent some beamlines from acquiring data and consequently limits today the full exploitation of EBS
 - \checkmark Top-up frequency reduced from one every 20 minutes to one every 1 hour to limit disturbances
 - ✓ Kicker power supplier upgrade and feedforward compensation are effective but not sufficient
 - ✓ <u>New injection schemes are under evaluation</u>

For all modes: Hor. Emit. ε_z = 135 pm	Multibunch 7/8 filling	16-bunches	4-bunches
Total current	200 mA	92 mA	40 mA
Current per bunch	0.23 mA	5.75 mA	10 mA
Bunch length (calc.)	13 ps	31 ps	37 ps
Vert. Emit. \mathcal{E}_z set at	10 pm	20 pm	20 pm
Touschek Lifetime	33 h	≈ 4,5 h	≈ 4 h

Priority for high I / bunch (16 bunch and 4 x 10 mA)

- Reduced Touschek scattering, IBS and microwave instability by bunch lengthening (factor 3):
 - > Increased lifetime \rightarrow less frequent injections, reduced loss rate and radiation load
 - Room for smaller In-Vacuum ID gaps
 - > alleviate possible impact from future lattice developments like mini-beta straights
 - Reduced emittance and energy blow up
- · Reduced heat-load and stress of critical chambers, like ceramic chambers or In-Vacuum IDs

GRADUAL IMPLEMENTATION OF 10 SSA (EACH 110 KW RF, MAX 250 KW AC)

DAMAGES IN THE STORAGE RING DUE TO RADIATION

Some equipment are already suffering from radiation damages around the straight sections equipped with Aluminum NEG coated vacuum chambers.

- Aging of HLS captors of girder1
- Increasing number of faulty ion pump cables
- Change in color, degradation, brittleness of insulating of cables

Several actions implemented or in progress until summer 2023 shutdown:

- Visual inspection of the cables to follow-up their status
- Identification of the damaged devices
- Risk assessment study
- Installation of lead shielding on HLS captors
- Replacement of damaged cables
- Installation of additional lead shielings
- Installation of lead shielding on the FE photon shutters

CONCLUSION

EBS project run in parallel with ESRF operation

- No impact on user operation
- o Continuation of the development of the existing machine, preparation of the new SR

Project execution completed on schedule :

- o Engineering Design, Procurement, Delivery of main components, Mock-up cell, Assembly
- o Dismantling/installation
- o Commissioning of the new source
- Beamline commissioning
- o Back to operation with users on 25 August

Present status and overview

- The new source is available for new science.
- o Beamlines are now taking full benefit from the source, and continue to develop and upgrade
- Main performances achieved (beam current, beam modes, lifetime, emittances, stability)
- Excellent reliability of the equipment
- Still a lot to fine tune the operation of the new storage ring
- New projects already been launched for future improvement

MANY THANKS FOR YOUR ATTENTION

