

e+e- Circular Colliders Future - Present - Past

Jacqueline Keintzel*, Frank Zimmermann

JUAS I Session on Colliders 24 January 2023

*jacqueline.keintzel@cern.ch

Energy and Luminosity

High energy physics experiments with particle accelerators demand improved statistics and discovery potential Solution:

- -) Higher energy
- -) Higher luminosity

• Energy:

JUAS

24 JAN 2023

• Center-of-mass energy for 2 colliding beams

$$E_{com} = E_1 + E_2$$

$$E_{com}$$

$$\vec{p_1} \qquad \vec{p_2} \qquad m_2$$

• Luminosity:

 Collision rate proportional to cross-section and luminosity

$$\frac{\mathrm{d}R}{\mathrm{d}t} = \mathcal{L}\,\sigma$$

 At interaction point colliding beams Instantenous:

$$\mathcal{L} = \frac{f_{\rm rev} N_1 N_2}{4\pi\sigma_x \sigma_y} S$$

*f*_{rev} ... revolution frequency N_{B12} ... number of particles per beam $\sigma_{x,v}$... beam sizes S ... reduction factor

Integrated:

$$\mathcal{L}_{\text{int}} = \int_{t_1}^{t_2} \mathcal{L} \, \mathrm{d}t$$

Typical unit: $1 \text{ fb}^{-1} = 10^{39} \text{ cm}^{-2}$

2

Future Circular Collider Study

- International collaboration with CERN as host lab
- Launched in 2014
- 80 100 km infrastructure in Geneva area
- pp-collider: FCC-hh
- e+e- collider: FCC-ee
- Could be possible first step before FCC-hh

JUAS

24 JAN 2023

CepC/SppC Study

Yifang Wang

JACQUELINE KEINTZEL CIRCULAR E+E- COLLIDERS

ESPP Update 2020

In 2020 the European strategy upgrade of particle physics (ESPP) expressed the long-term plan for particle colliders

Europe, together with its international partners, should investigate the technical and financial feasibility of a future hadron collider at CERN with a center-of-mass energy of at least 100 TeV and with an electron-positron Higgs and electroweak factory as a possible first stage.

Lepton Future Circular Collider, FCC-ee Hadron Future Circular Collider, FCC-hh

FCC Integrated **Project**

JUAS

Future Circular Colliders

JACQUELINE KEINTZEL CIRCULAR E+E- COLLIDERS

FCC Integrated Project

JUAS

24 JAN 2023

Placement Studies

Constraints:

- 8 or 12 surface sites
- Topography
- Geology
- Infrastructure

Result:

. . .

89 km to 91 km best geolical and territorial fits

P. Boillon: indico.cern.ch/event/995850

JACQUELINE KEINTZEL CIRCULAR E+E- COLLIDERS

FCC-ee Design

- 8 surface sites, ~90.7 km circumference
- Diverse physics program with beam energies:
 - 45.6 GeV: Z-pole
 - 80 GeV: W-pair production
 - 120 GeV: ZH-production (max H-rate)
 - 182.5 GeV: top-pair threshold
 - (63 GeV requires monochromatization)

What do we need to consider when designing the next e+ecircular collider?

J. Gutleber, FCC-week 2022.

JACQUELINE KEINTZEL CIRCULAR E+E- COLLIDERS

\rightarrow Synchrotron radiation power 10¹³ greater for electrons than for protons Leads to natural damping of emittance

- particle
- W. Barletta, USPAS lectures on synchrotron radiation, 2009.

In a flat collider with Dy = 0, vertical emittance dominated by coupling and *imperfections*!

- Photons emitted in discrete units
- Disturb particles trajectories in dispersive region
- \rightarrow Noise = quantum fluctuations
- Leads to emittance increase

Horizontal equilibrium emittance:

$$\epsilon_0 = C_q \gamma_0^2 \frac{I_5}{j_x I_2}$$

Cq... quantum radiation constant $I_{I_{5}}$... radiation integrals Jx ... partition number

Synchrotron Radiation

Stronger synchrotron radiation for electrons than for hadrons

JUAS

24 JAN 2023

Polarization

- On average every 10^{10th} emitted photon flips the spin
- Probability for electrons to emit a photon depends slightly on initial spin state
- → Polarization built-up
- \rightarrow Max. theoretical polarization of 92.4 %
- Spin precesses when particle travels trough the lattice \rightarrow spin tune

E ... energy $E = mc^2 \left(\frac{\nu}{a} - 1\right)$ *m* ... *mass* c ... speed of light v ... spin tune

a ... anomalous magnetic dipole moment

storage rings", 1984.

V. Caudan, Master Thesis, 2022.

JUAS 24 JAN 2023

Hourglass Effect

- Reduction factor from crossing angles, collision offset, dispersion, hourglass effect, ...
- Hourglass effect: β-functions increase parabolically with increasing distance from IP

$$\beta(s) = \beta^* \left(1 + \left(\frac{s}{\beta^*}\right)^2 \right)$$

Luminosity reduction factor from hourglass effect:

$$S \approx \frac{1}{\sqrt{1 + \left(\frac{\theta}{2}\frac{\sigma_s}{\sigma_x}\right)^2}} \qquad \sigma_s \gg \sigma_x, \sigma_y$$

Especially important for smaller β^{\star}

W. Herr, "Concept of luminosity", 2006.

JACQUELINE KEINTZEL CIRCULAR E+E- COLLIDERS

Final Focus Chromaticity

• Spot size increase due to (uncorrected) chromaticity generated from final focus (FF)

(Non-Linear) Beam-Beam Force

CIRCULAR E+E- COLLIDERS

24 JAN 2023

Beam-Beam Limit

- Luminosity and vertical tune-shift parameter versus beam current for various electronpositron colliders; **the tune shift saturates at some current value, above which the luminosity grows linearly**
- At beam currents above the first limit the former CERN LEP collider encountered another, "2nd beam-beam limit" (due to beam blow and tails)

Accommodating Multipole IPs

- Question of superperiodicity, depends on location of IPs (A, B, L, G)
- Resonance condition for lattice errors (DA) and for beam-beam

If machine is fully superperiodic, e.g. with SP = 4 --> a ¹/₄ turn is equivalent to smaller ring with 1 collision per turn

FCC-ee Design Concepts

- Perfect symmetry and perfect 4-fold superperiodicity
- 8 surface sites, 90.6574 km circumference

FCC-ee demands successful combination of ingredients of numerous recent colliders and storage rings

LEP/LEP2: Highest Energy so far

- 27 km circumference
- In operation from 1989-2000
- Predecessor of the LHC
- Maximum 209 GeV center-of-mass energy
- Maximum radiation power 23 MW

CERN, 2023.

LEP energy close to FCC-ee target plus record synchrotron radiation with MeV photons

Crab-Waist Collision Scheme

- Original crab-waist scheme used at DAFNE, INFN, Italy
- Virtual crab-waist scheme used in SuperKEKB Y. Ohnishi et al., Progr. of Theoretical and Experimental Physics, 2013 (3), 2013
- Virtual crab-waist scheme foreseen for FCC-ee K. Oide et al., Phys. Rev. Accel. Beams 19, p. 111005, 2016.

Without crab-waist transformation

Powering sextupoles rotates the vertical β -function and aligns the minimum on the longitudinal axis on the other beam

P. Raimondi et al., arXiv:physics/0702033, 2007.M. Zobov et al., arXiv:1608.06150, 2016.

With crab-waist transformation

JUAS 24 JAN 2023

FCC Final Focus

- Assymmetric final focus design to suppress strong synchrotron radiation at the IP
- Critical photon energy < 100 keV
- Crab-waist collision scheme

JUAS

24 JAN 2023

JACOUELINE KEINTZEL

CIRCULAR E+E- COLLIDERS

DAFNE Luminostiy

- 510 MeV beam energy
- 1 experiment
- First collider with crab-waist

DAFNE, 2016.

JUAS

24 JAN 2023

KEKB/PEP-II: High Current and L

• Past B-Factories

ositrons

• PEP-II: 9 GeV / 3 GeV electron /positron ring

Low Energy Ring

SLAC

Electrons

High Energy Ring

Courtesy: SLAC, accessed 2023.

BABAR Detector

- KEKB: 8 GeV / 3.5 GeV electron /positron ring
- Predecessor of SuperKEKB

PEP-II Rings

Performance of high current high luminosity e+e- factories conservatively predicted

2004/1/1

Courtesy: KEK.

2008/1/1

2010/1/1

2006/1/1

JACQUELINE KEINTZEL CIRCULAR E+E- COLLIDERS

1998/1/1

2000/1/1

2002/1/1

Top-Up Injection

• Continous beam injection at collision energy

• Average luminosity ~ Peak luminosity

Coutesy: P. Hunchak, M. Hofer, R. Ramjiawan.

KEKB and PEP-II were first colliders with top-up injection schemes

Beam-lifetime

• Beam-lifetime limits luminosity for colliders with top-up injection

Describes performance of SuperKEKB

$$\mathcal{L} \approx \frac{f}{4\pi e^2 \sigma_x^* \sigma_y^*} \frac{1}{n_b} I_{\pm} \epsilon_{\pm} \tau_{\pm}$$

Coutesy: K. Oide, F. Zimmermann.

SuperKEKB

- Lepton double ring collider and 1 interaction point
- 7 GeV electron ring (HER) and 4 GeV positron ring (LER)
- Record low β_v^* of 0.8 mm
- Similar optics, crab-waist scheme, top-up injection

FCC-ee Design Concepts

- Perfect symmetry and perfect 4-fold superperiodicity
- 8 surface sites, 90.6574 km circumference

KEKB
SKEK
JaparLet us design a novelDAFNE
Italye+e-circular collider at
CERN now!

FCC-ee demands successful combination of ingredients of numerous recent colliders and storage rings

X Interaction Point

PA

PG

PB

PF

🖍 PD

Questions?

e+ e- Circular Colliders Future – Present – Past Jacqueline Keintzel*, Frank Zimmermann

JUAS I Session on Colliders 24 January 2023

*jacqueline.keintzel@cern.ch

FCC-ee Cost and Sustainability

Luminosity vs. capital cost

Luminosity vs. electrical consumption

- For the H running, with 5 ab⁻¹ accumulated over 3 years and 10⁶ H produced, the total investment cost (~10 BCHF) corresponds to ~ 10 kCHF / H
- For the Z running with **150** ab⁻¹ accumulated over **4** years and **5x10¹² Z produced** (two IPs), the total investment cost corresponds to ~ **10** kCHF / **5×10**⁶ Z, almost 2x better still with four IPs This is the number of Z bosons collected by each experiment during the entire LEP programme !

Capital cost per luminosity dramatically decreased compared with LEP !

Thanks to twin-aperture magnets, thin-film SRF, efficient RF power sources, top-up injection

Highest lumi/power of all proposals Electricity cost ~200 CHF per Higgs boson

