LHC and HL-LHC

O. Brüning CERN, Geneva, Switzerland

Presented by M. Giovannozzi CERN,Geneva, Switzerland

Introduction: LHC Performance Goals

A proton beam energy of 7 TeV within the existing LEP tunnel with a V circumference of 27 km and an arc length of 22km

Requires a peak magnet field in the dipoles of about 8.3 Tesla!!! [ca. 300000 times the earth magnetic field]

Instantaneous luminosity: rate of events in detector = $L \times S_{event}$

rare events
$$\rightarrow$$
 L > 10³³cm⁻²s⁻¹ \rightarrow L = 10³⁴cm⁻²s⁻¹

Integrated luminosity: total number of events $L = \oint L(t) dt$ 300 fb⁻¹ with 1barn = 10⁻²⁸ m² and femto = 10⁻¹⁵

World hadronic luminosity production prior to the LHC: ca. 11 fb⁻¹

Overall view of the LHC experiments.

Oliver Brüning, CERN

and the second sec

LHC (Large Hadron Collider)

14 TeV proton-proton accelerator-collider built in the LEP tunnel Lead-Lead (Lead-proton) collisions

1983	: F	First studies for the LHC project
1988	: F	First magnet model (feasibility)
1994	:/	Approval by the CERN Council
1996-1999	: \$	Series production industrialisation
1998	: [Declaration of Public Utility &
	5	Start of civil engineering
1998-2000): F	Placement of main production contracts
2004	: \$	Start of the LHC installation
2005-2007	': I	Magnets Installation in the tunnel
2006-2008	:	Hardware commissioning
2008-2009	:	Beam commissioning and repair

2010-2037: Physics exploitation

Ca. 20 years magnet development!!!

Ca. 30 years machine development!!!

→ Significant Time scale extending well beyond that of a physicist career!!!

JUAS Seminar on LHC and HL-LHC January 2023 Oliver

Energy management challenges: Example LHC

Energy stored in the LHC magnet system [8.3 T]: ~10 GJoule Worry about beam losses:

Failure Scenarios -> Local beam Impact

→ Equipment damage

- Lifetime & Loss Spikes -> Distributed losses
 - ➔ Magnet Quench & QPS
 - ➔ Machine efficiency

e.g. Cryo sectors: 95% availability requires 99% with 8 sectors

8 sectors \rightarrow [12 sectors \rightarrow 20 sectors]

This becomes more challenging with increased Collider size and Requires even more powerful injector complex!!!!

\rightarrow ca. 50% in LHC operation including faults at best conditions!

JUAS Seminar on LHC and HL-LHC January 2023

CMS Integrated Luminosity, pp

Date (UTC)

Higgs Discovery in July 2012 and 2013 Nobel Price for the Brout – Englert – Higgs mechanism

But many questions remain and the search continues!!!

- → Higgs properties [coupling]
 → More than one Higgs?
 → BSM Physics? Dark Matter & Dark Energy?
- →Need for more Data and Statistics!! Doubling the Statistics requires 4 x more data!!!

...for that c origin which disco partic at CEl

→ HL-LHC goal: 10 times the LHC data Volume Implies overcoming several limitations in the existing LHC!!! Not only experiments: cryo <u>cooling</u> of triplet magnets & <u>radiation</u> damage in triplet magnets & machine efficiency!

→ Need for an Upgrade!

→ High machine efficiency and reliability are key upgrade ingredients!

Luminosity optimization:

Luminosity Limitation: Debris from the IP Radiation damage to magnets at 300 fb⁻¹

HL-LHC technical bottleneck: Radiation damage to triplet magnets

Need to replace existing triplet magnets with radiation hard system (shielding!) such that the new magnet coils receive a similar radiation dose @ 10 times higher integrated [uminosity]]] → Shielding]

- → Requires larger aperture! technology
- New magnet technology!

- Capillaries
- → 70 mm at 210 T/m → 150 mm diameter 140 T/m → Longer magnets
 8 T peak field at coils → 12 T field at coils (Nb₃Sn)!!!

High Field SC Magnets

Magnet development requires substantial R&D effort!!!

Nb₃Sn quadrupole: Transition from Prototype to Series production

JUAS Seminar on LHC and HL-LHC January 2023

Nb₃Sn quadrupole: Transition from Prototype to Series production

Now entering the phase of hardware production for most equipment!!!

Q1/Q3: FIRST IT

MP Series Mobile Platform

{C!!!

4 US [AUP] magnets passed successfully tests in 2020 and 2021 → full project budget allocation in 2020

First CERN prototypes tested in 2020 and 2021. Third prototype and 1st Series magnet successfully tested in 2022

Q2: IT QUAD prototype built and tested at CERN!!!

JUAS Seminar on LHC and HL-LHC January 2023

Oliver Brüning, CERN

MP Series Mobile Platform

HL-LHC Challenges: Crossing Angle I

HL-LHC Upgrade Ingredients: Crab Cavities

- Geometricities:minosity
 Reduction Factor: geometrical reduction factor
- Independent for each IP

$$F = \frac{1}{\sqrt{1 + Q^2}}; \quad Q \circ \frac{q_c S_z}{2S_x}$$

- Noise from cavities to beam Beam size and losses?!?
- Challenging space constraints:
 - requires novel compact cavity design

HL-LHC cavity designs

2 Designs with

Deflection planes

RF Dipole: Waveguide or waveguide-coax couplers

DQW crab-cavity Cryomodule for SPS tests

Double ¹/₄-wave: Coaxial couplers with hook-type antenna

Present baseline: 4 cavities / IP / side -> 16 total

JUAS Seminar on LHC and HL-LHC January 2023

Crab cavity cryo-module for installation in the SPS

JUAS Seminar on LHC and HL-LHC January 2023

First proton crabbing ever!

TEST in SPS ongoing since 2018

20

IR1 & IR5 Civil Engineering:

New Underground areas for the HL-LHC:

- ➔ Space for new HL-LHC equipment [e.g. cryo and power converter]
- ➔ Removal of all active components from the tunnel area [R2E and equipment failure due to radiation]
- Remain accessible for equipment experts during beam operation [Increase ring maintainability and decrease intervention times]

JUAS Seminar on LHC and HL-LHC January 2023

Oliver Brüning, CERN

P. 195. 2 P. 195

IR1 & IR5 Underground Civil Engineering: completed!

JUAS Seminar on LHC and HL-LHC January 2023

LHC / HL-LHC Plan

2031 after LS4: Full Energy Exploitation of the LHC?

Thanks a lot for your attention!!!

Back up slides

LHC machine sectorisation

CERN accelerator complex

JUAS Seminar on LHC and HL-LHC January 2023

Training quenches RB Circuits

Collision energy of (HL-)LHC is strictly linked to achievable current of the 1232 (= 8 x 154) LHC main dipole magnets

- 5 sectors reached 6.8 TeV equivalent, 3 sectors reached 7 TeV
- No sign of permanent degradation.

-LHC PROJEC

JUAS Seminar on LHC and HL-LHC January 2023 Oliver Brüning, CERN

Ideal (HL-)LHC operation.... vs...

Start of HL-LHC exploitation and performance ramp-up

Year	ppb	Virtual lumi.	Days in	θ	β_{start}^*	$\beta_{\rm end}^*$	CC	Max.
	$[10^{11}]$	$[10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	physics	[µrad]	[cm]	[cm]		PU
2029	1.8	4.4	90	380	70	30	exp	116
2030	2.2	9.7	120	500	100	30	on	132
2031	2.2	11.3	160	500	100	25	on	132
2032	2.2	13.5	160	500	100	20	on	132
2033-34			Long shutdown 4					
2035	2.2	13.5	140	500	100	20	on	132
2036	2.2	16.9	170	500	100	15	on	132
2036	2.2	16.9	200	500	100	15	on	200

JUAS Seminar on LHC and HL-LHC January 2023

Stored energies- the future

JUAS Seminar on LHC and HL-LHC January 2023

1/24/2023

Current Density Across Entire Cross-Section

<u>SC Magnet</u> Technology

