

Future high-energy linear colliders

Philip Burrows

Oxford University

Director, John Adams Institute for Accelerator Science

ILC: https://linearcollider.org CLIC: https://clic.cern

Linear Colliders

- •**Reminder: why linear?**
- •**ILC**
- **CLIC**
- **Summary**

Why Linear?

c. 100 GeV per beam

Discovered Elder et al 1947 (General Electric)

Power lost due to synchrotron radiation $P_{SR} \sim \gamma^4 / \rho^2$

 $γ = E/m₀$ **, ρ = radius of trajectory**

Power lost due to synchrotron radiation $P_{SR} \sim \gamma^4 / \rho^2$

 $y = E / m_0$ **, ρ = radius of trajectory**

For LEP (100 GeV, 27km) each electron would lose ~ 3 GeV / turn

Power lost due to synchrotron radiation $P_{SR} \sim \gamma^4 / \rho^2$

- $y = E / m_0$ **, ρ = radius of trajectory**
- **For LEP (100 GeV, 27km) each electron would lose ~ 3 GeV / turn** $P = 10^{-6}$ Watts/electron \rightarrow 18 MW total

Power lost due to synchrotron radiation $P_{SR} \sim \gamma^4 / \rho^2$

- $$ **, ρ = radius of trajectory**
- **For LEP (100 GeV, 27km) each electron would lose ~ 3 GeV / turn** $P = 10^{-6}$ Watts/electron \rightarrow 18 MW total → **compensate with RF cavities**

Suppose we increase LEP beam energy (100 GeV) by factor 5: $E \rightarrow 500$ GeV, in the same tunnel

 $P_{SR} \sim \gamma^4 / \rho^2$

Suppose we increase LEP beam energy (100 GeV) by factor 5: $E \rightarrow 500$ GeV, in the same tunnel

$$
P_{SR} \sim \gamma^4 \, / \rho^2
$$

γ increases by factor 5, so P increases by 5⁴

 $\text{this would give } P_{SR} = 5^4 \times 18 \text{ MW} = 11 \text{ GW}!$

Compensate by increasing radius ρ? Need 10 x ρ **to reduce P**_{SR} by 100 \rightarrow 270km tunnel!

SLAC Linear Collider (SLC)

SLAC Linear Collider (SLC)

Built in the 1980s within the existing SLAC linear accelerator

Operated 1988-98 at c.o.m energy ~91 GeV on the Z⁰ resonance

- **- established LC concepts**
- **- longitudinal ebeam polarization @ IP**

The SLAC Linear Collider

State-of-the-art accelerating cavities

ILC: 35 MV / m (1.3 GHz)

17 **CLIC: 100 MV / m (12 GHz)**

Luminosity

$L = H N_1 N_2 f_{rep}$ / (4π $\sigma_x \sigma_y$)

ILC

Luminosity (ILC 250)

$L = H N_1 N_2 f_{rep}$ / (4π $\sigma_x \sigma_y$)

- $N_1 = N_2$ **≈** 2 x 10¹⁰ e+/e- per bunch
- f_{rep} = 1312 x 5
- $\sigma_{x,y}$ **≈** 500 x 8 nm²
	- $=$ 4 10¹⁰ 10¹⁰ 1300 x 5 / (4 π 8 x 500 10⁻⁷ 10⁻⁷) **≈ 10³⁴/ cm² / s**

Ignored 'hour-glass' + intra-bunch effects (H) … These need to be taken into account for precise L calculation

ILC Technical Design Report (June 2013) baseline 500 GeV: \$6.7B (2010) + 13,000 person-years

IF INTERNATIONAL LINEAR COLLIDER TECHNICAL DESIGN REPORT | VOLUME 3.1: ACCELERATOR R&D

[https://linearcollider.org/technical-design](https://linearcollider.org/technical-design-report/)report/

 $Part I:$ ILC R&D IN THE TECHNICAL DESIGN PHASE

> $Part II$: THE ILC BASELINE DESIGN

> > Editors:

Phil BURROWS, John CARWARDINE, Eckhard ELSEN, Brian FOSTER, Mike HARRISON, Hitoshi HAYANO, Nan PHINNEY, Mare ROSS, Nobu TOGE, Nick WALKER, Akira YAMAMOTO, Kaoru YOKOYA

> **Technical Editors:** Maura BARONE, Benno LIST

ILC today

8,000 1.3GHz

SRF cavities @ 2K

Physics Detectors

Beam delivery system (BDS)

e-Source

e+ Main Linac

Total 20.5 k_{m}

- **Cost ~5 B\$**
- **Power ~110 MW**

e- Main Linac

e+ Source

Damping Ring

Ongoing developments

Huge global interest in ILC-like SC RF systems:

eg. European XFEL, LCLS-II, Shanghai XFEL …

Largest deployment of SCRF technology

- **100 cryomodules**
- **800 cavities**
- **17.5 GeV**
- **First beams 2016**

Ongoing developments

Huge global interest in ILC-like SC RF systems:

eg. European XFEL, LCLS-II, Shanghai XFEL …

Nb cavity performance advancements made at many labs

New surface treatments + improved fabrication techniques → **major improvements in gradient, Q, yield, cost**

eg. N-infusion \rightarrow 45 MV/m @ Q \sim 2 x 10^{**}10

(ILC spec: 31.5 MV/m @ Q ~ 1 x 1010)**

Ongoing developments

Huge global interest in ILC-like SC RF systems:

eg. European XFEL, LCLS-II, Shanghai XFEL …

Nb cavity performance advancements made at many labs

New surface treatments + improved fabrication techniques \rightarrow major **improvements in gradient, Q, yield, cost**

eg. N-infusion \rightarrow **45 MV/m @ Q** \sim **2 x 10^{*} * 10**

(ILC spec: 31.5 MV/m @ Q ~ 1 x 1010)**

Extensive site studies in Japan: geology, civil, environment, safety …

ILC Candidate Location: Kitakami, Tohoku

Ongoing developments

Huge global interest in ILC-like SC RF systems:

eg. European XFEL, LCLS-II, Shanghai XFEL …

Nb cavity performance advancements made at many labs

New surface treatments + improved fabrication techniques \rightarrow major **improvements in gradient, Q, yield, cost**

eg. N-infusion \rightarrow **45 MV/m @ Q** \sim **2 x 10^{*} * 10**

(ILC spec: 31.5 MV/m @ Q ~ 1 x 1010)**

Extensive site studies in Japan: geology, civil, environment, safety …

Engineering design studies for beam dumps, positron source …

- **Ongoing optimisation of nanobeam production at ATF2**
- **Detailed plan for 4-year work programme: engineering prototypes** → **Engineering Design Report + construction start**

ILC upgrade options

ILC upgrade options Luminosity

ILC upgrade options Luminosity

ILC upgrade options Luminosity

ILC upgrade options Energy

ILC Detectors

ICFA ILC plan

- **2020: ICFA set up International Development Team (IDT) 'towards … timely realisation of ILC'**
- **1 + 4-year 'Pre-lab' to finalise technical prototypes, prepare Engineering Design Report, secure cooperation among funding agencies, and prepare for construction start**

CLIC

CLIC overview

- **Timeline: e+e- linear collider at CERN for the era beyond HL-LHC**
- **Compact: novel and unique two-beam accelerating technique based on high-gradient room temperature RF cavities:**

first stage: 380 GeV, ~11km long, 20,500 cavities

• **Expandable: staged collision energies from 380 GeV (Higgs/top) up to 3 TeV**

CLIC overview

- **Timeline: e+e- linear collider at CERN for the era beyond HL-LHC**
- **Compact: novel and unique two-beam accelerating technique based on high-gradient room temperature RF cavities:**

first stage: 380 GeV, ~11km long, 20,500 cavities

- **Expandable: staged collision energies from 380 GeV (Higgs/top) up to 3 TeV**
- **Conceptual Design Report published in 2012**
- **Project Implementation Plan released 2018 Cost: 5.9 BChF for 380 GeV (stable w.r.t. CDR) Power: 168 MW at 380 GeV (significantly reduced since CDR)**
- **Comprehensive Detector and Physics studies**

CLIC Collaborations

https://clic.cern

CLIC accelerator:

- **~50 institutes from 28 countries**
- **CLIC accelerator studies, design and development**
- **Construction + operation of CLIC Test Facility, CTF3**

CLIC detector and physics (CLICdp):

- **30 institutes from 18 countries**
- **Physics prospects & simulation studies**
- **Detector optimisation + R&D for CLIC + strong participation in the CALICE and FCAL Collaborations and in AIDA-2020/AIDAinnova**

CLIC Collaborations

CLIC European Strategy Inputs

<http://clic.cern/european-strategy>

CLIC Snowmass Inputs

Several LoIs have been submitted on behalf of CLIC and CLICdp

The CLIC accelerator study: [Link](https://www.snowmass21.org/docs/files/summaries/AF/SNOWMASS21-AF4_AF3-EF0_EF0-177.pdf) Beam-dynamics focused on very high energies: [Link](https://www.snowmass21.org/docs/files/summaries/AF/SNOWMASS21-AF1_AF4-161.pdf) The physics potential: [Link](https://www.snowmass21.org/docs/files/summaries/EF/SNOWMASS21-EF0_EF0_CLICphysics-170.pdf) Detector: [Link](https://www.snowmass21.org/docs/files/summaries/IF/SNOWMASS21-IF3_IF6_Mathieu_Benoit-188.pdf)

44

CLIC parameters

Table 1.1: Key parameters of the CLIC energy stages.

CLIC 380 GeV layout

Baseline electron polarisation ±80%

CLIC 3 TeV layout

Baseline electron polarisation ±80%

- **104 x 2m-long C-band structures (beam** → **6 GeV @ 100 Hz)**
- **Similar um-level tolerances**
- **Length ~ 800 CLIC structures**

CLIC detector

Solenoidal Magnet Superconducting magnet, magnetic field of 4 tesla **Tracking Detector** Silicon pixel detector, outer radius 1.5 metres **Vertex Detector** Ultra-low mass silicon pixel

detector, inner radius 31 millimetres

Tracking detector

Material: 1-2% X / layer Single-point resolution: 7 micrometres

Vertex detector

25 micrometre pixels Material: 0.2% X / layer Single-point resolution: 3 micrometres Forced air-flow cooling

Electromagnetic calorimeter 40 layers (silicon sensors, tungsten plates) Material: 22 X_0 + 1 λ_1

Hadronic calorimeter 60 layers (plastic scintillators, steel plates) Material: 7.5λ

Learn more about the CLIC detector at clic.cern

The CLIC detector model

Fine-grained Calorimeters

Electromagnetic and hadronic calorimeters used for particle flow analysis

Forward Region

Electromagnetic calorimeters for luminosity measurement and extended angular coverage

CLIC project readiness → **2025/26**

X-band studies: For CLIC and applications in smaller linacs

John Adams Institute
for Accelerator Science

Luminosity: Beam-dynamics studies and related hardware optimisation for nano beams

UNIVERSITY OF

X FOR I

RF efficiency and sustainability studies **Project Readiness Report as a step toward a TDR – for next ESPP**

Assuming ESPP in 2026, Project Approval ~ 2028, Project (tunnel) construction can start in ~ 2030.

Focusing on:

- **The X-band technology readiness for the 380 GeV CLIC initial phase**
- **Optimizing the luminosity at 380 GeV**
- **Improving the power efficiency for both the initial phase and at high energies**

CLIC timeline

Technology-driven schedule from start of construction shown above.

A preparation phase of ~5 years is needed beforehand (estimated resource needed ~4% of overall project cost)

Summary

ILC + CLIC are technically-mature projects large X-ray FEL systems in operation using both technologies Concepts have been developed over decades via global efforts ILC TDR 2013 CLIC CDR 2012, updated 2018

Both are consistent with European PP strategy

European Strategy Update 2020

The vision is to prepare a Higgs factory, followed by a future hadron collider with sensitivity to energy scales an order of magnitude higher than those of the LHC, while addressing the associated technical and environmental challenges

3. **High-priority future initiatives a) An electron-positron Higgs factory is the highest-priority next collider.** For the longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy ...

The timely realisation of the electron-positron International Linear Collider (ILC) in Japan would be compatible with this strategy and, in that case, the European particle physics community would wish to collaborate.

b) **Innovative accelerator technology underpins the physics reach of high-energy and high-intensity colliders.** It is also a powerful driver for many accelerator-based fields of science and industry. The technologies under consideration include high-field magnets, high-temperature superconductors, plasma wakefield acceleration and other **high-gradient accelerating structures**, bright muon beams, energy recovery linacs.

Summary

ILC + CLIC are technically-mature projects

- **large X-ray FEL systems in operation using both technologies**
- **Concepts have been developed over decades via global efforts**
	- **ILC TDR 2013**
	- **CLIC CDR 2012, updated 2018**
- **Both are consistent with European PP strategy**
- **Both affordable: costs comparable with LHC cost (today)**
- **Manageable power: 110 MW (CLIC 380, ILC 250) similar to LHC**
- **Intrinsically upgradeable for both luminosity and energy**
- **LC offers a flexible, staged approach to energy frontier:**
	- **energy ~ length**
	- **facility reusable as gradient improves, eg. ILC** → **CLIC** → **PWFA … complementary to long-term future hadron or muon colliders 53**

Thanks to ILC + CLIC colleagues