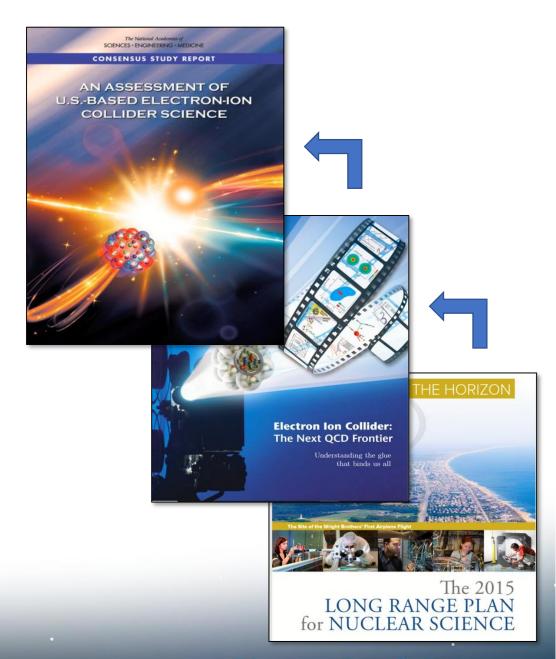

Outline

- The EIC accelerator
 - Requirements and present design
- Accelerator technology challenges
- Some project technology R&D
- Luminosity limiting factors
- Collider luminosity experience

"Not Like The Others" (LHC, FCC...)


- The electron-ion collider (EIC) is:
 - a **nuclear physics** (NP) collider
 - nuclear physics scattering experiments
 - includes "deep inelastic" scattering, or EM-intermediated scattering of electrons and partons
 - collective and single-particle effects in the strong interaction sector
 - NOT a high-energy physics collider
- Addresses three fundamental nuclear physics questions:
 - How does nuclear mass arise?
 - How does nuclear spin arise?
 - What are emergent properties of dense gluon systems?

Ultimately, nuclear tomography

EIC Requirements

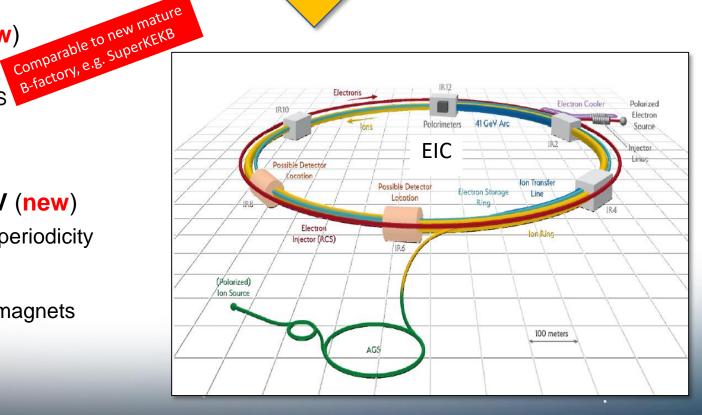
- EIC design goals
 - \circ High luminosity: L = (0.1-1)-10³⁴ cm⁻² s⁻¹
 - → 10-100 fb⁻¹
 - Collisions of highly polarized (>70%) e and p (and light ion) beams
 - with flexible bunch by bunch spin patterns
 - Large range of CM energies:
 - \circ E_{cm} = 20-140 GeV
 - o Large range of ion species:
 - Protons Uranium
 - Ensure accommodation of a second IR
 - Large detector acceptances; good background
 - Hadron particle loss
 - IR synchrotron radiation backgrounds

EIC Requirements

EIC design goals

- High luminosity: $L = (0.1-1)\cdot 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
 - → 10-100 fb⁻¹ "High"
- Collisions of highly polarized (>70%) e and p (and light ion) beams
 - with flexible bunch by bunch spin patterns
- Large range of CM energies:
 - E_{cm} = 20-140 GeV "Low"
- o Large range of ion species:
 - Protons Uranium Diverse
- Ensure accommodation of a second IR
- Large detector acceptances; good background
 - Hadron particle loss
 - IR synchrotron radiation backgrounds

uniquely


challenging

EIC Accelerator Design Overview

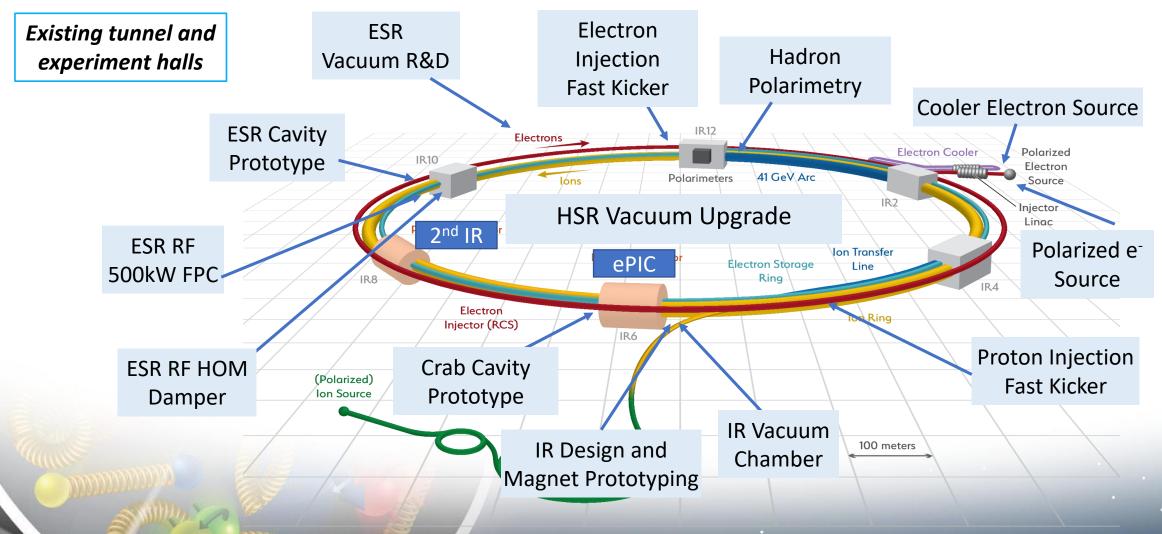
- Hadron storage ring (HSR): 40-275 GeV (existing)
 - o up to 1160 bunches, 1A beam current (3x RHIC)
 - bright vertical beam emittance (1.5 nm); new vac sleeves
 - strong cooling (coherent electron cooling, ERL)
- Electron storage ring (ESR): 2.5–18 GeV (new)
 - o up to 1160 polarized bunches
 - o high polarization by continual reinjection from RCS
 - o large beam current (2.5 A) → 9 MW SR power
 - superconducting RF cavities
- Rapid cycling synchrotron (RCS): 0.4-18 GeV (new)
 - 2 bunches at 1 Hz; spin transparent due to high periodicity
- High luminosity interaction region(s) (new)
 - \circ L = 10^{34} cm⁻²s⁻¹ = 10 kHz-uba, superconducting magnets
 - 25 mrad crossing angle with crab cavities
 - spin rotators (produce longitudinal spin at IP)

Luminosity (Lumi) Limits In One Slide™

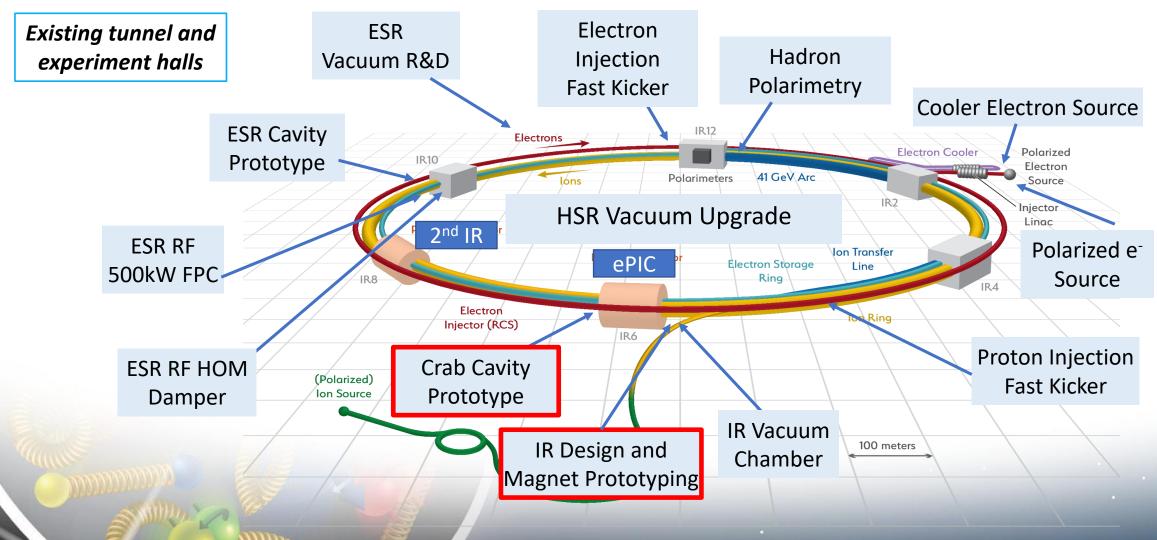
$$L \propto f_{\rm coll} N_1 N_2 / \sigma_x^{\star} \sigma_y^{\star}$$

 f_{coll} : collision frequency

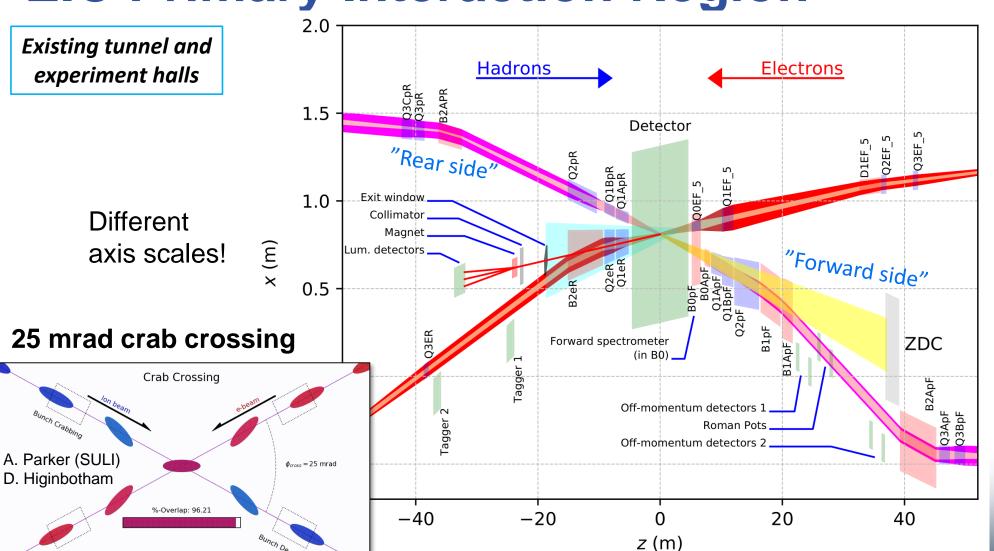
 $N_{1,2}$: particles per bunch

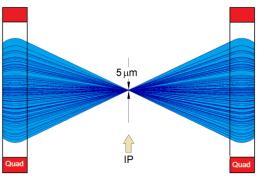

 $\sigma_{x,y}^{\star}$: (equal) beam sizes at IP

Every parameter optimized separately and collectively in the EIC design


Try multiplying out the given numbers – should be very close to 10³⁴ cm⁻²s⁻¹

- Maximize collision frequency (~90 MHz)
 - Limited by kicker rise times
 - Limited by parasitic collisions (crabbing)
- Maximize particles per bunch (~10¹¹)
 - Limited by sources, space charge
 - Limited by collective effects
 - Interaction of beam with impedances
 - Also total currents: $I_{1,2}=q_{1,2}N_{1,2}f_{coll} \sim 1-3A$
- Minimize beam sizes at IP (~250/25 um)
 - Limited by IR focusing, magnets
 - Limited by chromatic dynamic aperture
 - Limited by emittance growth (IBS)


EIC Accelerator Technology Challenges, R&D



EIC Accelerator Technology Challenges, R&D

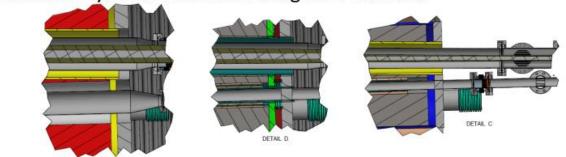
EIC Primary Interaction Region

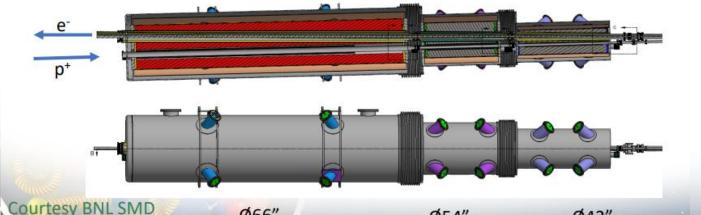
Focusing (quads) as close to IP as possible (~5m!)

Tensions in magnet requirements:

- high field
- large apertures
- e/p magnet proximity near IP

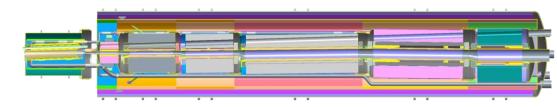
Chromaticity:

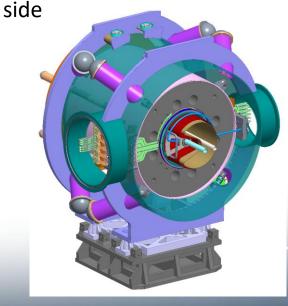

focusing dependence on particle energy


EIC R&D: IR Superconducting Magnets

Rear Side Integration / Beampipe

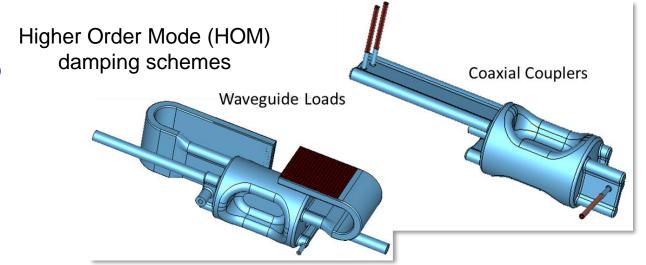
Separate cold masses - helium vessels Separate circular cryostats with decreasing OD's toward IP

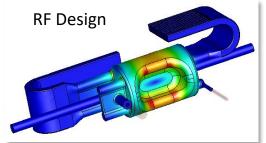

Ø66"

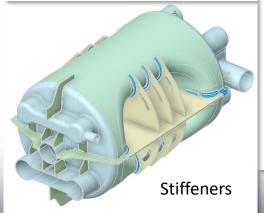


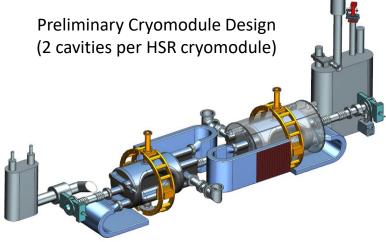
Ø54"

Forward superconducting magnet integration


Multiple function spectrometer magnet at the forward hadron




Ø42"


EIC R&D: Crab Cavities

- Hadron collider crabbing unprecedented
 - Collaborating with HL-LHC
 - Beam dynamics, RF control stability
 - SPS tests: Phys. Rev. Accel. Beams 24, 062001 (2021)
 - Electron crabbing was performed at KEKB (arXiv:1410.4036)
- Superconducting "RF dipole" cavity
 - ODU design
 - High electric field and overall field quality requirements
- 197 MHz HSR crab cavity being prototyped
 - Jefferson Lab/ODU/(BNL) collaboration
 - Two possible HOM damping schemes:
 Waveguide loaded and coaxial couplers
 - Stress analysis near completion, with stiffeners

Electrons and Hadrons in Synchrotrons (EIC)

Electrons

- Larger charge/mass ratio
 - Smaller B to bend/focus (E, crab)
 - Normal conducting magnets
 - Polarization time dependence
- Synchrotron radiation
 - Photonic backgrounds
 - Damping
 - Dynamic aperture: Touschek
 - Large RF power needs
 - Flat beam aspect ratio
- Harder collimation (multi-stage)

Hadrons

- Smaller charge/mass ratio
 - Larger B to bend/focus (E, crab)
 - Superconducting magnets
 - No depolarization (in principle)
- No synchrotron radiation
 - Hadronic backgrounds
 - Negligible damping (EIC energies)
 - Dynamic aperture: "Diffusion"
 - Modest RF power needs
 - Round beam aspect ratio
- Easier collimation (single-stage)

Lumi Limits In (more than) One SlideNoTM

 $L \propto f_{\rm coll} N_1 N_2 / \sigma_x^{\star} \sigma_y^{\star}$

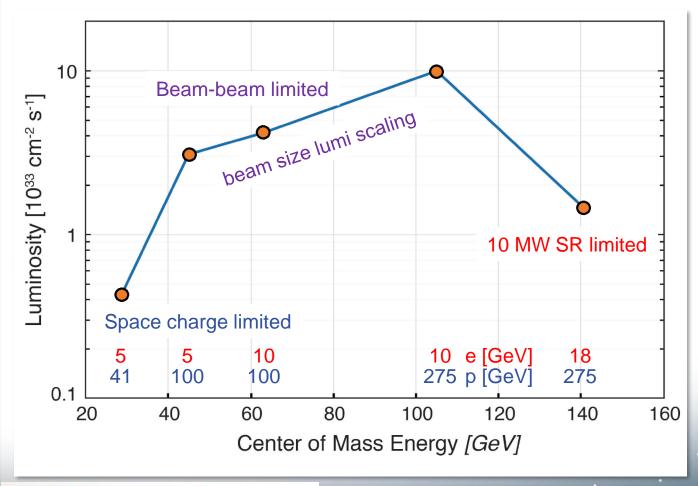
 f_{coll} : collision frequency

 $N_{1,2}$: particles per bunch

 $\sigma_{x,y}^{\star}$: (equal) beam sizes at IP

Challenge: colliding asymmetric beams

electrons: flat hadrons: round

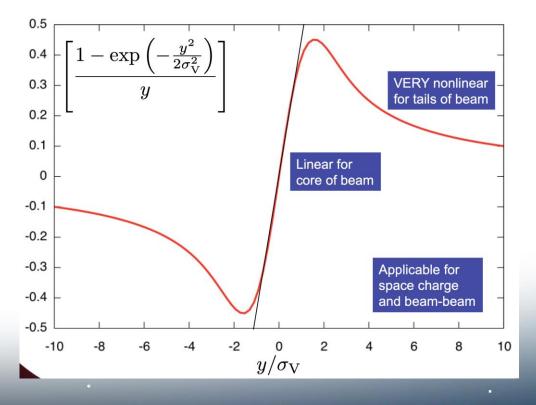

SuperKEKB: 10 um x 50 nm, 200:1!

EIC collision point: 11:1 transverse aspect ratio

- Maximize collision frequency (~90 MHz)
 - Limited by kicker rise times
 - Limited by parasitic collisions (crabbing)
- Maximize particles per bunch (~10¹¹)
 - Limited by sources, space charge
 - Limited by collective effects
 - Interaction of beam with impedances
 - Also total currents: $I_{1,2}=q_{1,2}N_{1,2}f_{coll} \sim 1-3A$
- Minimize beam sizes at IP (~250/25 um)
 - Limited by IR focusing, magnets
 - Limited by chromatic dynamic aperture
 - Limited by emittance growth (IBS)

EIC CDR (CD-1) Parameters for E_{cm} and Luminosity

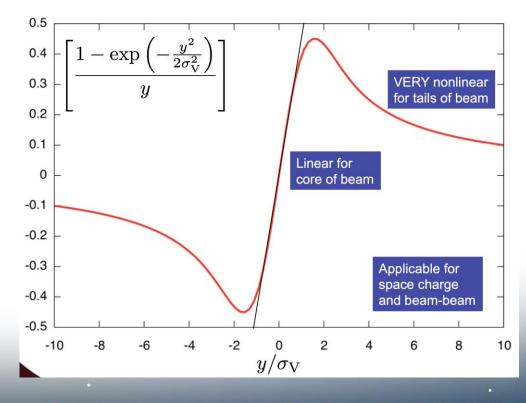
	Electrons	Protons			
Beam energies	2.5 - 18 GeV	41- 275 GeV			
Center of mass energy range	E _{Cm} = 20-140 GeV				
	Electrons	Protons			
Beam energies	10 GeV	275 GeV			
Center of mass energy	E _{Cm} =	105 GeV			
number of bunches	nb =	nb =1160			
crossing angle	25 n	nrad			
Bunch Charge	1.7·10 ¹¹ e	0.7·10 ¹¹ e			
Total beam current	2.5 A	1 A			
Beam emittance, horizontal	20 nm	9.5 nm			
Beam emittance, vertical	1.2 nm	1.5 nm			
β- function at IP, horizontal	43 cm	90 cm			
β- function at IP, vertical	5 cm	4 cm			
Beam-beam tuneshift, horizontal	0.073	0.014			
Beam-beam tuneshift, vertical	0.1	0.007			
Luminosity at E _{cm} = 105 Gev	1·10 ³⁴ cm ⁻² s ⁻¹				



 $L = 10^{34} \text{ cm}^{-2} \text{s}^{-1} = 10 \text{ kHz-uba}$

Lumi Limitations: Space-Charge (low E_{cm})

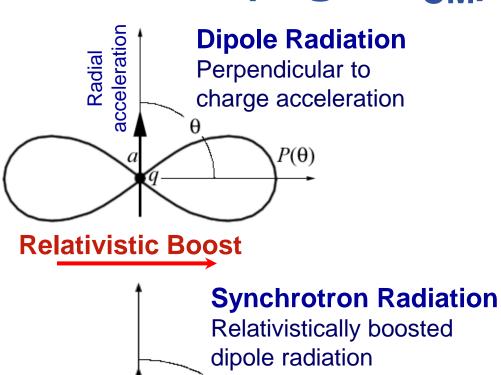
- Dense charged particle bunches electrostatically repel in rest frame
- Creates nonlinear space charge force and equation of motion in lab frame
- Fortunately scales with $1/\gamma^3$ so worst at low energies
 - Great example of time dilation
 - Limits high-intensity injector emittances
 - Force applies continuously within beam
- Tolerable linear "space charge tune spread" of 0.05 limits total current of 41 GeV proton beam to ~0.4A.
- (IBS: intra-beam hard scattering also contributes)


$$\frac{d^2y}{d\theta^2} + Q_{\mathcal{V}}^2 y = \frac{2Nr_0R^2}{l\beta^2\gamma^3} \left| \frac{1 - \exp\left(-\frac{y^2}{2\sigma_{\mathcal{V}}^2}\right)}{y} \right|$$

Lumi Limitations: Beam-Beam (mid E_{cm})

- Colliding beams see each other's collective charge distributions
- Creates nonlinear beam-beam force and equation of motion similar to space charge
 - BUT now the fields and force are in the lab frame already
 - NO benefit of relativistic scaling
 - Force applies only once per turn
- Tolerable "beam-beam tune spead" of 0.015 limits highest EIC luminosity

$$F(r) = \frac{Nq^2}{2\pi\epsilon_0 l} \frac{1+\beta^2}{r} \left[1 - \exp\left(-\frac{r^2}{2\sigma^2}\right) \right]$$

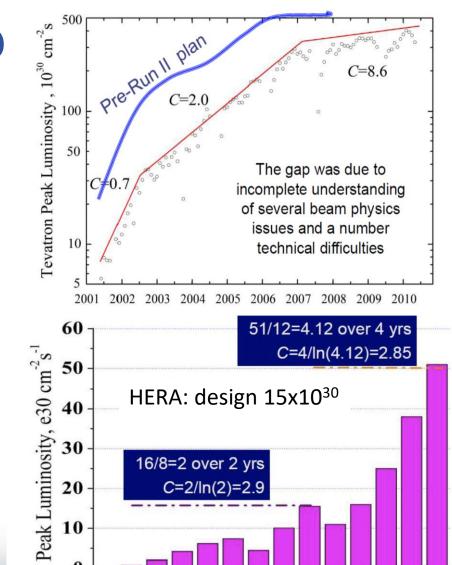


Lumi Limitations: Electron SR Power (high E_{CM})

- Accelerated charged particles emit photons
 - Electrons in synchrotron: radially accelerated
 - Synchrotron radiation emitted in forward cone
 - Cone opening angle $\propto 1/\gamma$

• Radiated power
$$P_{\gamma}=rac{2}{3}\,rac{e^2c}{4\pi\epsilon_0}\,rac{(\gamma\beta)^4}{
ho^2}$$

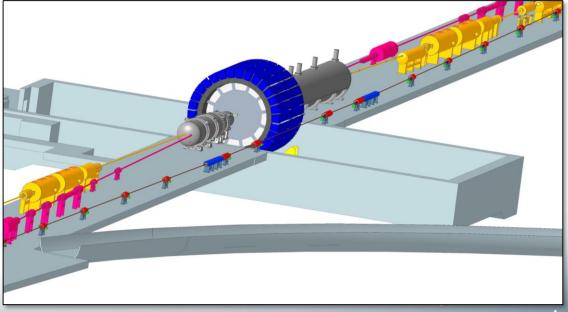
- γ scaling **much** worse for electrons
 - 18 GeV e: γ =3.5x10⁴ vs 255 GeV p: γ =3x10²
- Design: 9 MW @ 18 GeV (facility limit 10 MW)
- Expensive: Power must be provided by SRF
- Raise electron energy last (e current limit)

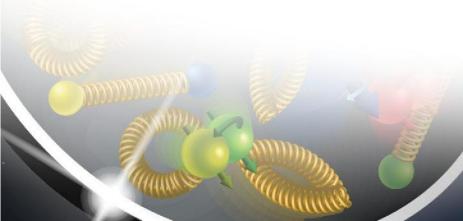


 $P(\theta)$

Collider Luminosity Ramp-Up

- Luminosity ramp-up to design takes years
 - Useful paper: arxiv 1202.3950 (V. Shiltsev)
 - Contextualizes Tevatron Run-II and early LHC
 - Luminosity ramp-up parameter C: complexity
 - · C: time (years) to increase lumi by e
 - C=2: factor of e luminosity increase in 2 years
 - Early commissioning can make quick strides
 - C<1 (or <<1) but do not get too exuberant
 - Long-term commissioning usually C~2-3
- EIC will very likely take years to reach design luminosities
 - But we will get there!


Tevatron Run-II: design 275x10³⁰


Summary

- EIC design meets all design requirements
- EIC luminosity is highly optimized
 - Balances several individual parameter optimizations
- EIC R&D progressing
 - Focus: challenging technical components
- e/p beam differences drive EIC choices
 - e.g. luminosity vs E_{cm}, IP aspect ratio
- Luminosity ramp-up will take time
 - will last substantially beyond project end
 - project provides excellent basis to get there!

Backup Slides

Table 3.3: EIC beam parameters for different center-of-mass energies \sqrt{s} , with strong hadron cooling. High divergence configuration.

Species	proton	electron									
Energy [GeV]	275	18	275	10	100	10	100	5	41	5	
CM energy [GeV]	140.7		104.9		63.2		44.7		28.6		
Bunch intensity [10 ¹⁰]	19.1	6.2	6.9	17.2	6.9	17.2	4.8	17.2	2.6	13.3	
No. of bunches	290		1160		1160		1160		1160		
Beam current [A]	0.69	0.227	1	2.5	1	2.5	0.69	2.5	0.38	1.93	
RMS norm. emit., h/v [µm]	5.2/0.47	845/71	3.3/0.3	391/26	3.2/0.29	391/26	2.7/0.25	196/18	1.9/0.45	196/34	
RMS emittance, h/v [nm]	18/1.6	24/2.0	11.3/1.0	20/1.3	30/2.7	20/1.3	26/2.3	20/1.8	44/10	20/3.5	
β^* , h/v [cm]]	80/7.1	59/5.7	80/7.2	45/5.6	63/5.7	96/12	61/5.5	78/7.1	90/7.1	196/21.0	
IP RMS beam size, h/v [μm]	119	/11	95/8.5		138/12		125/11		198/27		
K_{x}	11.1		1.1	11.1		11.1		7.3			
RMS $\Delta\theta$, h/v [µrad]	150/150	202/187	119/119	211/152	220/220	145/105	206/206	160/160	220/380	101/129	
BB parameter, h/v [10 ⁻³]	3/3	93/100	12/12	72/100	12/12	72/100	14/14	100/100	15/9	53/42	
RMS long. emittance $[10^{-3}, eV \cdot s]$	36		36		21		21		11		
RMS bunch length [cm]	6	0.9	6	0.7	7	0.7	7	0.7	7.5	0.7	
RMS $\Delta p / p [10^{-4}]$	6.8	10.9	6.8	5.8	9.7	5.8	9.7	6.8	10.3	6.8	
Max. space charge	0.007	neglig.	0.004	neglig.	0.026	neglig.	0.021	neglig.	0.05	neglig.	
Piwinski angle [rad]	6.3	2.1	7.9	2.4	6.3	1.8	7.0	2.0	4.2	1.1	
Long. IBS time [h]	2.0		2.9		2.5		3.1		3.8		
Transv. IBS time [h]	2.0		2		2.0/4.0		2.0/4.0		3.4/2.1		
Hourglass factor H	0.	0.91		0.94		0.90		0.88		0.93	
Luminosity $[10^{33} \text{cm}^{-2} \text{s}^{-1}]$	1.54		10.00		4.48		3.68		0.44		

