Nature is so extra!

An Introduction to the Standard Model of Particle Physics Lecture II: A closer look

Dr. James Keaveney

james.keaveney@uct.ac.za University of Cape Town

African School of Physics 2022

many diagrams from Modern Particle Physics by M. Thomson

What we know: forces through boson exchange

• fundamental particles interact: scatter, decay, annihilate...

Feynman diagram for Bhabha scattering $(e^+e^- o e^+e^-)$

• basic interactions (EM, weak, strong) understood as due to boson exchange $(\gamma, W^{\pm} \text{ or } Z, g)$

Interaction by particle exchange

 QM: transition probability (rate) from one state to another given by Fermi's Golden Rule

$$\Gamma_{fi} = 2\pi |T_{fi}|^2 \rho(E_f)$$

- T_{fi} encodes the fundamental physics in an amplitude, i.e., couplings/charges...
- $\rho(E_f)$ density of available states $(\frac{dN}{dE})$ for f at E_f

Toy example: charged particles exchange spinless boson x

- transitions from $i \rightarrow f$ can proceed via two time orderings
- summing the from each leads to manifestly Lorentz-invariant matrix-element

$$\mathcal{M}_{fi} = \frac{g_A g_B}{q^2 - m^2}$$

- factor of $\frac{1}{q^2-m^2}$ is called the *propagtor* arises naturally from picture of interaction by particle exchange
- \approx amplitude for x to be found at the second spacetime point

• $a + b \rightarrow c + d$ can also proceed via annihilation

• expression for \mathcal{M}_{fi} unchanged

$$\mathcal{M}_{\mathit{fi}} = rac{\mathit{g_Ag_B}}{\mathit{q^2 - m^2}}$$

• However, let's take a closer look at q^2

- left: $q^2 = (p_1 p_3)^2 = (p_2 p_4)^2 = t$
- right: $q^2 = (p_1 + p_2)^2 = (p_3 + p_4)^2 = s$

$$\mathcal{M}_{\mathit{fi}} = rac{\mathit{g_Ag_B}}{\mathit{q^2 - m^2}}$$

- referred to as t— and s—channel diagrams respectively
- t and s are two of the Mandelstam* variables

$$\mathcal{M}_{\mathit{fi}} = rac{\mathit{gAg}_{\mathit{B}}}{\mathit{q}^2 - \mathit{m}^2}$$

- Same form for \mathcal{M}_{fi} in t- and s-channel diagrams but significant kinematic differences:
 - s-channel: observed final state system has: $M_{\chi}^2 = (p_1 + p_2)^2$ If X is massive, e.g $M_X \approx y$, peak appears in $|\mathcal{M}_{fi}|^2$ at $q \approx y$
 - - probability for $q\bar{q} \to Z \to \mu^+\mu^-$ peaks when $q \approx M_Z$

Shameless advertising!

- Why not study $q \bar{q} \to Z \to \mu^+ \mu^-$ yourself?
- Fully documented Python Jupyter Notebook to study $q\bar{q} \to Z \to \mu^+\mu^-$ publicly available at this link
- Study of Z and Higgs bosons with ATLAS OpenData forms a third-year lab at UCT
- Try it out!

The basic QED interaction

- We have surprisingly little to do in order to make the toy example into a real expression for the basic QED process
- Consider the interaction between e and τ leptons by the exchange of a photon.
- Same ideas apply, but now we must account for the spin of the e,τ and also the spin (polarization) of the virtual photon.

The basic QED interaction

$$\begin{split} \mathcal{M}_{\mathit{fi}} &= \big[Q_{e} e \bar{u_{e}}(\textit{p}_{3}) \gamma^{\mu} \textit{u}_{e}(\textit{p}_{1})\big] \big[\sum_{\lambda} \frac{\epsilon_{\mu}^{\lambda} (\epsilon_{\nu}^{\lambda})^{*}}{q^{2}} \big] \big[Q_{\tau} e \bar{u_{\tau}}(\textit{p}_{4}) \gamma^{\nu} \textit{u}_{\tau}(\textit{p}_{2})\big] \\ \mathcal{M}_{\mathit{fi}} &= \frac{\big[Q_{e} e \bar{u_{e}}(\textit{p}_{3}) \gamma^{\mu} \textit{u}_{e}(\textit{p}_{1})\big]}{\big[\frac{-\textit{g}_{\mu\nu}}{q^{2}}\big]} \, \big[Q_{\tau} e \bar{u_{\tau}}(\textit{p}_{4}) \gamma^{\nu} \textit{u}_{\tau}(\textit{p}_{2})\big] \end{split}$$

- interaction of e^{\pm} with photon
- massless photon propagator summing over polarisations †
- interaction of τ^{\pm} with photon

[†]not trivial, Thomson Appendix D.4

The basic QED interaction

$$\mathcal{M}_{\mathit{fi}} = \left[\left[Q_e e ar{u_e}(p_3) \gamma^\mu u_e(p_1) \right] \left[\left[\frac{-g_{\mu
u}}{q^2} \right] \left[\left[Q_{ au} e ar{u_ au}(p_4) \gamma^
u u_ au(p_2) \right]
ight]$$

- $\left[\bar{u}_e(p_3)\gamma^\mu u_e(p_1)\right]$ four-vector "current" j_e^μ
- $\left[\bar{u}_{\tau}(p_4)\gamma^{\nu}u_{\tau}(p_2)\right]$ four-vector "current" j_{τ}^{ν}

Identification of four-vector currents allows manifestly LI

$$\mathcal{M} = -rac{\mathsf{e}^2}{\mathsf{q}^2} j_\mathsf{e}^\mu \cdot j_ au^
u$$

Recap: Parity

- The parity *operation* is equivalent to spatial inversion through the origin: $x \rightarrow -x$
- So the QM parity operator \hat{P} behaves as: $\psi(x,t) \rightarrow \psi'(x,t) = \hat{P}\psi(x,t) = \psi(-x,t)$
- \hat{P} is a Hermitian operator corresponds to an observable property (real eigenvalues), clearly $\hat{P}\hat{P}=I$

Scalars, pseudoscalars, vectors and axial vectors

(High-school physics+)

- Physical quantities classified by rank and \hat{P} inversion properties
 - Scalar: invariant under \hat{P} , e.g. mass, temperature
 - Can also be formed from, scalar product of two vectors, e.g $P^{\mu}P_{\mu}=m^{2}c^{2}$
 - **Vector:** sign change under \hat{P} , e.g. position, momentum
 - Axial vector: vectors, but invariant under \hat{P} , e.g. $\vec{L} = \vec{x} \times \vec{p}$
 - **Pseudoscalar:** single-valued, but sign change under \hat{P} , e.g. $h = \vec{S} \cdot \vec{p}$

Table 11.1 The parity properties of scalars, pseudoscalars, vectors and axial vectors.					
	Rank	Parity	Example		
Scalar	0	+	Temperature, T		
Pseudoscalar	0	-	Helicity, h		
Vector	1	-	Momentum, p		
Axial vector	1	+	Angular momentum, L		

Parity operator as a chirality test of a theory

- Chirality the inherent handedness of a fundamental particle.
- Do our theories care about Chirality?
- Applying the parity operator to the theory gives us the answer...
 - How? \rightarrow Parity operation changes handedness
- Don't confuse Chirality with Helicity
 - ullet chirality determined by transformation properties of ψ
 - helicity (frame dependent) projection of spin vector on momentum vector

Parity conservation in QED

$$\mathcal{M} = -rac{ extstyle e^2}{ extstyle q^2} j_{ extstyle e}^{\mu} \cdot j_{ au}^{
u}$$

Let's apply \hat{P} to \mathcal{M} see what happens to \mathcal{M} Only consider the product of the currents $j_e \cdot j_q$ As $j_e \cdot j_q = j_e^0 \cdot j_q^0 - j_e^k \cdot j_q^k$ It's clear that $j_e \cdot j_q$ transforms as

$$\hat{P}(j_e \cdot j_q) = j_e^0 \cdot j_q^0 - (-j_e^k \cdot -j_q^k)$$
$$= j_e \cdot j_q$$

parity is conserved in QED interactions

As QCD interactions have the same form: parity is conserved in QCD interactions

Parity in nuclear β -decay

- Recall β decay involves the emission of a W[±] boson by a quark - clearly a weak interaction
- 1957 C.S. Wu wiki et al. studied the parity structure of a particular β -decay
 - 60 Co $\rightarrow ^{60}$ Ni* + e⁻ + $\bar{\nu}_{e}$
- Co nuclei possess permanent mag. moment $\vec{\mu}$ aligned in a strong magnetic field

Parity in nuclear β -decay

- β electrons detected at various polar angles
- typical decay shown
- \vec{B} and μ are axial vectors
- ullet ightarrow only $ec{p}_e$ changes sign under \hat{P}
- dashed line shows \vec{p}_e after \hat{P}

Parity in nuclear β -decay

- if parity is conserved, the rates of the transformed and untransformed should be identical
- but they are not e^- emitted in the opposite direction of \vec{B} field much more often
- Thus parity is not conserved in the weak interaction
- clearly the weak interaction **cannot** have currents of the form $i^\mu = \bar u \gamma^k \gamma^0 \gamma^0 u$

Parity in weak interactions

- From the Wu experiment we weak interactions can't be described with the parity conserving currents of QED/QCD
- What other form might the current take?
- Only 5 ways of combining the spinors to form currents that transform as to allow Lorenz Invariant amplitudes.

Type	Form	Components	Boson spin
Scalar	$\overline{\psi}\phi$	1	0
Pseudoscalar	$\overline{\psi}\gamma^5\phi$	1	0
Vector	$\overline{\psi}\gamma^{\mu}\phi$	4	1
Axial vector	$\overline{\psi}\gamma^{\mu}\gamma^{5}\phi$	4	1
Tensor	$\overline{\psi}(\gamma^{\mu}\gamma^{\nu}-\gamma^{\nu}\gamma^{\mu})\phi$	6	2

Parity in weak interactions

- As the W^{\pm} is spin-1, the answer must involved vector and axial vector currents.
- Most generic solution is just a linear combination of the two

$$j^{\mu} \propto ar{u}(p')(g_V\gamma^{\mu}+g_A\gamma^{\mu}\gamma^5)u(p)=g_Vj_V^{\mu}+g_Aj_A^{\mu}$$

- g_V and g_A are vector and axial-vector coupling constants. ‡
- · Can a combination of vector and axial vector currents give the parity-violating amplitude we need?

Parity and j.j

- Both $(j_V.j_V)$ and $(j_A.j_A)$ are invariant under parity transformations.
- What if $j = g_V j_V^\mu + g_A j_A^\mu$?
- Exercise: Show that $(j_V.j_A)$ transforms to $(-j_V.j_A)$ (not parity invariant)
- linear combination of vector and axial-vector current provides a mechanism to explain the observed parity violation in weak interactions.
- Let's try this out for a basic weak interaction!

The basic weak interaction

- Consider a basic weak interaction (inverse eta decay, $u_e d o e^- u$)
- We assume the currents have currents of the form

$$j^{\mu}_{\nu e} = \bar{\textit{u}}(\textit{p}_{3})(\textit{g}_{\textit{V}}\gamma^{\mu} + \textit{g}_{\textit{A}}\gamma^{\mu}\gamma^{5})\textit{u}(\textit{p}_{1}) = \textit{g}_{\textit{V}}j^{\textit{V}}_{\nu e} + \textit{g}_{\textit{A}}j^{\textit{A}}_{\nu e}$$

$$j_{du}^{\mu} = \bar{u}(p_4)(g_V \gamma^{\mu} + g_A \gamma^{\mu} \gamma^5) u(p_2) = g_V j_{du}^V + g_A j_{du}^A$$

 The amplitude will be proportional to the product of the two currents

$$\mathcal{M} \propto j_{\nu e}.j_{du} = g_V^2(j_{\nu e}^V.j_{du}^V) + g_A^2(j_{\nu e}^A.j_{du}^A) + g_Vg_A(j_{\nu e}^V.j_{du}^A + j_{\nu e}^A.j_{du}^V)$$

The basic weak interaction under a parity transformation

 The VV and AA terms do not change sign under the parity transformation, but the AV term does:

$$j_{
u e}.j_{du} \xrightarrow{\hat{P}}$$

$$g_V^2 j_{\nu e}^V.j_{du}^V + g_A^2 j_{\nu e}^A.j_{du}^A - g_V g_A (j_{\nu e}^V.j_{du}^A + j_{\nu e}^A.j_{du}^V)$$

 Ratio of parity-violating to non parity-conserving parts of the amplitude given by:

$$\frac{g_V g_A}{g_V^2 + g_A^2}$$

• Maximal parity violation when $g_V = g_A$

Parity in weak interactions

- From experiment, we know §
 - weak current due to W^\pm bosons is a vector minus axial vector (V A) interaction of the form $(\gamma^\mu \gamma^\mu \gamma^5)$
 - $g_V = g_A$ Maximal parity violation!
- The corresponding vertex factor is:

$$\frac{-\mathsf{g}_{\mathsf{W}}}{\sqrt{2}}\bar{\mathsf{u}}(\mathsf{p}')\frac{1}{2}\gamma^{\mu}(1-\gamma^5)\mathsf{u}(\mathsf{p})$$

A closer look at the weak vertex factor

$$\frac{-g_W}{\sqrt{2}}\bar{u}(p')\frac{1}{2}\gamma^{\mu}(1-\gamma^5)u(p)$$

- ullet g_W the weak coupling strength
- $\frac{1}{2}\gamma^{\mu}(1-\gamma^5)$: the *chiral projection* operator
- Any Dirac spinor can be decomposed in to left and right-handed components with these operators
- $\frac{1}{2}\gamma^{\mu}(1-\gamma^5)$: the *left-handed* projection operator
- $\frac{1}{2}\gamma^{\mu}(1+\gamma^5)$: the *right-handed* projection operator
- This makes the chiral nature of the weak interaction explicit:
 - Only the left-handed part of the currents participate in the weak interaction!

Chirality in the weak vertex factor

- The presence of \hat{P}_L makes the **chiral** nature of the weak interaction explicit:
 - Only the left-handed part of the fermion currents participate in the weak interaction!
- For anti-particle spinors, \hat{P}_L projects out the right-handed states
 - Only the right-handed part of the anti-fermion currents participate in the weak interaction!

allowed helicity states for basic weak interactions

The W boson propagator

The propagator term for the virtual photon exchanged in QED interactions is

$$rac{-\mathsf{i}\mathsf{g}_{\mu
u}}{\mathsf{q}^2}$$

• Charged weak interactions are mediated by massive W bosons hence we must again sum over polarisation states of the $W^{\pm \P}$, yielding a vertex factor:

$$rac{- extit{i}}{q^2-m_W^2}igg(g_{\mu
u}-rac{q_\mu q_
u}{m_W^2}igg)$$

• For $q^2 << m_W^{\parallel}$, so the propagator is approximately

$$\frac{ig_{\mu\nu}}{m_{M}^{2}}$$

[¶]Thomson Appendix D

Thomson pg. 295

Fermi theory of β decay (1934)

- Long before the discovery of parity violation or even the W[±] boson...
- low energy β -decay described as a contact interaction governed by the Fermi coupling G_F

$$\mathcal{M} = \mathsf{G}_{\mathsf{F}} \mathsf{g}_{\mu\nu} [\bar{\mathsf{u}}_3 \gamma^{\mu} \mathsf{u}_1] [\bar{\mathsf{u}}_4 \gamma^{\nu} \mathsf{u}_2]$$

- G_F is really small $pprox 1.16 imes 10^{-5} \, GeV^{-2}$
- After the discovery of parity violation, the amplitude is rewritten as:

$$\mathcal{M} = \frac{1}{\sqrt{2}} G_F g_{\mu\nu} [\bar{u}_3 \gamma^{\mu} (1 - \gamma^5) u_1] [\bar{u}_4 \gamma^{\nu} (1 - \gamma^5) u_2]$$

• $\frac{1}{\sqrt{2}}$ appears to from the additional current and to keep G_F at the same value

Is the weak interaction weak?

• precise measurements of G_F and m_W allow us to extract the fundamental weak coupling constant g_W and dimensionless version α_W^{**}

$$\frac{\mathcal{G}_F}{\sqrt{2}} = \frac{g_W^2}{8m_W^2}$$
$$\alpha_W = \frac{g_W^2}{4\pi} \approx \frac{1}{30}$$

- The weak interaction is intrinsically stronger than the QED interaction $(\alpha_W > \alpha)$
- Before the W was discovered, the weak interaction seemed weak because some unknown physics at an experimentally-inaccessible energy was suppressing its effect...

^{**}Thomson pg 297, 298

History often repeats itself...

- Could new physics be just around the corner?
- Are you the physicist who will discover it?

 Don't hesitate to ask/email if you are interested in particle physics and/or ATLAS!

Backup slides

Parity conservation in QED

 Let's recall a basic QED interaction: electron-quark scattering.

We can write down matrix element as follows:

$$\mathcal{M}=rac{Q_q \mathrm{e}^2}{q^2} j_\mathrm{e} \cdot j_q$$

where j_e^{μ} and j_q^{ν} are the electron and quark 4-vector currents.

$$j_e^\mu = \bar{\textit{u}}(\textit{p}_3) \gamma^\mu \textit{u}(\textit{p}_1), \; j_q^
u = \bar{\textit{u}}(\textit{p}_4) \gamma^\mu \textit{u}(\textit{p}_2)$$

 Let's apply the parity operation to M and see what happens!

Parity conservation in QED

We apply the γ^0 operation to the spinors of the currents

Spinors transform as
$$\hat{P}u = \gamma^0 u$$

Adjoint spinors transform as $\hat{P}\bar{u}=\bar{u}\gamma^0$

So the currents transform as

$$\hat{P}j_{\rm e}^{\mu}=\bar{\it u}\gamma^0\gamma^{\mu}\gamma^0{\it u}$$

As $\gamma^0\gamma^0=$ I, the timelike (0) component of $\hat{P}j_{\rm e}^\mu$ is

$$\hat{P}j_{\rm e}^0 = \bar{u}\gamma^0\gamma^0\gamma^0u = \bar{u}\gamma^0u$$

the spacelike components (1,2,3) of $\hat{P}j_{\rm e}^{\mu}$ are

$$\begin{aligned} \hat{P}j_e^k &= \bar{u}\gamma^0\gamma^k\gamma^0u \\ &= -\bar{u}\gamma^k\gamma^0\gamma^0u \\ &= -\bar{u}\gamma^ku \end{aligned}$$

$$(\text{Recall } \gamma^0\gamma^k = -\gamma^k\gamma^0)$$

Fermi theory of β decay (1934)

- Fermi theory says: $\mathcal{M} = \frac{1}{\sqrt{2}} G_{Fg\mu\nu} [\bar{u_3} \gamma^{\mu} (1 \gamma^5) u_1] [\bar{u_4} \gamma^{\nu} (1 \gamma^5) u_2]$
- Weak theory says:

$$\mathcal{M}\!=\!\left[\frac{-\varepsilon_{W}}{\sqrt{2}}\bar{u_{\bar{3}}}\frac{1}{2}\gamma^{\mu}(1\!-\!\gamma^{5})u_{1}\right]\left[\frac{\varepsilon_{\mu\nu}\!-\!q_{\mu}q_{\nu}/m_{W}^{2}}{q^{2}\!-\!m_{W}^{2}}\right]\left[\frac{-\varepsilon_{W}}{\sqrt{2}}\bar{u_{\bar{4}}}\frac{1}{2}\gamma^{\nu}(1\!-\!\gamma^{5})u_{2}\right]$$

• if $q^2 \ll m_W^2$, Weak theory says:

$$\mathcal{M} = \frac{\varepsilon_W^2}{8m_W^2} g_{\mu\nu} \left[\bar{u_3} \gamma^{\mu} (1 - \gamma^5) u_1 \right] \left[\bar{u_4} \gamma^{\nu} (1 - \gamma^5) u_2 \right]$$

ullet so if $q^2 << m_W^2$ both theories give similar forms for ${\cal M}$

Fermi theory of β decay (1934)

- As Fermi's and the weak give almost identical results that agree with data when $q^2 << m_W^2$
- we can relate g_W to G_F . $\dagger\dagger$

$$\frac{G_F}{\sqrt{2}} = \frac{g_W^2}{8m_W^2}$$

- The apparent weakness of the weak interaction at low energies is nothing more than an artefact of the large W boson mass!
- Fermi's theory had absorbed effect of the large m_W in the effective coupling G_F
- Fermi's theory ignores the W^{\pm} boson propagtor...
 - When and how will Fermi's theory breakdown?

^{††}Thomson pg 296, 297

Parity and axial vector currents

- We already saw how vector currents like those in QED and QCD transform under parity.
- What about axial-vector currents?

$$j_A^\mu = \bar{u}\gamma^\mu\gamma^5 u$$

$$j_A^{\mu} \xrightarrow{\hat{P}} \bar{u} \gamma^0 \gamma^{\mu} \gamma^5 \gamma^0 u = -\bar{u} \gamma^0 \gamma^{\mu} \gamma^0 \gamma^5 u$$

 $\bullet \ \ {\rm recall} \ \gamma^5 \gamma^0 = - \gamma^0 \gamma^5$

Parity and axial vector currents

 So the time-like component of the axial-vector current transforms as

$$j_A^0 \xrightarrow{\hat{P}} -\bar{u}\gamma^0\gamma^0\gamma^0\gamma^5u = -\bar{u}\gamma^0\gamma^5u = -j_A^0$$

 and the space-like components of the axial-vector current transforms as

$$j_A^k \xrightarrow{\hat{P}} -\bar{u}\gamma^0 \gamma^k \gamma^0 \gamma^5 u = \bar{u}\gamma^k \gamma^5 u = j_A^k$$

- Recall $\gamma^0 \gamma^k = -\gamma^k \gamma^0$
- summarising:

$$j_V^0 \xrightarrow{\hat{P}} j_V^k, j_V^k \xrightarrow{\hat{P}} -j_V^k$$
 and $j_A^0 \xrightarrow{\hat{P}} -j_A^0, j_A^k \xrightarrow{\hat{P}} j_A^k$

Parity and j.j

- Our t— and s— channel amplitudes depend on scalar products of currents, i.e. j.j
- So the scalar product of two axial vectors is invariant under \hat{P}

$$j_{A,1} \cdot j_{A,2} = j_{A,1}^0 j_{A,2}^0 - j_{A,1}^k j_{A,2}^k \xrightarrow{\hat{P}} (-j_{A,1}^0) (-j_{A,2}^0) - j_{A,1}^k j_{A,2}^k = j_{A,1} \cdot j_{A,2}$$