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What we know: forces through boson exchange

• fundamental particles interact: scatter, decay, annihilate...

Feynman diagram for Bhabha scattering (e+e− → e+e−)

• basic interactions (EM, weak, strong) understood as due to
boson exchange (γ, W± or Z , g)
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Interaction by particle exchange

• QM: transition probability (rate) from one state to another
given by Fermi’s Golden Rule

Γfi = 2π|Tfi |2ρ(Ef )

• Tfi encodes the fundamental physics in an amplitude, i.e.,
couplings/charges...

• ρ(Ef ) density of available states (dN
dE ) for f at Ef
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Interaction by particle exchange: toy example

• Toy example: charged particles exchange spinless boson x

• transitions from i → f can proceed via two time orderings
• summing the from each leads to manifestly Lorentz-invariant

matrix-element
Mfi =

gAgB
q2 − m2

• factor of 1
q2−m2 is called the propagtor arises naturally from

picture of interaction by particle exchange
• ≈ amplitude for x to be found at the second spacetime point
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Interaction by particle exchange: toy example

• a + b → c + d can also proceed via annihilation

• expression for Mfi unchanged

Mfi =
gAgB

q2 − m2

• However, let’s take a closer look at q2
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Interaction by particle exchange: toy example

• left: q2 = (p1 − p3)2 = (p2 − p4)2 = t
• right: q2 = (p1 + p2)2 = (p3 + p4)2 = s

Mfi =
gAgB

q2 − m2

• referred to as t− and s−channel diagrams respectively
• t and s are two of the Mandelstam∗ variables

∗Bio of Stanley Mandelstam, South African

https://en.wikipedia.org/wiki/Stanley_Mandelstam
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Interaction by particle exchange: toy example

Mfi =
gAgB

q2 − m2

• Same form for Mfi in t− and s−channel diagrams but
significant kinematic differences:

• s-channel: observed final state system has: M2
x = (p1 + p2)

2

• If X is massive, e.g MX ≈ y , peak appears in |Mfi |2 at q ≈ y
• probability for qq̄ → Z → µ+µ− peaks when q ≈ MZ
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Shameless advertising!

• Why not study qq̄ → Z → µ+µ−

yourself?
• Fully documented Python Jupyter

Notebook to study qq̄ → Z → µ+µ−

publicly available at this link
• Study of Z and Higgs bosons with ATLAS

OpenData forms a third-year lab at UCT
• Try it out!

https://github.com/keaveney/UCT3rdYearLabATLASOpenData2022
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The basic QED interaction

• We have surprisingly little to do in order to make the toy
example into a real expression for the basic QED process

• Consider the interaction between e and τ leptons by the
exchange of a photon.

• Same ideas apply, but now we must account for the spin of
the e,τ and also the spin (polarization) of the virtual photon.
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The basic QED interaction

Mfi =
[
Qeeūe(p3)γµue(p1)

][∑
λ

ελµ(ε
λ
ν )

∗

q2

][
Qτeūτ (p4)γνuτ (p2)

]
Mfi =

[
Qeeūe(p3)γµue(p1)

] [−gµν
q2

] [
Qτeūτ (p4)γνuτ (p2)

]
• interaction of e± with photon
• massless photon propagator summing over polarisations †

• interaction of τ± with photon

†not trivial, Thomson Appendix D.4
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The basic QED interaction

Mfi =
[
Qeeūe(p3)γµue(p1)

] [−gµν
q2

] [
Qτeūτ (p4)γνuτ (p2)

]
•

[
ūe(p3)γµue(p1)

]
four-vector ”current” jµe

•
[
ūτ (p4)γνuτ (p2)

]
four-vector ”current” jντ

• Identification of four-vector currents allows manifestly LI

M = − e2
q2

jµe · jντ
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Recap: Parity

• The parity operation is equivalent to spatial inversion through
the origin: x → −x

• So the QM parity operator P̂ behaves as:
ψ(x , t) → ψ′(x , t) = P̂ψ(x , t) = ψ(−x , t)

• P̂ is a Hermitian operator - corresponds to an observable
property (real eigenvalues), clearly P̂P̂ = I
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Scalars, pseudoscalars, vectors and axial vectors
(High-school physics+)

• Physical quantities classified by rank and P̂ inversion
properties

• Scalar: invariant under P̂ , e.g. mass, temperature
• Can also be formed from, scalar product of two vectors, e.g

PµPµ = m2c2

• Vector: sign change under P̂ , e.g. position, momentum
• Axial vector: vectors, but invariant under P̂ , e.g. ~L = ~x × ~p
• Pseudoscalar: single-valued, but sign change under P̂ , e.g.

h = ~S · ~p
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Parity operator as a chirality test of a theory

• Chirality - the inherent handedness of a fundamental particle.
• Do our theories care about Chirality?
• Applying the parity operator to the theory gives us the

answer...
• How? → Parity operation changes handedness

• Don’t confuse Chirality with Helicity
• chirality - determined by transformation properties of ψ
• helicity - (frame dependent) projection of spin vector on

momentum vector
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Parity conservation in QED

M = − e2
q2

jµe · jντ

Let’s apply P̂ to M see what happens to M
Only consider the product of the currents je · jq
As je · jq = j0e · j0q − jk

e · jk
q

It’s clear that je · jq transforms as
P̂(je · jq) = j0e · j0q − (−jk

e · −jk
q )

= je · jq
parity is conserved in QED interactions

As QCD interactions have the same form:
parity is conserved in QCD interactions



16/38

Parity in nuclear β-decay

• Recall β decay involves the
emission of a W± boson by a
quark - clearly a weak interaction

• 1957 - C.S. Wu wiki et al. studied
the parity structure of a particular
β-decay

• 60Co →60 Ni∗ + e− + ν̄e

• Co nuclei possess permanent mag.
moment ~µ aligned in a strong
magnetic field

https://en.wikipedia.org/wiki/Chien-Shiung_Wu
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Parity in nuclear β-decay

• β electrons detected at various
polar angles

• typical decay shown
• ~B and µ are axial vectors
• → only ~pe changes sign under P̂
• dashed line shows ~pe after P̂
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Parity in nuclear β-decay
• if parity is conserved, the rates of the transformed and

untransformed should be identical
• but they are not - e− emitted in the opposite direction of ~B

field much more often
• Thus parity is not conserved in the weak interaction
• clearly the weak interaction cannot have currents of the form

jµ = ūγkγ0γ0u
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Parity in weak interactions
• From the Wu experiment we weak interactions can’t be

described with the parity conserving currents of QED/QCD
• What other form might the current take?
• Only 5 ways of combining the spinors to form currents that

transform as to allow Lorenz Invariant amplitudes.
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Parity in weak interactions

• As the W± is spin-1, the answer must involved vector and
axial vector currents.

• Most generic solution is just a linear combination of the two

jµ ∝ ū(p′)(gV γ
µ + gAγ

µγ5)u(p) = gV jµV + gAjµA

• gV and gA are vector and axial-vector coupling constants. ‡

• Can a combination of vector and axial vector currents give the
parity-violating amplitude we need?

‡Full description given in Thomson pg. 290-292
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Parity and j.j

• Both (jV .jV ) and (jA.jA) are invariant under parity
transformations.

• What if j = gV jµV + gAjµA?
• Exercise:

Show that (jV .jA) transforms to (−jV .jA) (not parity invariant)
• linear combination of vector and axial-vector current provides

a mechanism to explain the observed parity violation in weak
interactions.

• Let’s try this out for a basic weak interaction!
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The basic weak interaction

• Consider a basic weak interaction (inverse
β decay, νed → e−u)

• We assume the currents have currents of
the form

jµνe = ū(p3)(gV γ
µ+gAγ

µγ5)u(p1) = gV jV
νe+gAjA

νe

jµdu = ū(p4)(gV γ
µ+gAγ

µγ5)u(p2) = gV jV
du+gAjA

du

• The amplitude will be proportional to the
product of the two currents

M ∝ jνe .jdu = g2
V (jV

νe .jV
du)+g2

A(jA
νe .jA

du)+gV gA(jV
νe .jA

du+jA
νe .jV

du)
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The basic weak interaction under a parity transformation
• The VV and AA terms do not change

sign under the parity transformation, but
the AV term does:

jνe .jdu
P̂−→

g2
V jV

νe .jV
du + g2

AjA
νe .jA

du − gV gA(jV
νe .jA

du + jA
νe .jV

du)

• Ratio of parity-violating to non
parity-conserving parts of the amplitude
given by:

gV gA
g2

V + g2
A

• Maximal parity violation when gV = gA
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Parity in weak interactions

• From experiment, we know §

• weak current due to W± bosons is a vector minus axial vector
(V - A) interaction of the form (γµ − γµγ5)

• gV = gA Maximal parity violation!
• The corresponding vertex factor is:

−gW√
2

ū(p′)
1

2
γµ(1− γ5)u(p)

§Interesting history on the deduction of the V-A form link

https://arxiv.org/pdf/1403.3309.pdf
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A closer look at the weak vertex factor

−gW√
2

ū(p′)
1

2
γµ(1− γ5)u(p)

• gW - the weak coupling strength
• 1

2γ
µ(1− γ5): the chiral projection operator

• Any Dirac spinor can be decomposed in to left and
right-handed components with these operators

• 1
2γ

µ(1− γ5): the left-handed projection operator
• 1

2γ
µ(1 + γ5): the right-handed projection operator

• This makes the chiral nature of the weak interaction explicit:
• Only the left-handed part of the currents participate in the

weak interaction!
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Chirality in the weak vertex factor
• The presence of P̂L makes the chiral nature of the weak

interaction explicit:
• Only the left-handed part of the fermion currents participate in

the weak interaction!
• For anti-particle spinors, P̂L projects out the right-handed

states
• Only the right-handed part of the anti-fermion currents

participate in the weak interaction!

allowed helicity states for basic weak interactions
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The W boson propagator
• The propagator term for the virtual photon exchanged in QED

interactions is

−igµν
q2

• Charged weak interactions are mediated by massive W bosons
hence we must again sum over polarisation states of the
W±¶, yielding a vertex factor:

−i
q2 − m2

W

(
gµν −

qµqν
m2

W

)
• For q2 << mW

‖, so the propagator is approximately

igµν
m2

W
¶Thomson Appendix D
‖Thomson pg. 295
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Fermi theory of β decay (1934)

• Long before the discovery of parity violation or
even the W± boson...

• low energy β-decay described as a contact
interaction governed by the Fermi coupling GF

M = GF gµν [ū3γµu1][ū4γνu2]
• GF is really small ≈ 1.16× 10−5GeV−2

• After the discovery of parity violation, the
amplitude is rewritten as:

M =
1√
2

GF gµν [ū3γµ(1− γ5)u1][ū4γν(1− γ5)u2]

• 1√
2

appears to from the additional current and
to keep GF at the same value
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Is the weak interaction weak?

• precise measurements of GF and mW allow us to extract the
fundamental weak coupling constant gW and dimensionless
version αW

∗∗

GF√
2
=

g2
W

8m2
W

αW =
g2

W
4π

≈ 1

30
• The weak interaction is intrinsically stronger than the QED

interaction (αW > α)

• Before the W was discovered, the weak interaction seemed
weak because some unknown physics at an
experimentally-inaccessible energy was suppressing its effect...

∗∗Thomson pg 297, 298
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History often repeats itself...
• Could new physics be just around the corner?
• Are you the physicist who will discover it?

• Don’t hesitate to ask/email if you are interested in particle
physics and/or ATLAS!
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Backup slides
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Parity conservation in QED

• Let’s recall a basic QED interaction:
electron-quark scattering.

We can write down matrix element as follows:

M =
Qqe2

q2
je · jq

where jµe and jνq are the electron and quark
4-vector currents.

jµe = ū(p3)γµu(p1), jνq = ū(p4)γµu(p2)

• Let’s apply the parity operation to M and
see what happens!
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Parity conservation in QED

We apply the γ0 operation to the spinors of the currents
Spinors transform as P̂u = γ0u
Adjoint spinors transform as P̂ ū = ūγ0

So the currents transform as
P̂ jµe = ūγ0γµγ0u

As γ0γ0 = I, the timelike (0) component of P̂ jµe is
P̂ j0e = ūγ0γ0γ0u = ūγ0u

the spacelike components (1,2,3) of P̂ jµe are
P̂ jk

e = ūγ0γkγ0u
= −ūγkγ0γ0u

= −ūγku
(Recall γ0γk = −γkγ0)
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Fermi theory of β decay (1934)

• Fermi theory says: M= 1√
2

GF gµν [ū3γ
µ(1−γ5)u1][ū4γ

ν (1−γ5)u2]

• Weak theory says:

M=

[
−gW√

2
ū3 1

2 γµ(1−γ5)u1

][
gµν−qµqν/m2

W
q2−m2

W

][
−gW√

2
ū4 1

2 γν (1−γ5)u2

]
• if q2 << m2

W , Weak theory says:

M=
g2W
8m2

W
gµν

[
ū3γ

µ(1−γ5)u1

][
ū4γ

ν (1−γ5)u2

]
• so if q2 << m2

W both theories give similar forms for M
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Fermi theory of β decay (1934)

• As Fermi’s and the weak give almost identical results that
agree with data when q2 << m2

W
• we can relate gW to GF . ††

GF√
2
=

g2
W

8m2
W

• The apparent weakness of the weak interaction at low energies
is nothing more than an artefact of the large W boson mass!

• Fermi’s theory had absorbed effect of the large mW in the
effective coupling GF

• Fermi’s theory ignores the W± boson propagtor...
• When and how will Fermi’s theory breakdown?

††Thomson pg 296, 297
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Parity and axial vector currents

• We already saw how vector currents like those in QED and
QCD transform under parity.

• What about axial-vector currents?

jµA = ūγµγ5u

jµA
P̂−→ ūγ0γµγ5γ0u = −ūγ0γµγ0γ5u

• recall γ5γ0 = −γ0γ5
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Parity and axial vector currents

• So the time-like component of the axial-vector current
transforms as

j0A
P̂−→ −ūγ0γ0γ0γ5u = −ūγ0γ5u = −j0A

• and the space-like components of the axial-vector current
transforms as

jk
A

P̂−→ −ūγ0γkγ0γ5u = ūγkγ5u = jk
A

• Recall γ0γk = −γkγ0

• summarising:

j0V
P̂−→ jk

V , jk
V

P̂−→ −jk
V and j0A

P̂−→ −j0A, jk
A

P̂−→ jk
A
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Parity and j.j

• Our t− and s− channel amplitudes depend on scalar products
of currents, i.e. j.j

• So the scalar product of two axial vectors is invariant under P̂

jA,1 · jA,2 = j0A,1j0A,2− jk
A,1jk

A,2
P̂−→ (−j0A,1)(−j0A,2)− jk

A,1jk
A,2 = jA,1 · jA,2


