

Particle Detectors

A Lecture at the African School for Fundamental Physics and Applications, 28/11-09/12 2022 Nelson Mandela University, South Africa

Lecture IV Advanced detectors and some new developments

First Workshop NextGAPES -2019 Lomonosov Moscow State University, Physics Department, Skobeltsyn Institute of Nuclear Physics. Moscow - June, 21-22, 2019 One example:

AMS100

Stefan Schael RWTH Aachen

CERN seminar 4-11-2022

1

Particle Detectors

Lecture at the African School for Fundamental Physics and Applications, 28/11-09/12 2022 Nelson Mandela University, South Africa Goal this lecture: to discuss some examples Looking at recent technological developments infinite number of ideas for new detectors

Lecture IV

- High purity segmented Ge-detectors for Nuclear physics
- LHC detectors
- Recent developments of CMOS pixel detectors
- Fast detectors for time of flight measurements
- High granularity calorimeters
- AMS100 in space

Exercises!!!!!

Institut Phyridiaciaelinaire Hubbert CLARIN

PHOTO-ELECTRIC EFFECT

Université

de Strasbourg

Figure 1.3: Effect of interaction processes on the predicted detector response function for mono-energetic γ -rays with $h\nu_0 >> 1.022 MeV$.

COMPTON SCATTERING

PAIR CREATION

Large volume semiconductor detector

Semi-conductor detectors

			Mobility (velocity/E)					Z [a.m.u]
Material	E _g [eV]	w [eV]		1	$\tau_{e}[s]$	$\tau_{h}[s]$	density	
			μ_{e}	μ_h			g/cm ³	
			$[cm^2/Vs]$	[cm ² /Vs]				
С	5.5	13	1800	1200	2 10 ⁻⁹	2 10 ⁻⁹	3.515	6
(diamond)								
Si	1.12	3.61	1350	480	5 10 ⁻³	5 10 ⁻³	2.33	14
Ge	0.67	2.98	3900	1900	2 10 ⁻⁵	2 10 ⁻⁵	5.32	32
GaAs	1.42	4.70	8500	450	5 10 ⁻⁸	5 10 ⁻⁸	5.32	31,33
CdTe	1.56	4.43	1050	100	1 10 ⁻⁶	1 10 ⁻⁶		48,52
HgI ₂	2.13	4.20	100	_	1 10 ⁻⁶	2 10 ⁻⁶		53,80

$$\frac{dN}{N} = \frac{1}{\sqrt{N}} ; E \sim N; \quad N = \text{numb. of (e,h)}$$

Parameters Values for Materials Used in Fabricating Semiconductor Radiation Sensors

[3]

7

Université

Large volume detectors

Depletion zone

$$d\Big|_{V_{bias}} = x_n + x_p = \sqrt{\frac{2\varepsilon(\phi_0 + V_{bias})(N_A + N_D)}{e}} \frac{(N_A + N_D)}{N_A N_D}$$

$$N = N_A \ll N_D; \ \phi_0 \ll V_{bias}$$

$$d\Big|_{V_{bias}} = \sqrt{\frac{2\varepsilon V_{bias}}{eN}}; \ N = N_A \text{ ou } N_D = \text{net impurity of material}$$

$$N = 10^{+13} atoms / cm^3; \ V_{bias} = 3000 Volt;$$

$$d\Big|_{V_{bias} = 3000 Volt} = 2.2 mm$$

High purity :

$$N_{A} ou \ N_{D} = 10^{+10} atoms / cm^{3}; \ V_{bias} = 1000Volt; \ \varepsilon = 16 \cdot \varepsilon_{0};$$

$$\varepsilon_{0} = 8.85 \cdot 10^{-12} F / m; F = Coulomb / Volt; \ e = 1.6 \cdot 10^{-19} Coulomb$$

$$d\Big|_{V_{bias} = 1000Volt} = 1.8 cm$$

$$d\Big|_{V_{bias} = 2000Volt} = 2.5 cm$$

$$d\Big|_{V_{bias} = 3000Volt} = 3.1 cm$$

.

High Purity Germanium

Energy measurement of gammas $(|N_A-N_D| \approx 10^{10} \text{ cm}^{-3}):$ $E_{gap} = 0.74 \text{ eV} \Rightarrow$ operation temperature : T= 77K $w_{eh}=2.98 \text{ eV}$

- ⇒excellent resolution
 - $E_{\gamma} = 1$ MeV, $dE \cong 1$ keV
 - "High" photo peak efficiency

10

Germanium detectors

Operation temperature: T= 77K (Liquid Nitrogen)

Configuration : co-axial

Electronics is mounted very close to the Crystal

PHC

Euroball à Strasbourg

ll y a quelques années

Challenges in Nuclear Structure Physics

Université

de Strasbourg

The idea of γ-ray tracking

Figure 1.12: Doppler broadening

Previously scattered gammas were wasted. Technology is available now to track them.

Ge Tracking Array

<u>Combination of:</u> •segmented detectors •digital electronics •pulse processing •tracking the γ-rays

Amount of germanium:

36-fold segmentation

What is AGATA?

derata deriver in the des (2012) 26 deriver in the deriver in the des (2012) 26 deriver in the deriver in the	A Criple Cryost - integration of 111 high resolu spectroscopy channels - cold FET technology for all si - of FET technology for all si - of technology for all si -	at tion ignals • So ma c • 36-fo • Tr inte	olid Sphere of Ge terial: Solid angle overage ~ 82 % old segmentation of crystal rack each gamma raction through the crystal Reconstruct and entangle gammas	13 Countries, > 4	0 Institutions	
Rates	3 MHz (Mγ= 1)	300 kHz (Mγ= 30)	180 hexagona	al crystals:	3 shapes	
Efficiency	43% (Mγ= 1)	28% (Mγ = 30)	3 fold cluster	s (cold FET): 60) all equal 📑	•
Peak/Total	58% (Mγ= 1)	49% (M γ = 30)	Inner radius	(Ge):	23.5 cm 🪺	Jun a

Angular Resolution

IPHC

Pluridisciplinaire Hubert Culten

FWHM (1MeV), v/c = 50% ~6keV

~1°

Dr Helen Boston

AGATA ADVANCED GAMMA TRACKING ARRAY

362 kg

6480 segments

Segmentation of High Purity Ge crystal

Divide the electrodes on the surface of the detector

Weighting field shows how the segmentation works

Figure 2.2: Weighting-potential distributions of the Core (a) and of segment A (b). Calculation conditions are the following: readout electrode at unit potential, all other electrode at zero potential, no space charge inside the material.

$$\begin{split} Q(t) &= -q \cdot \left[\phi_w\left(x_h(t)\right) - \phi_w(x_e(t))\right] \\ i(t) &= q \cdot \left[E_w(x_h(t)) \cdot v_h(t) - E_w(x_e(t)) \cdot v_e(t)\right] \end{split}$$

 $\phi_{\rm w}$ and $E_{\rm w}$ are the weighting potential and the weighting field.

Michaël Ginsz, PhD thesis 2017

Institut Plyridisciplinate Hubbert CLIREN STRASUME

Université

de Strasbourg

Dr Helen Boston

Dr Helen Boston

AGATE

Dr Helen Boston

Dr Helen Boston

Evolution of AGATA

They think to have 60 detectors for AGATA by end 2023

Evolution of AGATA

Conclusions (nuclear detectors)

- High Z Scintillators are used for gamma spectroscopy, particular for anti Compton spectrometers
- Low Z (organic)-Scintillators used for particle detection/stopping
- Semiconductors: Si used for charged particle spectroscopy (alpha, protons, ... Fission fragments)
- Semiconductors: HP-Ge for high resolution and high efficient Gamma spectroscopy

Grand Collisionneur de Hadrons 7 TeV-protons + 7 TeV-protons

rculate 11,245

times/sec

100's of millions of proton-proton collisions/second

CMS Centre @

Collisions are a billion times hotter han the centre of the sun and create new particles ($E = mc^2$)

CMS

proid Magnets Solenoid Magnet SCT Tracker Pixel Detector TR1 Tracker

Centre

ATLAS superimposed to

How huge are ATLAS and CMS?

	<u>ATLAS</u>	<u>CMS</u>
Overall weight (tons)	7000	12500
Diameter	22 m	15 m
Length	46 m	22 m
Solenoid field	2 T	4 T

ALICE

Université

Université

Transverse slice through CMS detector

CMOS Pixel detectors

MAPS = Monolithic Active Pixel Sensors

- For high resolution tracking

Université de Strasbourg

CMOS (Complementary metal-oxide-semiconductor) Detectors

Avantages of CMOS VLSI technology:

- µ-circuits integrated but still
- 100% fill factor
- Small sensitive volume (\approx épitaxial layer) $\approx \! 10 \; \mu m$ thick detectors can be very thin
- Industrial production standards \Rightarrow « modestes » costs,

Short coming:

Circuitry of the electronic circuit is limited to only NMOS transistors.

Signal is created in p-epitaxial layer (lower doping):

 $Q\approx 80 \text{ e-h /} \mu m \Rightarrow signal < 1000 \text{ e}^-$

e⁻ diffusent (thermiquement) to the jonction helped by reflexions at the boundaries formed by the p-weel and the substrat (higher doping)

Diffusion time < 100ns

Charge is collected by the diode formed by the jonction n-well/p-epitaxial layer

Characteristics:

- Pixel detector could be made very thin, low material budget!
- Thin epitaxial layer \rightarrow Small signals
- Small pixel size possible (10x10µm²) to obtain very good spatial resolution, but then limited space for electronic circuit available
- Only n-well Transistors
- Simple on pixel-cell electronics \rightarrow slow Read Out (next slide)

Basic Read-Out Architecture only 3 transistors

Figure 3.8: Three transistor cell, (a) with a timing diagram showing the signal shape after passage of a particle, (b).

Tomasz Hemperek, PhD thesis

Rolling shutter readout concept where the integrated signal is read out and reset row by row:

- In his case all pixel outputs in the column are connected.
- Only one row of pixels is selected at a time for readout and/or reset.
- The column outputs can be multiplexed at the periphery in case of limited analog outputs.
- The recorded values can be digitized by external or internal components

Tomasz Hemperek, PhD thesis

Université

de Strasbourg

Typical layout of a MAPS chip

courtesy of Ch. Hu-Guo / TWEPP-2010

.

•

•

.

•

•

Developments to improve performance for different experiments

- Several labs develop CMOS pixel sensors : Italy (INFN, Univ.), UK (RAL), CERN, France (IPHC, Saclay), USA, ...
- Increase and speed up collected charge by drift in depleted silicon
- Use of high resistivity silicon wafers
- Use of different (more complicated) CMOS processes
- Change layout to use the complete design potential (use of p-MOS transistors)
- Speed up Read Out architecture
- Large area (wafer size) devices (stitching)
 - Curved thin detector layers without additional support material

Depleted Monolithic Active Pixels (HV-MAPS or D-MAPS)

Goals:

- large signals
- fast charge collection by drift in a 50µm – 200µm thick depleted layer
- the use of PMOS and NMOS transistors in the pixel cell (full CMOS),
- The entire CMOS pixel electronics is placed inside the deep n-well.
- This way, the pixel contains only one deep n-well without any inactive
 secondary wells that could attract the signal charge and cause detection inefficiency.
- it is reversely biased with respect to vith the substrate from the front side.
- By applying high voltage reverse bias (>60V) it is possible to create a depletion depth of a few to tens of microns
- implementation in a commercial technology

VDD N N PW NW P-buried (PB) -50-300µm Very Deep Nwell (VDN) Cos particle track (~80 e'/µm) P-substrate HV 0V VDD Ν N N NW NIA PW N

-HV

P-buried (PB)

NW.

VDD

-HV

HWP

SiO₂ (BOX)

particle track (~80 e-/µm)

N

PW

particle track (~80 e-/µm)

0V

P-substrate

Depleted MAPS, HV-SOI

VDD

N

NW

Deep Pwell

-2-3µm

HWP

P-substrate

N

NWC

TCDS

Tomasz Hemperek, PhD thesis

N

(BOX = buried layer of silicon oxide)

Depleted MAPS,

Logic located outside collecting node

Building Vertex detectors with MAPS STAR experiment at RHIC, BNL

First large scale application of MAPS in an experiement

2 layers of MAPS for pixel vertex detector

(b) functional diagram of the chip

M. A. Szelezniak PhD thesis 2008

Figure 6.3: MIMOSTAR chip - layout, (a), and a functional schematic diagram, (b).

STAR experiment at RHIC, BNL

First large scale application of MAPS in an experiement

- 2 layers of MAPS for pixel vertex detector

356 M pixels in 2 layers ~0.16 m² R=28mm, 80mm Pixels size 20.7x20.7 μ m² X/X₀ = 0.39% for layer 1 Integration time 185.6 μ s

carbon fiber sector tubes (~ 200 µm thick)

de Strasbourg

Building Vertex detectors with MAPS ALICE (LHC-CERN)

A Large Ion Collider Experiment

ITS2 layout

- 7 layers (inner/middle/outer): 3/2/2 from R = 23 mm to R = 400 mm
- 192 staves (IL/ML/OL): 48/54/90
- Ultra-lightweight support structure and cooling

10 m² active silicon area, 12.5×10⁹ pixels

Spatial resolution $\approx 5 \, \mu m$

Integration time < 10 µs

high-resistivity silicon epitaxial layer

UNIVERSITY OF

ALICE: MAPS OXFORD

- Improve impact parameter resolution by a factor of ~3 in $(r-\phi)$ and ~5 in (z)
 - -Closer to IP: 39 mm \rightarrow 21 mm (layer 0)
 - -Reduce beampipe radius: 29 mm \rightarrow 18.2 mm
 - -Reduce pixel size: (50 μ m x 425 μ m) \rightarrow O(30 µm x 30 µm)
 - -Reduce material budget: 1.14 % $X_0 \rightarrow$ 0.3 % X₀ (inner layers)

- High tracking efficiency and p_T resolution
 - Increase granularity and radial extension → 7 pixel layers
- Fast readout of Pb-Pb interactions at 50 kHz (now 1kHz) and 400 kHz in p-p interactions
- Rad hard to TID: 2.7 Mrad, NIEL: 1.7 x 10¹³ 1 MeV n_{eq} cm⁻² (safety factor 10)
- Fast insertion/removal for maintenance

Building Vertex detectors with MAPS ALICE (LHC-CERN)

A Large Ion Collider Experiment

ALPIDE — the Monolithic Active Pixel Sensor (MAPS) for ITS2

AMP COMP TH • Developed within the ITS2 project

Technology

- TowerJazz 180 nm CMOS Imaging Process
- High-resistivity (> $1k\Omega$ cm) p-type epitaxial layer (25 μ m) on p-type substrate
- Small n-well diode (2 µm diameter), ~100 times smaller than pixel (~30 µm)
 → low capacitance (~fF)
- Reverse bias voltage (-6 V < V_{BB} < 0 V) to substrate to increase depletion zone around NWELL collection diode
- Deep PWELL shields NWELL of PMOS transistors
 → full CMOS circuitry within active area

Key features

- In-pixel amplification and shaping, discrimination and Multiple-Event Buffers (MEB)
- In-matrix data sparsification
- On-chip high-speed link (1.2 Gbps)
- Low total power consumption < 40 mW/cm²

Technology now used in other applications

ESE Electronics seminar by T. Kugathasan

Capture d'écran

ALICE ITS2 | CERN Detector Seminar | October 21st, 2022 | Felix Reidt (CERN)

- TowerJazz and the Detector Systems Centre (Rutherford Appleton Laboratory)
 - Deep P-layer to shield the PMOS transistors from epi layer
 - No charge loss occurs
 - Full CMOS ➡ Smart pixels possible
 - Not a CMOS standard process
 - Disadvantages
 - limited number of producers and non-standard CMOS process

- INMAPS on High Resistivity resistivity (> 1kΩ cm) p-type epi-layer 18-40 µm thick
 - Moderate reverse bias to back bias to increase depletion zone around NWELL diode → some charge collection by drift
 - Small n-well collecting diodes small Cin
 - Radiation tolerance (TID) to 700 krad (= 1/1500 of HL-LHC-pp)

R. Turchetta, W. Snoeys

D. Bortoletto Academic Training 2016

54

ALICE (LHC-CERN) ITS 2

A Large Ion Collider Experiment

ITS3

de Strasbourg

Université

2 × 26.88 µm 2 x 29.24 µm metal-layers 25 µm epitaxial laver substrate 14 µm Schematic cross section of ALPIDE

Magnus Mager (CERN) | ALICE ITS3 | CERN detector seminar | 24.09.2021 | 9

Magnus Mager (CERN) | ALICE ITS3 | CERN detector seminar | 24.09.2021 | 26

Université

de Strasbourg

CMS Experiment at the LHC, CERN Data recorded: 2016-Oct-14 09:56:16.733952 GMT Run / Event / LS: 283171 / 142530805 / 254

First Tracker layer R~3cm ~0.7 hits/BX/mm2 = 2.8 GHz/cm2

3D sensors

- Advantages
 - Decouple thickness from electrode distance
 - Lower depletion voltage, less power dissipation
 - Smaller drift distance, less trapping
- Disadvantage
 - More complex production process
 - Lower yield, higher costs
 - Higher capacitance (more noise)

- 3D is the most radiation hard technology to-day
- Similar performance than planar sensors, but less demanding in terms of bias voltage and cooling.
- For the HL-LHC we need :
 - More radiation hard (innermost layer(s), 1-2E16 n_{eq}/cm²)
 - Smaller pixels (compatible with new readout chip, $50 \mu m 25 \mu m$)
 - Thinner (reduce cluster size/merging, 200 μm 100 μm)

3D Silicon

4 Mauro Dinardo, Università degli Studi di Mila Capture d'écran

4D Detectors (x,y,z and time)

Tracking z-resolution can be larger than vertex-separation: Ambiguous Track-to-vertex association

N. Cartiglia, INFN, Hiroshima Conference 2017

Timing at each point along the track:

- Massive simplification of patter recognition
- Faster tracking algorithm
- Even in very dense environments by using only "time compatible points »

61

The Time Structure of Crossing Bunches

- In addition to extent in z, there is an extent of the bunch crossing in time
- For nominal HL-LHC optics the core of the bunches pass through each other in ~300 ps
- When bunches overlap entirely, achieve maximum spread in z and maximum pileup density
- Normally an experiment only sees the integral of this distribution over time

Fermilab

Need to discriminate vertices with time spread of ~180 ps, must have time track timing [cm]

resolution significantly smaller than beamspot spread so that tracks cluster in time.

Figure 1.2: Left: Simulated and reconstructed vertices in a 200 pileup event assuming a MIP timing detector covering the barrel and endcaps. The vertical lines indicate 3D-reconstructed vertices, with instances of vertex merging visible throughout the event display. Right: Rate of tracks from pileup vertices incorrectly associated with the primary vertex of the hard interaction normalized to the total number of tracks in the vertex.

Using the Time-at-vertex in Reconstruction

- With the track-time at distance of closest approach
 it becomes possible to cluster tracks in 2D into vertices
- This significantly increases the distance between vertices and hence makes them harder to confuse
- CMS Simulation <u> = 200 Simulated Vertices 3D Reconstructed Vertices 0.6 4D Reconstructed Vertices 4D Tracks 0.4 0.2 0 -0.2 -0.4-10 -5 5 n 10 z (cm)

CMS Simulation

<µ>	4D Merged Vertex Fraction	3D Merged Vertex Fraction	Ratio of 3D/4D
50	0.5%	3.3%	6.6
200	1.5%	13.4%	8.9

- Expect 5-10x improvement in vertex merging rate (achieved 9x)
- Expect 3-5x reduction in track-vertex association false positives (achieve ~3x)

lutetium-yttrium orthosilicate crystals activated with cerium (LYSO:Ce) read out with SiPMs. The

The barrel timing layer will cover the pseudorapidity region up to |h| = 1.48 with a total active surface of about 40 m2.

The fundamental detecting cell will consist of a thin LYSO:Ce crystal with about 12→12 mm2 cross-section coupled to a 4x4 mm2 SiPM.

The crystal thickness will vary between about 3.7 mm (|h| < 0.7) and 2.4 mm (|h| > 1.1),

Figure 2.4: Top left: Set of $11 \times 11 \times 3 \text{ mm}^3$ LYSO:Ce crystals with depolished lateral faces, before and after Teflon wrapping. Bottom left: $6 \times 6 \text{ mm}^2$ HPK SiPMs glued on LYSO crystals. Right: Crystal+SiPM sensors plugged on the NINO board used for test beam studies.

LGADs

Nicolo Cartiglia

 Achieve ≈10 ps timing resolution with Si detectors using charge amplification with Low-Gain Avalanche Detectors

Lots of R&D, DC and AC coupled, chip design, test beams Both ATLAS and CMS but also for Higgs factories etc

HL-LHC necessitates upgrades to the CMS detector

3

Thorben Quast | Pisa Meeting 2022, 25 May 2022

Université

de Strasbourg

Technology Choices

Dissipated power ~250 kW

Removed with two-phase CO2 cooling operated at -35 C

Geometry slightly adjusted since the <u>TDR release</u>

Idea: HGCAL will be 3D imaging calorimeter with timing capabilities 8

Lateral Structure, Cassettes

- Silicon and scintillator modules assembled into
- cassettes
- Supported and cooled by copper cooling plate
- Data from modules collected by motherboards
- Cassettes house all services and DC2DC converters

Silicon Modules

- Glued stack of baseplate, sensor and readout hexaboard
- baseplates are made of CuW in CE-E, PCB in CE-H
- Relative alignment within
 ~50um achieved with gantry based automated assembly
- Electrical connections are done with wire-bonds

signal bonds shield bonds backside HV bonds

Dreams in space

Université

AMS → AMS100

It took 600 Physicists and Engineers from 16 Countries and 60 Institutes

S. Schael RWTH Aachen University November 2022

> 17 years to construct the Alpha Magnetic Spectrometer. 300,000 electronic channels 5m x 4m x 3m 🧪 7 tons Silicon TRD layer TOF 1 Magnet 7 Silicon layers **TOF 3**, **Radiators** RICH 11,000 Photo Sensors Silicon layer ECAL

We have to start now to work on the next generation magnetic spectrometer in space !

S. Schael RWTH Aachen University November 2022

acceptance by a factor 1000.

PHC

AMS \rightarrow AMS100

GeV

TeV

PeV

EeV

ZeV 13

Swordy KG 2011

Université de Strasbourg

AMS 100

S. Schael RWTH Aachen University November 2022

Nucl.Instrum.Meth.A 1040 (2022) 167215 • Proceedings of: VCI2022

S. Schael RWTH Aachen University November 2022

Université

de Strasbourg

AMS-100 Solenoid a non-insulated coil

90 km of High Temperature Superconducting Tape

Thickness: 18 x 0.04 mm = 0.72 mm !

Stack of 18 Tapes 12 mm wide; Fujikura, 700 A @ 77K, SF

S. Schael RWTH Aachen University

AMS 100

AMS-100: A Magnetic Spectrometer

Table of properties for the AMS-100 main solenoid and compensation coil. Compensation Combined Unit Main Coil radius 2.0 4.0 m Coil length 6.0 1.5 m Tape width 12 12 mm Stabilizer AI-6063 AI-6063 Cable thickness 2.85 2.85 mm Cable width 16 16 mm Layers 1 1 Turns 376 94 Inductance 286 114 287 mH Number of tapes 18 18 Total tape length 85 43 128 km **Operating current** 10.0 -10.0kA Cable mass 1090 545 1635 kg Stored Energy 14.3 14.4 MJ 5.7 kJ/kg Energy Density* 14 11 9 *Considering only the mass of the cable.

	~			
1	Ξ.			_
	ш	2	ц,	
			L	
	Institu	e Pluri	discip	dinak

de Strasbourg

S. Schael RWTH Aachen University November 2022

- In 2005 NASA canceled the AMS-02 Space Shuttle Flight.
- At RWTH Aachen a concept for a balloon experiment (PEBS) was developed to measure cosmic ray positrons.
- A new scintillating fiber tracker with SiPM readout was the key element for the tracking system.
- In 2008 the group of T. Nakada, EPFL joined the team.
- In 2010 a prototype (PERDAIX) was launched from Kiruna, Sweden. 300 000 protons and Helium nuclei were recorded at an altitude of 34 km.
- The paper describing this new SciFi detector was published in Nucl. Instrum. Meth.A 622 (2010) 542-554 (10.1016/j.nima.2010.07.059).
- In 2014 the LHCb Upgrade I TDR was published, describing a 360 m² version of this detector build from 11,000 km of fiber.

Positrons in Cosmic Rays

S. Schael RWTH Aachen University November 2022 46

Résumé

This was a very short and limited snapshot of some of the many ideas and developments on detectors.

Ulrich.Goerlach@i	phc.cnrs.fr, ASP	Particle detectors
-------------------	------------------	---------------------------

Université							
		de Stra	sl	סכ	u	rg	

L

ÍPHC

atitut Pluridisciplinaire Hubert Cuiten

Resolution

Ulrich.Goerlach@iphc.cnrs.fr, ASP Particle detectors

$$N_{hv} = \frac{E}{w}; \ dN_{hv} = \sqrt{N_{hv}} = \sqrt{\frac{E}{w}}$$

Statistics strictly Poisson $\Rightarrow \sigma^2 = \mu$;

$$dE / E = dN_{hv} / N_{hv} \sim \frac{1}{\sqrt{N_{hv}}}$$

Nal: $w \approx 25 eV / photon_{scint} \Rightarrow 40000 hv / MeV$

Incomplete collection of scintillation photons and finite quantum efficiency will reduce the mean number of photo-electrons

$$N_{pe} = N_{hv} \times \varepsilon_{collection} \cdot \varepsilon_{quantic};$$

$$dN_{pe} = \sqrt{N_{pe}} = \sqrt{N_{hv}} \times \varepsilon_{coll.} \cdot \varepsilon_{quant.}$$

$$\varepsilon_{coll.} \approx 0.2 - 0.8; \varepsilon_{quant.} \approx 0.2 (PM)$$

$$dE / E = dN_{pe} / N_{pe} \approx \frac{1}{\sqrt{N_{pe}}} = \frac{1}{\sqrt{N_{hv}} \times \varepsilon_{coll.} \cdot \varepsilon_{quant.}}$$

$$F \approx 1; \varepsilon_{coll.} \approx 0.4; \varepsilon_{quant.} \approx 0.2 (PM)$$

$$\Rightarrow dE / E = \sigma_{E} / E \approx 1.5\% \text{ à } 1.333 \text{ MeV}$$

$$R = 2.35 \times 1.5\% = 3.6\% \xrightarrow{\text{experimental}} (5 - 8)\%$$

Université

$$N_{eh} = \frac{E}{w} \varepsilon_{collection}$$
HP-Ge detector
$$dN_{eh} = \sqrt{N_{eh}} = \sqrt{\frac{E}{w}} \varepsilon_{collection}$$
Statistics : Poisson
$$\Rightarrow \sigma^{2} = \mu; \quad \mu = \text{mean}; \sigma^{2} = \text{variance}$$

$$dE / E = dN_{eh} / N_{eh} \sim \frac{1}{\sqrt{N_{eh}}} = \frac{1}{\sqrt{\frac{E}{w}} \varepsilon_{collection}}$$

$$\varepsilon_{collection} \approx 100\%; \quad w = 2.98 \, eV \quad E = 1 \, MeV$$

$$\Rightarrow dE / E \approx 0.0017; \text{ Resolution } R = 2.35 \times dE / E = 0.4\%$$
Fano factor:
$$\sigma^{2} = F_{ano}\mu;$$

$$F_{ano} \approx 0.12 (Ge, Si); \quad \sqrt{0.12} = 1/2.9$$

$$dE / E = dN_{eh} / N_{eh} \sim \frac{\sqrt{F}}{\sqrt{N_{eh}}} = \frac{1}{\sqrt{\frac{E}{wF}} \varepsilon_{collection}}}$$

$$dE / E = 0.0006; \text{ Resolution } R = 2.35 \times dE / E = 0.14\%$$
Comparison with NaI :

 $w = 25 eV / photon_{scint}$ Light collection: 0.5 PM : $Q.E. \approx 0.20$ $dE / E \approx 1.6\%$ Resolution $R = 2.35 \times dE / E = 3,7\%$ à 1MeV

de strasbaue The EUROBALL Cluster Detector 10kg HPGe

Université

89

cle detectors

3D Silicon

HL-LHC operation conditions	Sensor design constraints		
Luminosity 7.5x10 ³⁴ /(cm ² ·s) \rightarrow up to 200 events/25 ns bunch crossing	Maintain occupancy at ∞ level and increase spatial resolution \rightarrow pixel size $\times 6$ smaller then present pixels - 25x100 μ m ² (current detector in CMS 100x150 μ m ²)		
CMS baseline choice: replace pixel layer closer to beamline at integrated fluence $\sim 1.9 \times 10^{16} n_{eq}/cm^2$ (end of <i>"Run5"</i> , i.e. after ~6 years of operation) \rightarrow electron mean free path greatly reduced (also damaged readout ASIC at ~1 Grad)	Reduce electrodes distance (L) to increase electric field an thus the signal \rightarrow thin planar or 3D columnar technologies		

3D silicon sensors made by

- Fondazione Bruno Kessler-FBK (Trento, Italy), n-in-p sensors on 150 mm FZ wafers in collaboration with INFN
- Centro Nacional Microtecnologia-CNM (Barcelona, Spain), n-in-p sensors on 100 mm FZ wafers

C. Da Vià et al., NIMA (2012)

2 Mauro Dinardo, Università degli Studi di Mila Capture d'écran

Inspiration for ITS3

- Observations:
 - Si makes only **1/7**th of total material
 - irregularities due to support/ cooling

Magnus Mager (CERN) | ALICE ITS3 | CERN detector seminar | 24.09.2021 | 8

Université

de Strasbourg

Inspiration for ITS3

Magnus Mager (CERN) | ALICE ITS3 | CERN detector seminar | 24.09.2021 | 8

Université

de Strasbourg

ITS3 the idea (2): build wafer-scale sensors

- Chip size is traditionally limited by CMOS manufacturing ("reticle size")
 - typical sizes of few cm²
 - modules are tiled with chips connected to a flexible printed circuit board

- New option: stitching, i.e. aligned exposures of a reticle to produce larger circuits
 - actively used in industry
 - a 300 mm wafer can house a sensor to equip a full half-layer
 - requires dedicated sensor design

Courtesy: R. Turchetta,

Rutherford Appleton Laboratory

Magnus Mager (CERN) | ALICE ITS3 | CERN detector seminar | 24.09.2021 | 10

Ulrich Goorlach@inhc enrs fr ASP Particle detectors

High Granularity for Particle Flow

CMS uses particle flow algorithms to improve on jet energy resolution

- reconstruct every particle in a jet
- For each particle use the detector with best energy/ momentum measurement
- High granularity is key for correct assignment of energy deposits to tracks

Compact Muon Solenoid

Conductor Testing: Single- and Multi-Tape Samples

- Single tapes have been extensively characterized
- Many short samples of Al-alloy stabilized multi-tape HTS conductors are in preparation.
- Few-tape samples in good agreement with expectations.
- Next: more tapes, bending, micro-meteorite impact testing, etc.

A large international team from several institutes, including EPFL and RWTH Aachen, constructed the LHCb SciFi Tracker in the past years.

