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Disclaimer

1 Field of ultra-relativistic Heavy lon Physics is very rich:
» 6+ large active experiments, with more than 30-year history
» Active and broad Theory community

 This talk will focus on the introductory concepts and examples
from an experimental heavy-ion physics perspective

M It is inspired by a few heavy-ion lectures and/or presentations
by various people over the years. They are all acknowledged
here.



Basic:

O A particle is considered ultra-relativistic if its speed is approximately close to the speed
of light c. = its energy is almost completely due to its momentum, i.e. approximated by E

= pc

O The ultra-relativistic limit pc > mc? is assumed or a relativistic (Lorentz) factor

v = relative velocity [m/s], ¢ = speed of light, 3 x 108 [m/s], = larger than unity (y > 1),

—it expresses how much the measurements of time, length, and other physical properties
change for an object while that object is moving

Example: at the Relativistic Heavy ion Collider (RHIC at BNL) and Large Hadron Collider (LHC
at CERN), the relativistic factors y ~ 100 and 2500, respectively. This translates to beam
rapidity (y - a measure for relativistic velocity) = 5.3 and 8.5



Basic Kinematics

= Transverse momentum

pT = psinf

transverse mass:

mr = fpgr + m2 beam axis

= Rapidity y (additive under Lorentz transformation)
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Basics: Strong force

electron
<10""%cm

proton
(neutron)

//‘

< quark

\ //“\» > <10""%cm
' ’ / nucleus
~10""2cm

atom~102cm ,_10 3em

1 Nuclei are held together by exchanging mesons
[ Nucleons composed of quarks are held together by

exchanging gluons

- manifestations of the strong force, but nucleons and
quarks are very different...

(d Hadrons are composed of partons: quarks and gluons:
» Meson — hadron containing 2 quarks (1 light and 1 anti),
e.g. pion (ud), kaon (us), ...
» Baryon — hadron containing 3 quarks,
e.g. proton (uud), neutron (udd)....




Basics: Strong interaction, QCD and Confinement

d Strong interaction: keeps together quarks inside protons and neutrons and
protons and neutrons inside atomic nuclei ...

O ....and is carried by the colour charge

[ Governed by the theory of Quantum ChromoDynamics (QCD)

O Important feature of QCD: confinement = no “free” quarks

1 To understand the strong interaction and the phenomenon of confinement
—> create and study a system of deconfined quarks and gluons—=> quark-gluon plasma

Cartoon of quark-antiquark being “pulled” apart and their colour connection




What is the quark-gluon plasma (QGP)?

O The first “matter” in the primordial Universe

O The phase transition from quarks to hadrons occurred in the cooling Universe, 10 pus after
the Big Bang

Inflation
Quark Soup

««— Radius of the Visible Universe —»
Parting Company
" First Galaxies
.3
Modernm«erse

1 Second 300,000 T=ars 1 Billion Years 12-15 Billion Years
Age of the Universe

formation formation
of nucleons of nuclei



How do we study the QGP?

L The phase transitions of hadrons to QGP are well established in lattice QCD
» Temperature, T~ 170 MeV (~ 2.1012K), 1 MeV = 11604525006.1598 Kelvin
> Energy density .~ 1 GeV/fm3, 1 femtometre (fm)= 10" m

[ Deconfinement = colour confinement removed
O Chiral symmetry restoration plays: a role in the generation of hadron masses; accounts for
99% of the mass of nuclear matter

' Early Universe The Phases of QCD
l HC Expariments

Temperature

Quark-Gluon Plasma

Cnfical Foint

Color ™~

Hadron Gas \
: \ Superconductor

PoS CPOD2013(2013) 001
arXiv:1308.3328

Barycn Chemical Potential

LHC: extremely high centre-of-mass energy Vs, and vanishing baryon chemical potential ~0
- An ideal environment for the QGP factory!!



Creating the QGP in experiments

Nature

Big Bang Quark-Gluon-Plasma Nuclear Matter

e l— |

Experiment

[ “lonize” nucleons with heat and “compress” them with density

Heat Quark-Gluon
Pressure = 1€ paonsl-’ Plasma




QGP - little “big bang” in the lab

O Collide heavy nuclei e.g. lead-lead (Pb-Pb) particle beams at \/SNN =2.76 and 5.02 TeV (1
TeV = 1022 eV)

Pb: A=208,Z=82, N=126
proton =2 up + 1 down quarks
neutron = 2 down + 1 up quarks

O Follow the evolution of the collision
» QGP fireball expands, cools down and then freezes out into a collection of final-state
hadrons

Energy Stopping Hydrodynamic .
Hard Collisions Evolution Hadron Freezeout

Initial state




QGP - little “big bang” in the lab

Q Initial collision: t < t_,, thermalization: equilibrium is reached: t ~ 1 fm/c, hadronization: expansion
& cooling: t ~10— 15 fm/c

O Chemical freeze-out: inelastic reaction cease; chemical composition of the system (particle yields
& fluctuations) fixed

O Kinetic freeze-out: elastic reactions cease: spectra & correlations are frozen (free streaming
hadrons), t ¥~3—5fm/c

O Hadrons reach the detectors

v o3 & ¥ o final detected
Relativistic HCGVY'IOH Collisions particle distributions

made by Chun Shen Kinetic

freeze-out

Hadronization
Initial energy

free streaming

collision evolution
t~0fm/c t~1fm/c Tt~ 10 fm/c T ~ 101 fm/c

O Look at the stream of final-state particles which reach the detectors to study the evolution
of a heavy—ion collision = study the formation and properties of the QGP



QGP measurements in heavy-ion collisions

L QGP cannot be measured directly = perform various measurements which, when combined,
can provide reliable proof of the formation of the QGP - signatures/observables of the QGP

Space-time evolution of the collision
o jet P KD , A
‘*’ Kinetic
W  Freeze-out

Chemical
Freeze-out

gg high p; & jets
**  heavy quarks e
# quarkonium . Pre-equilibrium

\ space
H gluon saturation , \

Pb __




The paradigm

(] CORE business: AA collisions = create and characterize the QGP

0
<« Ml ' &->
W v
4, P
Pb Pb
[ Role of the small systems
» Proton-nucleus (p-A) collisions: Control experiment
» Disentangle initial and final state effects
- Investigate cold nuclear matter effects (CNM)
» Proton-proton (pp) collisions: Baseline (reference) ‘—) <—‘

» Test pQCD theories

L Surprising findings from small collisions (pp, p-Pb) = Similar features as in Pb-Pb?




Ultra-relativistic heavy-lon Experiments

 AGS :1986 - 2000 (fixed target)
» Siand Au beams; up to 14.6 A GeV
| > only hadronic variables

] RHIC: 2000

M@ » Au beams ; up to \s = 200 GeV

» 4 experiments
O RHIC-BES: 2011-2021

 SPS: 1986 — (fixed target)
» 0,S and Pb beams; up to 200 A GeV
» hadrons, photons and dileptons

-1 LHC: 2008 - ongoing

o Pb-Pb: up to Vs, = 2.76, 5.02, Vs, = Xe-Xe:
5.44 TeV

ALICE, CMS, ATLAS and LHCb




Ulta-relativistic heavy-ion experiments at the LHC
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Complementary kinematic coverage at the LHC
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Example of an event from Pb-Pb collisions at the LHC in 2015

ATLAS

EXPERIME




The geometry of a heavy-ion collision: Centrality

O System size dependent on collision centrality given by impact parameter, b = the distance
between the centers of colliding nuclei in a plane perpendicular to the collision

spectators

for s, Central collision, small b:

B Iy n F s WP FT T S - o high number of participants (N,,,)
% o S Gt R o High multiplicity

Peripheral collision, large b;

o Low number of participants (N,

o Low multiplicity

participants

= Neoi: NumMber of inelastic nucleon-nucleon collisions

= Npat: NUMber of nucleons which underwent at least one inelastic nucleon-
nucleon collisions

» Classify events in “centrality classes” = percentiles of total hadronic AA cross
section

» Determine <N_,> and <N_,,> with a model of the collision geometry (Glauber
model)



How do we measure centrality

L Use a multiplicity of produced particles in the acceptance of a given detector e.g. SPD
O Or “Zero Degree Calorimeters” to measure the energy of the spectator nucleons

©)

N .« &N

- i

O Produced by a simple model (red fit function):

Ncharged =P X [f N

+ (1-f) N, ]

part

oart & Ngoy distributions from Glauber Model
Input: Wood-Saxon nuclear density profile
Inelastic NN cross section

Forward rapidity

3 [ ALICE Pb-Pb at s, = 2.76 TeV -

VZERO-A amplitude

(@)

@ Central rapidity

+ Data

Glauber fit

20-30%

s,
wm

)

| | I 1
5000

= IIISI}I]I\'.II . IEIEIIII[:IIII
VZERO Amplitude (a.u.)



Some QGP Diagnostics

Observable Why What
* Particle Multiplicities
Global Is initial state dense | ¢ Energy Density
Observables |enough? * Size of the fireball
* QGP temperature




Global observable: Multiplicity dN_, /dn of charged particles

d The average number of charged particles produced in a collision at a given \s
d Key observable to characterize the collision geometry and properties QGP

2200
[ ALICE (PRL 106 (2011) 032301) ® ALICE symmetrized o . ~
2000-] < ATLAS (PLB 710 (2012) 363-382) Zpoubecaussianst | = Central collision @ \/SNN =5.02 TeV ~ 19 000
¢ CMS (JHEP 1108 (2011) 141) .
1800~ 0-5% . charged particles = x4 RHIC
16007 O Increase in central Pb-Pb is stronger than in
1400
5 00 small system: pp and p-Pb
= 1000— » understanding contributions to particle
o . .
800 production from hard (high-momentum
600~ transfer) & soft (low-momentum transfer)
4004 Physics Letters B 726 (2013) 610-622 processes
200 dN,/dn over a wide n range
0 N S T S s S Sy S S ... and on collision geometry N,
6 NN
d B CcMS Phys. Lett. B 799 (2019) 135049
[ Preliminary
s [ wEses(aGs) LT T s o ¥ 4
S 120 — 4 NA49(SPS) ... its dependence on \s ¥ o < -
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- PbPb 5.02 TeV
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Global observable: Energy density

O Evaluated utilizing Bjorken’s formula

S —transverse dimension of the nucleus
7, —formation time (~1 fm/c)—the time it takes for energy

initially stored in the field to materialize into particles

[ Estimated from measured transverse energy

(dE [/ N, Y2) (GeV)
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(d LHC: transverse energy ~ x3-4 RHIC,
O Estimated energy density, € >15 GeV/fm?3




Global observable: Size of the QGP fireball

 QGP fireball expands, cools and then freezes out into a collection of final-state
hadrons - Determine the freeze-out volume (V;,) and particles emission time (t;)

— 4 Ll )
CE 00: Ao EB9527,33 38, 4.3GeV
€ a50F A NA4987,125, 17.3GeV
Freeze-out volume: V;, ~ (27) & ol B CEESTISCEY }
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E
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QGP temperature: photon (y) spectrum

 Photons created during the entire space-time evolution after a collision, leave the
medium unaffected due to the larger mean-free paths = they provide a direct
way to examine the early hot phase of the collision

O Provide information on
initial the temperature,
collective flow &
space—time evolution

of the QGP
Saturated gluons —
(Inclusive y -y from ©° decays)
 Measurements: electron and positron tracks A provide information on
» Photon Conversion Method (PCM) parton distributions in nuclei

» Electromagnetic calorimeter
arXiv:1412.7781v1 [nucl-th] 25 Dec 2014



QGP temperature: photon (y) spectrum

O Spectrum fit: inverse slope exponential function < exp(-p;/T.) = inverse slope parameter
reflects effective temperature T averaged over different T during QGP space-time

evolution

» Direct prompt y = power law spectrum - high p;
» Thermal Photons = exponential spectrum - low p-

O LHC, T, = 304 + 51 MeV
S>~2T>~14T,,,

108
0-40% Pb-Pb, Vs, =2.76TeV
N 10 —¢— direct photons
‘; - direct photon NLO for u=0.5,1.0,2.0
S 10 p; (scaled pp)
> ’ —— exponential fit: Ax exp(-p;/T),
gl te, T=304+51MeV
& 1073
& 107
10—7 | | | 1 1 1 I 1
0 2 4 6 8 10 12 14

t‘a"‘ : I T 1 1 T T 1 I | I 1 I I | T I I I I I I I T I I I i
% B [ ]ALICE i
s % 0-20% Pb-Pb |5, =2.76 TeV 3
4> F — Aexp(-p/T.y) ]
ol PO Ty =304 + 11 + 407" MeV
O 1 o] PHENIX =
- 0-20% Au-Au |5, =02TeV ]
Zg i —A '3’(9(':"-'3‘-[‘Ir Ten) ]

- T = 239 £ 25 + 7% MeV
B0 —
oY E |
10_2 E_ _‘E
10°° 3 E
- ]
10°E Phys. Lett. B 754 (2016) 3
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Strangeness enhancement

 First signature of the QGP - observed in the 1980s at CERN SPS

 Strange hadrons: contain 1 or more strange quark (s)

O They are heavier than normal matter (up and down quarks) @

d Harder to produced: “freshly” made from
the kinetic energy of the colliding system

O Their abundance is sensitive to the
conditions, structure & dynamics of the
QGP

- large number (enhancement) 2> QGP
formation

1 Measurements: Count strange particles produces in a colliosion:
» Ratio = strange particles/non-strange particles
» Ratio of strange particle yield in AA / strange particle yield pp

» The higher ratio than predicted by theories that do not predict the QGP
- enhancement has been observed



Strangeness enhancement at the LHC

(] Restoration of chiral symmetry plays a role in the generation of hadron masses,
accounts for 99% of the mass of nuclear matter

» increase production of strange
hadrons

Lambda (A) — has 1 strange (s) quark
Xi (Z) — 2 strange (s) quarks
Omega (€2) — 3 strange (s) quarks

o strange (s) guark masses expected
to go back to the current value in
QGP: m,~ 150 MeV ~ T,

» copious production of sS pairs by
gluon-gluon (gg) fusion

10

) relative to pp

part

Yield/{N

—

- ALICE Pb-Pb 2.76 TeV: B
A0 40 +
"y §+ % + }

* A L O @
D Yo He B g
P 3 ':"3
e 3 I -
o 7
T .ALICE, PR 88(1982) 331, PRL 48(1982) 1066
% STAR PRC 77, 044508 (3008) ]

" 09 ALICE Pb-Pb 2.76 TeV -

® STAR Au-Au 200 GeV
L] ! Loyl ! L

10 10°
(Npart)

U Deconfinement: stronger effect for multi-strange baryons
—> Strangeness enhancement increases with strangeness content


http://www.sciencedirect.com/science/article/pii/S0370269313009544
http://www.sciencedirect.com/science/article/pii/S0370269313009544

Strangeness enhancement

How does it compare in small collisions: p-Pb
& pp where the QGP is not expected?

L Smooth evolution of particle yield ratios with
the multiplicity

L Enhanced production of multi-strange
hadrons in high-multiplicity pp!

L Strangeness enhancement is considered a
defining feature of QGP
— collective expansion of the system
» But not produced by traditional “soft” QCD
models (e.g. PYTHIA)
» reasonably reproduced by models including
hydro (e.g. DIPSY) jnero1 (2017) 140

po 0wl
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Some QGP Diagnostics

Observable Why What

Collective Is QGP a thermalized | * Hadron Yields
Behaviour state? * Elliptic Flow




Collective behaviour: Hadron yields & chemical freeze out

Chemical freeze-out: inelastic reaction cease; the chemical composition of the system (particle

yields & fluctuations) is fixed

0 How does the partonic system hadronized? - Final state particle production
» Mass ordering of observed non-strange and strange mesons

» Mass ordering of observed baryons to light nuclei

» Particles/antiparticles get closer with increasing energy

10° ww
PbPb Vs = 2.76 TeV
102 e
-
10 - Hil- -l
A
- 1 B
L=l
=10 T
kel
T 107°
>
107
-
107 T»—'-n-.—c
1 m data, ALICE, 0-10%
10 — statistical model fit (%%/Ng = 29.1/18)
1078 T=156.5 MeV, ug = 0.7 MeV, V = 5280 fm® i

T KKK OppAAZTEQQ d dHeSHeH H He
Nuclear Physics A971, (2018) 1-20

O Can the yields be observed in a
single model?

» Statistical hadronization: Ratio
4He/anti*He consistent with unity

» Supported by thermal models


https://www.sciencedirect.com/science/journal/03759474
https://www.sciencedirect.com/science/journal/03759474/971/supp/C
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Collective behaviour: Does the QGP have flow (v,)?

. Q
-8

1Y

3
¥- b 1"‘ : 3
- - 4 Y, 3 § (o) y
Q:w Reaion
\ plane X

. . . . Driven by overlap geometr
Non-central collisions are azimuthally asymmetric Y PE Y

Transfer of this asymmetry to momentum space provides a measure of the strength of
collective phenomena

Elliptic flow: initial spatial anisotropy + hydro = final momentum anisotropy
Quantified by the second Fourier coefficient, v,

1+Z@OS (n(¢ —¥YR))

—VEgp) >

dN N
dfp T om

Vg =< €0S2(Ppart

Related to pressure gradients & shear viscosity to entropy ratio (n/s)

Flow (v,) provides information about the transport properties of the QGP
» Flow at high p; =2 path-length dependence of energy loss
» Flow at low p; = sensitive to thermalization/collective motion



Collective behaviour: Does the QGP have flow (v,)?

4 v, of identified particles: as expected, v, large at hydro limit =» flow
patterns consistent with ideal hydrodynamics

4 v, of identified particles very similar at LHC and RHIC

—> the system still behaves very close = similar hydrodynamic behavior to the ideal

liquid
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Some QGP Diagnostics

Observable Why What

Formed early, probe Quarkonium
suppression in the

Hard Probes di
medium QGP




Quarkonium suppression in the QGP?

Matsui & Satz, PLB 168 (1986) 415)

L Signature first proposed by Matsui and Satz

Pre-resonant qq states “melt” in the QGP - in the plasma phase, the

interaction potential is expected to be screened beyond the Debye . '{::Z'c. )
length A, (analogous to e.m. Debye screening) " Thes

A Chamornium (c¢) and bottomium (bb) states with r > A,
will not bind, their production will be suppressed

s I L L e
g C 0.5 f
£o0.6 Xe ™ -
05 | W' (0.56 fm) B
- 7, Debye length from lattice OCD 1 W A, and therefore which quarkonium states will
r enve 1en Fam 1attice -
0d [l ¥ereng - be suppressed depends on the temperature

03 I J /Pi0.20 im) |
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Quarkonium states as QCD thermometer?

[ Different states melt at different temperatures (sequential suppression) _

O Non-correlated quarks can recombine (kinetic/statistical regeneration) 1.2

Development of

Start of collision quark-gluon plasma

RHIC AR — 2 7
Co <
c c®
o
e L N 7
: % t - ° N °1 s
% AT 8% 5°°0Ng
» >

P. Braun-Muzinger, J Stachel, PLB (2000) 490
R. Thews, et al, PRC (2001) 054905

Hadronization

J/W¥ Production Probability

(I

Tc

/{r) [fm!]
Y(15)
1(1P)

J/Aw(15) T'(2S)

7. (2P) T(35)
1(P)  w(25)

Pictures: A. Moczy, H. Satz
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How do we measure suppression?

O Take the ratio of particle production yields in AA to pp collisions, normalized to the number
of binary nucleon collisions in AA = Nuclear modification factor

AA _ d’N,,/dp, dy
rescaledpp  (N;...) dszp/de dy

Raa =

4 R,, =1 no nuclear/medium effects=> production of hard probes in AA expected to scale
with the number of nucleon-nucleon collisions (binary scaling)

4 R,, =1 effects from the medium, e.g. parton energy loss in the medium => suppression of
particle production
R 14
s

1.4

i =====5 -

.l'|H b 'Iharl;j"
0.6 L R<1

a4 p 0
.-

5 1 3 3 4 5 &
Trarversa Momentum (Ge'ic)




J/\w suppression and regeneration

» Results at 5.02 TeV with improved pp reference

PLB 766 (2017) 212 <2 — e
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1ol ™ AUCE Pb-Poys, =276TeV,25<y <4,p, <8 GeVic h T -
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Future of heavy-ion experiments

O Extremely high \s & at vanishing baryonic

density g ~ 0 =2 equal amount of matter and
antimatter

» LHC, HL-HLC @ CERN (Geneva, Switzerland)
o ALICE Phase llb upgrade, LHCb + fixed target, etc

» RHIC, RHIC-BES @ BNL (USA) final wrap of
BES-11in 2021/2022
o Towards the EIC

O High net-baryon densities: similar to those in
the core of a neutron star. EoS & other
properties, inform on the nature of the

medium including QGP - CBM @ FAIR-
Germany,

L Maximum baryonic density: determine the
existence & location of the transition region.
Establish the character of the associated
phase transformation=> NICA @ JINR
(Dubna, Russia)
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Heavy ion experiments
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Nuclotron-based lon Collider fAcility (NICA):
Nuclotron ion beams extracted to a fixed target and colliding beams of ions, ions-protons, polarized protons, and
deuterons
Projected maximum kinetic energy of the accelerated ions is 4.5 GeV, and 12.6 GeV for protons

O

0 O O O

2013: tender for scientific equipment supply was completed

RHIC: earlier (62.4, 130 and 200 GeV) & later
(54.5 GeV) collected data sets of Au+Au
collisions

RHIC-BES: Phase | (BES I) completed in 2011,
Au+Au data, energy range from 39 GeV to 7.7
GeV.

2015 BES program extended to energies <
sqrt(sNN) = 7.7 GeV by the implementation of
the fixed-target mode of data taking (FXT) in
the STAR experiment, in addition to the
standard collider configuration

2021 early wrap of final phase of BES-II

Next construct a brand-new nuclear

physics research facility—the Electron-lon Collider

(E|C). https://www.bnl.gov/newsroom/news.php?a=219079

2019: most equipments delivered and mounted -> First tests began in late 2019

Construction expected to be completed in 2022


https://en.wikipedia.org/wiki/Nuclotron
https://en.wikipedia.org/wiki/Nuclotron
https://en.wikipedia.org/wiki/Ion
https://en.wikipedia.org/wiki/Proton
https://en.wikipedia.org/wiki/Deuterium
https://en.wikipedia.org/wiki/Kinetic_energy
https://en.wikipedia.org/wiki/Nuclotron
https://www.bnl.gov/EIC
https://en.wikipedia.org/wiki/Nuclotron

Heavy quarks: two “historical” pillars

Open heavy flavour: Charm hadrons (D°, Bound states (Quarkonia): cc mesons (J/ U,
D%, ...), bottom hadrons (B?, B%,...) Y’..) & bb mesons (¥, ...)

O Mass dependence of radiative parton || QQbar states “melt” (dissociate) in

energy loss (“dead cone” effect) pokshitzer QGP (Debye screening) wiatsui & satz, pLs 168
and Kharzeev, Phys. Lett. B519(2001) 199[arXiv:hep-ph/0106202] (1986) 415)

> Probe of QCD interaction dynamicsin = Probes of de-confinement and QGP
extended systems temperature

1 Probe medium transport properties via collective expansion of the medium
1 Evolved and extended significantly over the years



J/v regeneration

ALICE
» The regeneration component is expected to contribute mainly at low p;

> Ry, increase at 2 < p; < 6 GeV/c from sy, = 2.76 to 5.02 TeV

» Transport models fairly reproduce the trend as a function of p; and centrality
PRL 119 (2017) 242301
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> Elliptic flow, v2, is non-zero in semicentral collisions—> regenerated J/y inherit charm-quark
flow in the QGP

» Described by models including a strong regeneration component from recombination of
thermalized quarks in the QGP

Caveat: precise description of the data is a challenge for models especially.at-high.pre—"
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The paradigm

Heavy-flavour production < transport properties
Quarkonium production <> de-confinement in the QGP

(d CORE business: AA collisions = create and characterize the QGP
» Global properties <> the QGP fireball

» Strangeness enhancement < historic signature

» Anisotropy, correlations < collective expansion i

» Bulk particle production < hadronization *%}

» High-p;and jets <> opacity of the QGP Pb

>

>

[ Role of the small systems:

» Proton-nucleus (p-A) collisions: Control experiment {
> disentangle initial and final state effects ’6}(*{’
— Investigate cold nuclear matter effects (CNM) w&mspb

» Proton-proton (pp) collisions: o—> <0
v" Baseline (reference) P P

v' Test pQCD theories




Historical idea of the quark-gluon plasma (QGP)

d 1973 birth of QCD: All ideas in place

» Yang-Mills theory, SU(3) color symmetry, asymptotic freedom; confinement
in color-neutral objects

[ 1975 - idea of quark deconfiment at high temperatures and/or density:

» Collins, Perry, PRL 34 (1975) 1353: Idea based on weak coupling
(asymptotic freedom)

“Our basic picture then is that matter at densities higher than nuclear matter consist of a

quark soap.”
» Cabbibo, Parisi, PLB, 59 (1975) 67: A
- exponential hadron spectrum not necessarily Pg | baryon number

densit A L
connected with a limiting temperature Y Gabibbo, Parisi,

]I 1.:'_ 'E- I:l_— T
- Rather: Different phase in which quarks are PLB, 59 (1975) 67

confined unconfined

phase

L It was soon realized that a new state could be
created and studied in heavy-ion collisions I

confined phase




Phase diagram of strongly interacting (QCD) matter

O At high energy density € and/or high temperature, matter transition from hadron
to quark-gluon plasma (QGP) — a medium of “free” quarks and gluons
» Deconfinement = colour confinement removed

» Chiral symmetry restoration = role in the generation of hadron masses,
accounts for 99% of mass of nuclear matter

> 2008
2 | Quarks and Gluons Q Critical energy density
- %i Critical point? (energy /volume)
oz \
- | 9(}0 ~ ~
4(.04 é \ ”flne,,em . 8C 1 GEV/fm3 10 Snucleus
- = nsi
v : | - On
q 100 2 Hadrons 1 femtometre (fm) = 101> m
&£ - &
2 K rkyonic phase 1 MeV = 11604525006.1598 Kelvin
| & |
\ \?0
| P hy - Color Super-
' Nuclei = $\ Neutron stars conductor Modelling Hadronic Matter, April 2016
P ) ™ \ Journal of Physics Conference Series 706(3):032001, DOI:10.1088/1742-

7 1 A 6596/706/3/032001
) Compact Stars Net baryon'density n/ n,

Ny=0.16 fm™


https://www.researchgate.net/journal/Journal-of-Physics-Conference-Series-1742-6596
http://dx.doi.org/10.1088/1742-6596/706/3/032001

A-A collisions at the
CERN LHC

 LHCRUN 1(2010-2013)
> Vs, = 2.76,5.02 TeV

» Confirm RHIC findings
» Study properties of QGP 2 |

J LHC Run 2 (2015 -2018)

» Vs, =5.02 TeV, 2018
statistics x9 for central
collisions

» Precise characterization of
QGP properties

[ Surprising findings from
small collisions (pp, p-Pb)
- Similar features as in Pb-Pb?

2011 Pb-Pb ATLAS/CMS

011 Pb—Pb ALICE
ol o

o 1 dN
Luminosity, L = il Number of events

. o 2010 Bh—Bh ATLAS/CMS
detected (N) in a certain time (t) to BB AP

interaction cross section (o)

me Iweeke 10 nhusies)
Time | s 11 phy



