

Introduction to Heavy-Ion Physics: experimental perspective

Ass. Prof Zinhle Buthelezi

Senior Research Scientist

SSCLab, NRF-iThemba LABS / School of Physics, University of Witwatersrand

Research interest: LHC Physics utilizing the ALICE detector

Disclaimer

- ☐ Field of ultra-relativistic Heavy Ion Physics is very rich:
 - > 6+ large active experiments, with more than 30-year history
 - Active and broad Theory community
- ☐ This talk will focus on the **introductory concepts** and **examples** from an **experimental** heavy-ion physics **perspective**
- ☐ It is inspired by a few heavy-ion lectures and/or presentations by various people over the years. They are all acknowledged here.

Basic:

- A particle is considered **ultra-relativistic** if its speed is approximately close to the speed of light $c. \rightarrow$ its energy is almost completely due to its momentum, i.e. approximated by E = pc
- \Box The ultra-relativistic limit $pc \gg mc^2$ is assumed or a **relativistic (Lorentz) factor**

$$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}},$$

υ = relative velocity [m/s], c = speed of light, 3×10^8 [m/s], \rightarrow larger than unity ($\gamma \gg 1$),

→it expresses how much the measurements of time, length, and other physical properties change for an object while that object is moving

Example: at the Relativistic Heavy ion Collider (RHIC at BNL) and Large Hadron Collider (LHC at CERN), the relativistic factors $\gamma \sim 100$ and 2500, respectively. This translates to beam rapidity (y - a measure for relativistic velocity) = 5.3 and 8.5

Basic Kinematics

Transverse momentum

$$p_T=p\sin heta$$
 $p=\sqrt{p_L^2+p_T^2}$ transverse mass: \vec{p} beam axis \vec{p}_L \vec{p}_T

$$m_T = \sqrt{p_T^2 + m^2}$$

Rapidity y (additive under Lorentz transformation)

$$y = \operatorname{arctanh} \beta_L = \frac{1}{2} \ln \frac{1 + \beta_L}{1 - \beta_L} = \frac{1}{2} \ln \frac{E + p_L}{E - p_L}$$

Pseudorapidity n

$$y \stackrel{p \gg m}{\approx} \frac{1}{2} \ln \frac{1 + \cos \vartheta}{1 - \cos \vartheta} = -\ln \left[\tan \frac{\vartheta}{2} \right] =: \eta$$

Pseudorapidity

Basics: Strong force

- ☐ Nuclei are held together by exchanging mesons
- Nucleons composed of quarks are held together by exchanging gluons
- → manifestations of the strong force, but nucleons and quarks are very different...
- Hadrons are composed of partons: quarks and gluons:
- Meson hadron containing 2 quarks (1 light and 1 anti), e.g. pion $(u\bar{d})$, kaon $(u\bar{s})$, ...
- Baryon hadron containing 3 quarks, e.g. proton (uud), neutron (udd)....

Basics: Strong interaction, QCD and Confinement

- ☐ Strong interaction: keeps together quarks inside protons and neutrons and protons and neutrons inside atomic nuclei ...
-and is carried by the colour charge
- Governed by the theory of Quantum ChromoDynamics (QCD)
- ☐ Important feature of QCD: confinement → no "free" quarks
- ☐ To understand the strong interaction and the phenomenon of confinement
- → create and study a system of deconfined quarks and gluons → quark-gluon plasma

Cartoon of quark-antiquark being "pulled" apart and their colour connection

What is the quark-gluon plasma (QGP)?

- ☐ The first "matter" in the primordial Universe
- The phase transition from quarks to hadrons occurred in the cooling Universe, 10 μs after the Big Bang

How do we study the QGP?

- ☐ The phase transitions of hadrons to QGP are well established in lattice QCD
 - ightharpoonup Temperature, $T \approx 170 \text{ MeV} \ (\sim 2.10^{12} \text{K})$, 1 MeV = 11604525006.1598 Kelvin
 - \triangleright Energy density $\varepsilon_c \approx 1 \text{ GeV/fm}^3$, 1 femtometre (fm) = 10^{-15} m
- □ Deconfinement → colour confinement removed
- ☐ Chiral symmetry restoration plays: a role in the generation of hadron masses; accounts for 99% of the mass of nuclear matter

PoS CPOD2013 (2013) 001 arXiv:1308.3328

LHC: extremely high centre-of-mass energy √s, and vanishing baryon chemical potential ~0

→ An ideal environment for the QGP factory!!

Creating the QGP in experiments

☐ "Ionize" nucleons with heat and "compress" them with density

QGP - little "big bang" in the lab

Collide **heavy nuclei e.g.** lead-lead (Pb-Pb) particle beams at $\sqrt{s_{NN}}$ = 2.76 and 5.02 TeV (1 TeV = 10^{12} eV)

Pb: A = 208, Z = 82, N = 126 proton = 2 up + 1 down quarks neutron = 2 down + 1 up quarks

- ☐ Follow the evolution of the collision
 - QGP fireball expands, cools down and then freezes out into a collection of final-state hadrons

QGP - little "big bang" in the lab

- □ Initial collision: $t \le t_{coll}$, thermalization: equilibrium is reached: $t \sim 1$ fm/c, hadronization: expansion & cooling: $t \sim 10 15$ fm/c
- Chemical freeze-out: inelastic reaction cease; chemical composition of the system (particle yields & fluctuations) fixed
- <u>Kinetic freeze-out</u>: elastic reactions cease: spectra & correlations are frozen (free streaming hadrons), t ~3-5fm/c
- ☐ Hadrons reach the detectors

■ Look at the stream of final-state particles which reach the detectors to study the evolution of a heavy—ion collision → study the formation and properties of the QGP

QGP measurements in heavy-ion collisions

 \square QGP cannot be measured directly \rightarrow perform various measurements which, when combined, can provide reliable proof of the formation of the QGP \rightarrow signatures/observables of the QGP

The paradigm

☐ Role of the small systems

- > Proton-nucleus (p-A) collisions: Control experiment
 - > Disentangle initial and final state effects
 - → Investigate cold nuclear matter effects (CNM)

- Proton-proton (pp) collisions: Baseline (reference)
 - > Test pQCD theories

☐ Surprising findings from small collisions (pp, p-Pb) → Similar features as in Pb-Pb?

Ultra-relativistic heavy-Ion Experiments

- ☐ AGS : 1986 2000 (fixed target)
- Si and Au beams; up to 14.6 A GeV
- > only hadronic variables
- ☐ RHIC: 2000
- \triangleright Au beams ; up to $\sqrt{s} = 200 \text{ GeV}$
- > 4 experiments
- ☐ RHIC-BES: 2011-2021

- ☐ SPS: 1986 (fixed target)
- O, S and Pb beams; up to 200 A GeV
- hadrons, photons and dileptons

□ LHC: 2008 - ongoing

○ Pb-Pb: up to $\sqrt{s_{NN}} = 2.76$, 5.02, $\sqrt{s_{NN}} = Xe-Xe$: 5.44 TeV

ALICE, CMS, ATLAS and LHCb

Ulta-relativistic heavy-ion experiments at the LHC

Complementary kinematic coverage at the LHC

Example of an event from Pb-Pb collisions at the LHC in 2015

The geometry of a heavy-ion collision: Centrality

 \square System size dependent on collision **centrality** given by impact parameter, $b \rightarrow the$ distance between the centers of colliding nuclei in a plane perpendicular to the collision

Central collision, small *b*:

- \circ high number of participants (N_{part})
- High multiplicity

Peripheral collision, large *b*;

- \circ Low number of participants (N_{part})
- Low multiplicity

- N_{coll}: number of inelastic nucleon-nucleon collisions
- N_{part}: number of nucleons which underwent at least one inelastic nucleonnucleon collisions
- ➤ Classify events in "centrality classes" → percentiles of total hadronic AA cross section
- ▶ Determine <N_{part}> and <N_{coll}> with a model of the collision geometry (Glauber model)

How do we measure centrality

- Use a multiplicity of produced particles in the acceptance of a given detector e.g. SPD
- ☐ Or "Zero Degree Calorimeters" to measure the energy of the spectator nucleons

 N_{part} & N_{coll} distributions from Glauber Model Input: Wood-Saxon nuclear density profile Inelastic NN cross section

Some QGP Diagnostics

Observable	Why	What
Global Observables	Is initial state dense enough?	 Particle Multiplicities Energy Density Size of the fireball
Collective Behaviour	Is QGP a thermalized state?	 QGP temperature Hadron Yields Elliptic Flow, correlations
Hard Probes	Formed early, probe medium	Energy loss of jetsHeavy-quark production

Global observable: Multiplicity $dN_{ch}/d\eta$ of charged particles

 \Box The average number of charged particles produced in a collision at a given \sqrt{s} \Box Key observable to characterize the collision geometry and properties QGP

- ☐ Central collision @ $\sqrt{s_{NN}}$ = 5.02 TeV ~ 19 000 charged particles \rightarrow x4 RHIC
- ☐ Increase in central Pb-Pb is stronger than in small system: pp and p-Pb
 - understanding contributions to particle production from hard (high-momentum transfer) & soft (low-momentum transfer) processes

Global observable: Energy density

Evaluated utilizing Bjorken's formula

S – transverse dimension of the nucleus τ_0 – formation time (~1 fm/c) – the time it takes for energy initially stored in the field to materialize into particles

$$\varepsilon = \frac{E}{V} = \frac{1}{Sc\tau_0} \frac{dE_T}{dy} \bigg|_{Y=0}$$

☐ Estimated from measured transverse energy

Global observable: Size of the QGP fireball

 \square QGP fireball expands, cools and then freezes out into a collection of final-state hadrons \rightarrow Determine the freeze-out volume (V_{fo}) and particles emission time (τ_f)

Freeze-out volume: $V_{fo} \sim (2\pi)$

Emission time: $au_f R_{long} \sqrt{{}^{m_T}\!/{}_{T_f}}$

LHC: $V_{fo,LCH} \approx 2 \text{ x } V_{fo,RHIC}$, $\tau_{f,LCH} \approx 1.4 \text{ x } \tau_{fo,RHIC}$ for comparison: $R_{Pb} \sim 7 \text{ fm} \rightarrow V \sim 1500 \text{ fm}^3$ \rightarrow substantial expansion!

QGP temperature: photon (γ) spectrum

☐ Photons created during the entire space-time evolution after a collision, leave the medium unaffected due to the larger mean-free paths → they provide a direct way to examine the early hot phase of the collision

□ Provide information on initial the temperature, collective flow & space—time evolution of the QGP

- ☐ Measurements: electron and positron tracks
 - Photon Conversion Method (PCM)
 - Electromagnetic calorimeter

(Inclusive $\gamma - \gamma$ from π^0 decays)

provide information on parton distributions in nuclei

QGP temperature: photon (γ) spectrum

- □ Spectrum fit: inverse slope exponential function $\propto \exp(-p_T/T_{eff})$ → inverse slope parameter reflects effective temperature T_{eff} averaged over different T during QGP space-time evolution
 - \triangleright Direct prompt $\gamma \rightarrow$ power law spectrum high p_T
 - \rightarrow Thermal Photons \rightarrow exponential spectrum low p_T

Part 2

Strangeness enhancement

- ☐ First signature of the QGP observed in the 1980s at CERN SPS
- ☐ Strange hadrons: contain 1 or more strange quark (s)
- ☐ They are heavier than normal matter (up and down quarks)
- ☐ Harder to produced: "freshly" made from the kinetic energy of the colliding system
- ☐ Their **abundance** is sensitive to the conditions, structure & dynamics of the QGP
 - → large number (enhancement) → QGP formation

- ☐ **Measurements:** Count strange particles produces in a colliosion:
- Ratio = strange particles/non-strange particles
- Ratio of strange particle yield in AA / strange particle yield pp
- The higher ratio than predicted by theories that do not predict the QGP
 - enhancement has been observed

Strangeness enhancement at the LHC

- ☐ **Restoration of chiral symmetry** plays a role in the generation of hadron masses, accounts for 99% of the mass of nuclear matter
 - increase production of strange hadrons

Lambda (Λ) – has 1 strange (s) quark Xi (Ξ) – 2 strange (s) quarks Omega (Ω) – 3 strange (s) quarks

- strange (s) quark masses expected to go back to the current value in QGP: m_s ~ 150 MeV ~ T_C
- ightharpoonup copious production of $s\bar{s}$ pairs by gluon-gluon (gg) fusion

- ☐ **Deconfinement:** stronger effect for multi-strange baryons
 - → Strangeness enhancement increases with strangeness content

Strangeness enhancement

How does it compare in small collisions: **p-Pb** & **pp** where the QGP is not expected?

- ☐ Smooth evolution of particle yield ratios with the multiplicity
- Enhanced production of multi-strange hadrons in high-multiplicity pp!
- Strangeness enhancement is considered a defining feature of QGP
 - → collective expansion of the system
- But not produced by traditional "soft" QCD models (e.g. PYTHIA)
- reasonably reproduced by models including hydro (e.g. DIPSY) JHEP01 (2017) 140

Some QGP Diagnostics

Observable	Why	What
Global Observables	Is initial state dense enough?	Particle MultiplicitiesEnergy Density
Collective Behaviour	Is QGP a thermalized state?	Hadron YieldsElliptic Flow
Hard Probes	Formed early, probe medium	Energy loss of jetsCharm production

Collective behaviour: Hadron yields & chemical freeze out

Chemical freeze-out: inelastic reaction cease; the chemical composition of the system (particle yields & fluctuations) is fixed

- How does the partonic system hadronized? → Final state particle production
 - ➤ Mass ordering of observed **non-strange and strange mesons**
 - Mass ordering of observed baryons to light nuclei
 - > Particles/antiparticles get closer with increasing energy

- ☐ Can the yields be observed in a single model?
- Statistical hadronization: Ratio ⁴He/anti⁴He consistent with unity
- Supported by thermal models

Collective behaviour: Does the QGP have flow (v_2) ?

Non-central collisions are azimuthally asymmetric

- Driven by overlap geometry
- ☐ Transfer of this asymmetry to momentum space provides a measure of the strength of collective phenomena
- ☐ Elliptic flow: initial spatial anisotropy + hydro = final momentum anisotropy
- \triangleright Quantified by the second Fourier coefficient, υ_2

$$rac{dN}{darphi} = rac{N}{2\pi} \left[1 + \sum_{n=1}^{\infty} 2 v_n \cos \left(n \left(arphi - \Psi_R
ight)
ight)
ight]$$

$$v_2 = < cos2(\varphi_{part} - \Psi_{EP}) >$$

- Related to pressure gradients & shear viscosity to entropy ratio (η/s)
- \triangleright Flow (υ_2) provides information about the transport properties of the QGP
 - \rightarrow Flow at high $p_T \rightarrow$ path-length dependence of energy loss
 - \triangleright Flow at low $p_T \rightarrow$ sensitive to thermalization/collective motion

Collective behaviour: Does the QGP have flow (v_2) ?

- \square υ_2 of identified particles: as expected, υ_2 large at hydro limit \Rightarrow flow patterns consistent with ideal hydrodynamics
- \Box υ_2 of identified particles very similar at LHC and RHIC
- → the system still behaves very close → similar hydrodynamic behavior to the ideal liquid

Some QGP Diagnostics

Observable	Why	What
Global Observables	Is initial state dense enough?	Particle MultiplicitiesEnergy Density
Collective Behaviour	Is QGP a thermalized state?	Hadron YieldsElliptic Flow, correlations
Hard Probes	Formed early, probe medium	 Quarkonium suppression in the QGP

Quarkonium suppression in the QGP?

 \square Signature first proposed by Matsui and Satz Pre-resonant $q\bar{q}$ states "melt" in the QGP - in the plasma phase, the interaction potential is expected to be screened beyond the Debye

length λ_D (analogous to e.m. Debye screening)

 \Box Chamornium ($c\bar{c}$) and bottomium ($b\bar{b}$) states with $r > \lambda_D$ will not bind, their production will be suppressed

 $\hfill \hfill \lambda_{\text{D}}$, and therefore which quarkonium states will be suppressed depends on the temperature

Quarkonium states as QCD thermometer?

- ☐ Different states melt at different temperatures (sequential suppression)
- Non-correlated quarks can recombine (kinetic/statistical regeneration)

P. Braun-Muzinger, J Stachel, PLB (2000) 490

R. Thews, et al, PRC (2001) 054905

Pictures: A. Moczy, H. Satz

Energy Density

How do we measure suppression?

□ Take the ratio of particle production yields in AA to pp collisions, normalized to the number of binary nucleon collisions in AA → Nuclear modification factor

$$R_{AA} = \frac{AA}{\text{rescaled } pp} = \frac{d^2N_{AA}/dp_T dy}{\langle N_{binary} \rangle d^2N_{pp}/dp_T dy}$$

 \square $R_{AA} = 1$ no nuclear/medium effects \rightarrow production of hard probes in AA expected to scale with the number of nucleon-nucleon collisions (binary scaling)

 \square $R_{AA} \neq 1$ effects from the medium, e.g. parton energy loss in the medium \rightarrow suppression of

particle production

J/ψ suppression and regeneration

Results at 5.02 TeV with improved pp reference

- \Box Large suppression of J/ ψ at RHIC than LHC
- ☐ Less suppression at mid-rapidity wrt forward rapidity
- ➤ A clear sign of charm-quark recombination
- \rightarrow regenerated J/ ψ 's concentrated at low p_T
- → Do measurements support the regeneration hypothesis?

Future of heavy-ion experiments

- □ Extremely high \sqrt{s} & at vanishing baryonic density $\mu_B \sim 0 \rightarrow$ equal amount of matter and antimatter
- > LHC, HL-HLC @ CERN (Geneva, Switzerland)
- ALICE Phase IIb upgrade, LHCb + fixed target, etc
- ➤ RHIC, RHIC-BES @ BNL (USA) final wrap of BES-II in 2021/2022
- Towards the EIC
- □ High net-baryon densities: similar to those in the core of a neutron star. EoS & other properties, inform on the nature of the medium including QGP → CBM @ FAIR-Germany,
- Maximum baryonic density: determine the existence & location of the transition region. Establish the character of the associated phase transformation → NICA @ JINR (Dubna, Russia)

THANK YOU

EXTRA slides

Heavy ion experiments

- RHIC: earlier (62.4, 130 and 200 GeV) & later (54.5 GeV) collected data sets of Au+Au collisions
- RHIC-BES: Phase I (BES I) completed in 2011,
 Au+Au data, energy range from 39 GeV to 7.7
 GeV.
- 2015 BES program extended to energies
 sqrt(sNN) = 7.7 GeV by the implementation of the fixed-target mode of data taking (FXT) in the STAR experiment, in addition to the standard collider configuration
- 2021 early wrap of final phase of BES-II
- Next_construct a brand-new nuclear physics research facility—the <u>Electron-Ion Collider</u> (EIC). https://www.bnl.gov/newsroom/news.php?a=219079

Nuclotron-based Ion Collider fAcility (NICA):

- Nuclotron ion beams extracted to a fixed target and colliding beams of ions, ions-protons, polarized <u>protons</u>, and deuterons
- o Projected maximum kinetic energy of the accelerated ions is 4.5 GeV, and 12.6 GeV for protons
- o **2013**: tender for scientific equipment supply was completed
- o **2019**: most equipments delivered and mounted -> First tests began in late 2019
- Construction expected to be completed in 2022

Heavy quarks: two "historical" pillars

→ Probe of QCD interaction dynamics in extended systems

QGP (Debye screening) Matsui & Satz, PLB 168

→ Probes of de-confinement and QGP temperature

- ☐ Probe medium transport properties via collective expansion of the medium
- Evolved and extended significantly over the years

J/ψ regeneration

- \succ The regeneration component is expected to contribute mainly at low $ho_{ extsf{T}}$
- $ightharpoonup R_{AA}$ increase at $2 < p_T < 6 \text{ GeV/}c$ from $\sqrt{s_{NN}} = 2.76 \text{ to } 5.02 \text{ TeV}$
- ightharpoonup Transport models fairly reproduce the trend as a function of $p_{\scriptscriptstyle T}$ and centrality

- \triangleright Elliptic flow, v2, is non-zero in semicentral collisions \rightarrow regenerated J/ ψ inherit charm-quark flow in the QGP
- Described by models including a strong regeneration component from recombination of thermalized quarks in the QGP

Caveat: precise description of the data is a challenge for models especially at high ρ_{T}

The paradigm

- ☐ CORE business: AA collisions → create and characterize the QGP
- ➢ Global properties ⇔ the QGP fireball
- ➤ Strangeness enhancement ⇔ historic signature
- ➤ Anisotropy, correlations ⇔ collective expansion
- ➤ High- p_T and jets \Leftrightarrow opacity of the QGP
- ➤ Heavy-flavour production ⇔ transport properties
- ightharpoonup Quarkonium production \Leftrightarrow de-confinement in the QGP

☐ Role of the small systems:

- > Proton-nucleus (p-A) collisions: Control experiment
 - disentangle initial and final state effects
 - → Investigate cold nuclear matter effects (CNM)

high temperature high energy density

low baryonic density

- Proton-proton (pp) collisions:
 - ✓ Baseline (reference)
 - ✓ Test pQCD theories

Historical idea of the quark-gluon plasma (QGP)

- ☐ 1973 birth of QCD: All ideas in place
 - > Yang-Mills theory, SU(3) color symmetry, asymptotic freedom; confinement in color-neutral objects
- 1975 idea of quark deconfiment at high temperatures and/or density:
 - Collins, Perry, PRL 34 (1975) 1353: Idea based on weak coupling (asymptotic freedom)

"Our basic picture then is that matter at densities higher than nuclear matter consist of a quark soap."

- > Cabbibo, Parisi, PLB, 59 (1975) 67:
- exponential hadron spectrum not necessarily connected with a limiting temperature
- Rather: Different phase in which quarks are confined
- ☐ It was soon realized that a **new state** could be created and studied in **heavy-ion collisions**

Phase diagram of strongly interacting (QCD) matter

- At high energy density ε and/or high temperature, matter transition from hadron to quark-gluon plasma (QGP) a medium of "free" quarks and gluons
 - ➤ Deconfinement → colour confinement removed
 - ➤ Chiral symmetry restoration → role in the generation of hadron masses, accounts for 99% of mass of nuclear matter

☐ Critical energy density (energy /volume)

 ϵ_{c} ^1 GeV/fm³ ~ 10 $\epsilon_{nucleus}$

1 femtometre (fm) = 10^{-15} m

1 MeV = 11604525006.1598 Kelvin

Modelling Hadronic Matter, April 2016

Journal of Physics Conference Series 706(3):032001, DOI:10.1088/1742-6596/706/3/032001

A-A collisions at the CERN LHC

- ☐ LHC RUN 1 (2010-2013)
- $\rightarrow \ \, \forall s_{NN} = 2.76, 5.02 \, \text{TeV}$
- Confirm RHIC findings
- Study properties of QGP
- ☐ LHC Run 2 (2015 -2018)
- > $\sqrt{s_{NN}}$ = 5.02 TeV, 2018 statistics x9 for central collisions
- Precise characterization of QGP properties
- ☐ Surprising findings from small collisions (pp, p-Pb)
- → Similar features as in Pb-Pb?

Luminosity, $L = \frac{1}{\sigma} \frac{dN}{dt}$ - Number of events detected (N) in a certain time (t) to interaction cross section (σ)

