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The governing equations for fluid flow (single and
multiphase), heat and mass transfer have no analytic solutions
for the general case [1, 2, 3, 4]

Analytic/exact solutions exist for simple cases [1, 2, 3, 4]
Simplifying assumptions are made in these cases such as 2D,
symmetric, constant density etc. [1, 2, 3, 4]

Most related engineering problems are not as simple

[1, 2, 3, 4]

Numerical analysis provides a plausible option for solving
complex engineering problems related to fluid flow, heat and
mass transfer [1, 2, 3, 4]

CFD refers to numerical solution of the governing equations
for fluid flow, heat and mass transfer [1, 2, 3, 4]

Many commercial CFD codes available: Star-CD,
Star-CCM+, PHOENICS, Flow EFD, Flow 3D as well as
ANSYS Fluent and CFX



Relatively complete and widely used open source code -
OPENFOAM

Most codes are based on the Finite Volume Method (FVM)
[1, 2, 3, 4]

Codes based on the Finite Element Method (FEM) are
available [1, 2, 3, 4]

Lattice Boltzmann Method (LBM) is becoming popular -
permeating into industrial application

LBM - simplicity in algorithm implementation and high level
of parallelism, however, multi-physics and boundary conditions
can be 'tricky’

Smooth Particle Hydrodynamics (SPH) becoming increasingly
popular due to increase in computing power and with the
advent of large scale GPU computing

Can write your own custom code



CFD has been around for decades [1, 2, 3, 4]

However, due to computational restrictions was limited in
usage [1, 2, 3, 4]

With advent of cheap and easily available large scale
computing power use of CFD widespread [1, 2, 3, 4]

The widespread use and industrial demand for short turn
around times has led to some problems for the CFD analyst
[1, 2, 3, 4]

Many CFD analyst have only received an undergraduate
qualification [1, 2, 3, 4]

Thus, many analysts do not have a sufficient background in
advanced fluid dynamics, thermodynamics, heat and mass
transfer to produce high quality CFD solutions [1, 2, 3, 4]

Furthermore, financial and time constraints prevent further
training for the analyst



In addition, these constraints prevent mesh and turbulence
sensitivity studies as well as the use of "full” physics in CFD
models

Purpose of this course is to address first of the two issues

Many companies prefer to hire CFD analysts with at least a
Masters background in CFD
The ideal skill set for a CFD analyst [5]:
Fluid Dynamics, Heat and Mass Transfer, Thermodynamics,
Thermofluids - Transport Phenomena
Mathematics and Applied Mathematics
Computer Science - Programming
Computer Hardware and Architecture
Parallel computing



You should know this by now but here is a reminder.

For a given scalar [6, 7]:

¢ =9(x,y,2)
The gradient is defined as [6, 7]:
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For a vector [6, 7]:

— — — —
¢ =o¢x i + ¢y J Tt ok

The gradient (which is a second order tensor) is defined as [6, 7]:
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The above tensor can be written as [6, 7]:

The divergence of a vector is given as [6, 7]:

= _ . (=) _0¢x 09, 0¢,
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The Laplacian is defined as [6, 7]:
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NOT THE SAME AS (V¢)? [6, 7]:
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Bf’t product between two vectors 7 = {a1,a2,....,a,} " and
b = {b1, by, .....b,} " is defined as [6, 7]:

- .
F - b = ajb;, Vi=1,2,...,n
Cross product between two vectors El

Cr = {a1,ap,a3} " and
b = {b1, by, b3} is defined as [6, 7]:

N aiby aiby aibs
T b= ab ab a b3
a3by azby a3b3



The governing equations are derived based on a continuum
approach as opposed to a molecular dynamics approach
[1, 2, 3, 4]
The governing equations for fluid flow are conservation laws
[1, 2, 3, 4]
The first governing equation, in vector form, is the mass
conservation (continuity) equation [1, 2, 3, 4]:

dp

5. TV () =0

where 7 = {u,v,w}”
In Cartesian Tensor Notation [1, 2, 3, 4]:

op 0
a + 8x,- (pUl) =0

Vi=1,2,3. Where 1 = u,up = v,u3 =w and x1 = x,x0 = y,x3 =



The momentum equations, in Cartesian reference frame, are
as follows (in vector form) [1, 2, 3, 4]:
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The term on the RHS is the rate of change of x,y and z -
momentum of the fluid particle [1, 2, 3, 4]:

The terms By, B, B, are the body force terms and the
Sm,» Smy, Sm, are the source terms [1, 2, 3, 4]:



The other terms represent the surface forces - combination of
pressure and viscous stresses [1, 2, 3, 4]

Note nine viscous stress components

Can combine the source terms and body force terms into one
source term [1, 2, 3, 4]

Body forces include - gravity force, centrifugal force, Coriolis

force, electromagnetic force [1, 2, 3, 4]

The final governing equation is the (internal) energy equation
and is given by [1, 2, 3, 4]:
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Can convert the above to temperature (T), total energy (E)
or total enthalpy (hg) equation using, respectively [1, 2, 3, 4]:

i=CyT,

1
/':E—E(u2+v2+w2)or

1

i=h-" whereh:ho—i(u2+v2—|—w2)
P

The Equations of state are also needed [1, 2, 3, 4]

p=p(p, T)and i=i(p,T)



For flows where the viscous forces are negligible - can assume
shearing stresses are negligible [1, 2, 3, 4]:

Thus, 7;; =0, Vi,j =x,y,z [1, 2, 3, 4]
Thus, momentum equations reduce to [1, 2, 3, 4]:
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known as Euler's equations [1, 2, 3, 4]
The energy equation reduces to [1, 2, 3, 4]:

%Jrv (piT) = —pV - (T)+ V- (kVT) +S;



Equations are much simpler for inviscid flow [1, 2, 3, 4]

However, still are a set of non-linear partial differential field
equations [1, 2, 3, 4]

No general solution [1, 2, 3, 4]



For most (isotropic) fluids, the shear stress is proportional to
the viscosity and shear rate [1, 2, 3, 4]
The above is Newton's law of viscosity [1, 2, 3, 4]:

To define the shear stresses - need to define linear elongating
deformations, linear shearing deformations and volumetric
deformation

Linear elongating deformations [1, 2, 3, 4]:
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Linear shearing deformations [1, 2, 3, 4]:
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Volumetric deformation [1, 2, 3, 4]:
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Shear stresses [1, 2, 3, 4]:
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A is the second viscosity [1, 2, 3, 4]:
Usually effect of A is negligible [1, 2, 3, 4]:

Not necessary for incompressible flows (V - (') = 0)
1,2, 3, 4]:

For gases can use A = —2/3u [1, 2, 3, 4]

After substitution and lots of algebra momentum equations
reduce to [1, 2, 3, 4]:

Opu op

dpv _ Op
W—|—V~(pv7)— @+V'(Mvv)+8y+5"”y
opw

__or
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Known as Navier-Stokes Equations [1, 2, 3, 4]
The energy equation reduces to [1, 2, 3, 4]

9Pl S (pid) = —pV - (T)+ V- (KVT) + & + S;

® is the viscous dissipation (viscous heating term) [1, 2, 3, 4]
® - can be ignored for flows where Br = (uU.)/(kAT) << 1
[6]

Also a set of non-linear partial differential field equations
1,2, 3, 4]

No general solution [1, 2, 3, 4]

Thus, above equations with the continuity equation form the
governing equations for (Newtonian) fluid flow



Newtonian fluids - the shear stress is proportional to the
viscosity and shear rate [1, 2, 3, 4]

Certain fluids have significantly different behaviour [8]
These are known as Non-Newtonian fluids [8]

Three main categories for Non-Newtonian behaviour [8]:

time independent behaviour - viscosity (apparent) that varies
as the shear rate varies

time dependent behaviour - viscosity (apparent) changes with
time at constant shear rate

visco-elastic behaviour - fluid bahaviour between pure liquid
and pure solid

Treatment beyond scope of this course - can consult literature
such as [§]



The governing equations for fluid dynamics and heat transfer,

in conservative form, are [1, 2, 3, 4]

o 0
GPE LY (puT) = 2P 4+ V- (uVu) + Be + S,

ot ox
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opw _Op
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Equations can be re-written in the form of a generalised scalar
transport equation for the general transport variable named ¢
[1, 2, 3, 4]

op0

i +V - (ppT) =V -(TV) + Sy

Meaning [1, 2, 3, 4]: Rate of increase of ¢ of fluid element +
Net rate of flow of ¢ out of fluid element = Rate of increase
of ¢ due to diffusion + Rate of increase of ¢ due to sources

Important Concept in CFD

Keep in mind - will need it later



Till now dealt with general compressible flow

For incompressible flow can simplify equations using:

op
E—O
o _ 06 00 _ 00

ot Par "% "ot
V- (ppd)=pV - (67)
V- (pd)=pV- (W)



Thus the governing equations become:
pV - (7) =0, Thus, V- () =0
ou
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Till now dealt with general unsteady flow

For steady flow can simplify equations using:
Op
ot
dpg
ot

Thus the governing equations become:

V-(p?):O
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Most flows are turbulent [1, 9]

Thus, need to quantify the effects of turbulence in CFD
models [1, 9]

For this need sound understanding of the physics of
turbulence [1, 9]

What is turbulence?

Simple definition [1]:

" A chaotic and random state of motion develops in which the

velocity and pressure change continuously with time within
substantial regions of flow”

To characterise the onset of turbulence - use Reynolds number
Is turbulence good or a bad?
In other words to we want turbulence in a system or not?

The answer depends on the purpose of the system



Introduction to Turbulence Il

> Turbulence by nature has a "three dimensional spatial
character" [1]

Flow

of T-Swaves  of hairpin spot turbulent spots

(i
/Ddlsmmnn In-phase arays  Turbulent  Merging of Fully trbulent flow

vortices formation

T-S waves

Figure: Transition in a Boundary Layer over a Flat Plate [10]



This is the case even when the mean velocities and pressure
vary in one or two dimensions

An important aspect of turbulence is the formation of
rotational flow structures [1, 9]

These are known as eddies

The turbulent eddies vary in length scale

Large scale eddies are anisotropic and are highly flow
dependent - inertia effects are dominant

Small scale eddies - viscous effects are dominant

Small scale eddies - isotropic for high Reynolds number flows
Transition - Don't confuse with transient

Transition - intermediate region between stable laminar flow
and unstable turbulent flow

Characterised by Turbulent spot formation and merging of
turbulent spots

Transition - still very difficult physical phenomenon to model
in CFD



Navier-Stokes Equations for Newtonian Fluid [1, 2, 3, 4]

ap B
E‘FV'(pﬁ)—O

Opu _Op
WJrv.(puﬁ) =3 + V- (uVu) + Bx + Sm,

Opv _ 0Op
W+v-(pv7)_ @+v-(wv)+3y+5%

opw _Op
W—I—V-(pwﬁ)——az + V- (uVw) + B, + S,

Above applicable for laminar and turbulent flow.
However as it stands the above equations, without expanding
are equations for laminar flow



To include effects of turbulence express instantaneous
velocities (u, v, w) and pressure p as superposition of two
components [1, 9]:

o(t) = ¢+ ¢/(1)

The first component is the mean flow component and the
second term is the random fluctuating component (due to
turbulence) [1, 9]

The mean flow component is given by [1, 9]:

1 At

¢:Kt ; o(t)dt

The time average of the fluctuating component is given by
[1, 9]:
1 At

¢ = NG ¢'(t)dt =0



Thus, use the RMS of the fluctuating components [1]:

— At
Vor=g; [ @y

Use the above to derive the time-averaged or Reynolds
averaged Navier-Stokes equations [1, 9]

Navier-Stokes Equations for Newtonian Fluid [1, 2, 3, 4]

dp _
a; TV (p@) =0
Opli __. Op =
= +V.(puu)_—&+V-(MVU)+BX+5MX
Oou’? dpu'v! opu’w’
- gX + pay + paz
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opu’v’! 8pﬁ opv'w’
_|: Ox + dy + 0z

opw _ op _
apw . __9p : B,
5y TV (pWl) = —om + V- (uVW) + Bz + S,
opu’w! opv'w’ dpw2
- |: pax + p@y + %z :|

By averaging - we gain nine extra terms —pu;u;
Known as Reynolds stresses

Under-determined system of equations

Thus, need closure model

Thus, the need for turbulence models
Turbulence modelling is central to CFD

Models built to provide closure by introducing additional
equations These models are developed either empirically from
experiment or rigorous mathematical methods



Thus, they vary in applicability based on the assumptions
about the fluid physics

Thus, must choose appropriate model for specific flow problem

Direct Numerical Simulation (DNS) resolves all scales of
turbulence - costly

Other models resolve some scales and model other scales



Reynolds Averaged Navier-Stokes Equations V

Injection
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) o e T

Dissipating
Large scale Flux of energy eddies
dies 1
= 304
l Resolved N =1Re;
I
Direct numerical simulation (DNS) Apys
Resolved _ Modeled
T bt b
Large eddy simulation (LES) Args
Resolved Modeled
— e - -

Agans Reynolds averaged Navier-Stokes equations (RANS)

Figure: Turbulence Models - Resolved Scales vs. Modelled Scales [10]



Remember the Generalised Scalar transport Equation:

Equations can be re-written in the form of a generalised scalar
transport equation for the general transport variable named ¢
[1, 2, 3, 4]

0

%f+v-(p¢7):v-(rv¢)+s¢
Discretise Domain into discrete (control) volumes
(cells/voxels):

Discretise the generalised scalar transport equation:

a(p¢) Niaces Nfaces
v Af = r A %4
5. VT zf: profus.Ar Zf: FVor.Ar + Sy

Write above for each cell in the computational domain, for
each transport variable ¢ [2, 1, 11, 6, 12].



The Finite Volume Method (in brief) I

» Apply boundary and/or initial conditions.

> The resulting equations are solved for all the transport
variables ¢ at the cell center for all cells [2, 1, 11, 6, 12].

=
B EE

Dc

-

=

Dunderflow

Figure: Hydrocyclone geometry Figure: Computational grid
[13] (mesh) [13]



Thus, providing an approximate solution for the given problem
[2, 1, 11, 6, 12].

The FVM has more complexity, however, above is a basic
overview.

Important to keep in mind - CFD is an approximation.

CFD solutions have sources of error:

Modelling error: as a result of model
assumptions/simplifications

Computing error: as a result of numerical methods and
computer round-off (finite precision machine)



Can use the Finite Difference Method (FDM) or the Finite
Element Method (FEM)
other approaches:

the Lattice Boltzmann Method (LBM)
Smooth Particle Hydrodynamics (SPH)
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