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Course Outline I
▶ Introduction to CFD

▶ Mathematical Conventions

▶ Basic Fluid Flow (Single Phase)

▶ Governing Equations: Continuity, Momentum and Energy
Equations

▶ Inviscid Flow, Newtonian and Non-Newtonian Fluids

▶ Generalised Scalar Transport Equation

▶ Compressible and Incompressible Flows

▶ Steady and Unsteady Flows

▶ Introduction to Turbulence

▶ Navier-Stokes Equations and Laminar Flow

▶ RANS Equations

▶ The Finite Volume Method (in brief): Generalised Scalar
Transport Equation → Discretised Domain → Discretised
Form of the Generalised Scalar Transport Equation →
Numerical Solution



Introduction to CFD I

▶ The governing equations for fluid flow (single and
multiphase), heat and mass transfer have no analytic solutions
for the general case [1, 2, 3, 4]

▶ Analytic/exact solutions exist for simple cases [1, 2, 3, 4]

▶ Simplifying assumptions are made in these cases such as 2D,
symmetric, constant density etc. [1, 2, 3, 4]

▶ Most related engineering problems are not as simple
[1, 2, 3, 4]

▶ Numerical analysis provides a plausible option for solving
complex engineering problems related to fluid flow, heat and
mass transfer [1, 2, 3, 4]

▶ CFD refers to numerical solution of the governing equations
for fluid flow, heat and mass transfer [1, 2, 3, 4]

▶ Many commercial CFD codes available: Star-CD,
Star-CCM+, PHOENICS, Flow EFD, Flow 3D as well as
ANSYS Fluent and CFX



Introduction to CFD II

▶ Relatively complete and widely used open source code -
OPENFOAM

▶ Most codes are based on the Finite Volume Method (FVM)
[1, 2, 3, 4]

▶ Codes based on the Finite Element Method (FEM) are
available [1, 2, 3, 4]

▶ Lattice Boltzmann Method (LBM) is becoming popular -
permeating into industrial application

▶ LBM - simplicity in algorithm implementation and high level
of parallelism, however, multi-physics and boundary conditions
can be ’tricky’

▶ Smooth Particle Hydrodynamics (SPH) becoming increasingly
popular due to increase in computing power and with the
advent of large scale GPU computing

▶ Can write your own custom code



Introduction to CFD III

▶ CFD has been around for decades [1, 2, 3, 4]

▶ However, due to computational restrictions was limited in
usage [1, 2, 3, 4]

▶ With advent of cheap and easily available large scale
computing power use of CFD widespread [1, 2, 3, 4]

▶ The widespread use and industrial demand for short turn
around times has led to some problems for the CFD analyst
[1, 2, 3, 4]

▶ Many CFD analyst have only received an undergraduate
qualification [1, 2, 3, 4]

▶ Thus, many analysts do not have a sufficient background in
advanced fluid dynamics, thermodynamics, heat and mass
transfer to produce high quality CFD solutions [1, 2, 3, 4]

▶ Furthermore, financial and time constraints prevent further
training for the analyst



Introduction to CFD IV

▶ In addition, these constraints prevent mesh and turbulence
sensitivity studies as well as the use of ”full“ physics in CFD
models

▶ Purpose of this course is to address first of the two issues

▶ Many companies prefer to hire CFD analysts with at least a
Masters background in CFD

▶ The ideal skill set for a CFD analyst [5]:
▶ Fluid Dynamics, Heat and Mass Transfer, Thermodynamics,

Thermofluids - Transport Phenomena
▶ Mathematics and Applied Mathematics
▶ Computer Science - Programming
▶ Computer Hardware and Architecture
▶ Parallel computing



Mathematical Conventions I
You should know this by now but here is a reminder.

For a given scalar [6, 7]:

ϕ = ϕ(x , y , z)

The gradient is defined as [6, 7]:

∇ϕ ≡ grad(ϕ) =
∂ϕ

∂x

−→
i +

∂ϕ

∂y

−→
j +

∂ϕ

∂z

−→
k

For a vector [6, 7]:

−→
ϕ = ϕx

−→
i + ϕy

−→
j + ϕz

−→
k

The gradient (which is a second order tensor) is defined as [6, 7]:

∇
−→
ϕ ≡ grad

(
−→
ϕ

)
=

[
∂

∂x

−→
i +

∂

∂y

−→
j +

∂

∂z

−→
k

][
ϕx

−→
i +ϕy

−→
j +ϕz

−→
k

]



Mathematical Conventions II

The above tensor can be written as [6, 7]:
∂ϕx

∂x
∂ϕx

∂y
∂ϕx

∂z
∂ϕy

∂x
∂ϕy

∂y
∂ϕy

∂z
∂ϕz

∂x
∂ϕz

∂y
∂ϕz

∂z


The divergence of a vector is given as [6, 7]:

∇ ·
−→
ϕ ≡ div

(
−→
ϕ

)
=

∂ϕx

∂x
+

∂ϕy

∂y
+

∂ϕz

∂z

The Laplacian is defined as [6, 7]:

∇ · ∇ϕ ≡ ∇2ϕ =
∂2ϕ

∂x
+

∂2ϕ

∂y
+

∂2ϕ

∂z

NOT THE SAME AS (∇ϕ)2 [6, 7]:



Mathematical Conventions III

(∇ϕ)2 =

(
∂ϕ

∂x

)2

+

(
∂ϕ

∂y

)2

+

(
∂ϕ

∂z

)2

Dot product between two vectors −→a = {a1, a2, ...., an}T and
−→
b = {b1, b2, ...., bn}T is defined as [6, 7]:

−→a ·
−→
b = aibi , ∀i = 1, 2, ...., n

Cross product between two vectors −→a = {a1, a2, a3}T and
−→
b = {b1, b2, b3}T is defined as [6, 7]:

−→a ⊗
−→
b =

 a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3





Governing Equations I

▶ The governing equations are derived based on a continuum
approach as opposed to a molecular dynamics approach
[1, 2, 3, 4]

▶ The governing equations for fluid flow are conservation laws
[1, 2, 3, 4]

▶ The first governing equation, in vector form, is the mass
conservation (continuity) equation [1, 2, 3, 4]:

∂ρ

∂t
+∇ · (ρ−→u ) = 0

where −→u = {u, v ,w}T

▶ In Cartesian Tensor Notation [1, 2, 3, 4]:

∂ρ

∂t
+

∂

∂xi
(ρui ) = 0

∀i = 1, 2, 3. Where u1 = u, u2 = v , u3 = w and x1 = x , x2 = y , x3 = z



Governing Equations II
▶ The momentum equations, in Cartesian reference frame, are

as follows (in vector form) [1, 2, 3, 4]:

∂ρu

∂t
+∇ · (ρu−→u ) =

∂(−p + τxx)

∂x
+

∂τyx
∂y

+
∂τzx
∂z

+ Bx + SMx

∂ρv

∂t
+∇ · (ρv−→u ) =

∂τxy
∂x

+
∂(−p + τyy )

∂y
+

∂τzy
∂z

+ By + SMy

∂ρw

∂t
+∇ · (ρw−→u ) =

∂τxz
∂x

+
∂τyz
∂y

+
∂(−p + τzz)

∂z
+Bz + SMz

▶ The term on the RHS is the rate of change of x , y and z -
momentum of the fluid particle [1, 2, 3, 4]:

▶ The terms Bx ,By ,Bz are the body force terms and the
SMx , SMy , SMz are the source terms [1, 2, 3, 4]:



Governing Equations III

▶ The other terms represent the surface forces - combination of
pressure and viscous stresses [1, 2, 3, 4]:

▶ Note nine viscous stress components

▶ Can combine the source terms and body force terms into one
source term [1, 2, 3, 4]

▶ Body forces include - gravity force, centrifugal force, Coriolis
force, electromagnetic force [1, 2, 3, 4]

▶ The final governing equation is the (internal) energy equation
and is given by [1, 2, 3, 4]:

∂ρi

∂t
+∇·(ρi−→u ) = −p∇·(−→u )+∇·(k∇T )+τxx

∂u

∂x
+τyx

∂u

∂y
+τzx

∂u

∂z
+

τxy
∂v
∂x + τyy

∂v
∂y + τzy

∂v
∂z + τxz

∂w
∂x + τyz

∂w
∂y + τzz

∂w
∂z + Si



Governing Equations IV

▶ Can convert the above to temperature (T ), total energy (E )
or total enthalpy (h0) equation using, respectively [1, 2, 3, 4]:

i = CVT ,

i = E − 1

2
(u2 + v2 + w2) or

i = h − p

ρ
where h = h0 −

1

2
(u2 + v2 + w2)

▶ The Equations of state are also needed [1, 2, 3, 4]:

p = p(ρ,T ) and i = i(ρ,T )



Inviscid Flow I

▶ For flows where the viscous forces are negligible - can assume
shearing stresses are negligible [1, 2, 3, 4]:

▶ Thus, τij = 0, ∀i , j = x , y , z [1, 2, 3, 4]

▶ Thus, momentum equations reduce to [1, 2, 3, 4]:

∂ρu

∂t
+∇ · (ρu−→u ) = −∂p

∂x
+ Bx + SMx

∂ρv

∂t
+∇ · (ρv−→u ) = −∂p

∂y
+ By + SMy

∂ρw

∂t
+∇ · (ρw−→u ) = −∂p

∂z
+ Bz + SMz

▶ known as Euler’s equations [1, 2, 3, 4]

▶ The energy equation reduces to [1, 2, 3, 4]:

∂ρi

∂t
+∇ · (ρi−→u ) = −p∇ · (−→u ) +∇ · (k∇T ) + Si



Inviscid Flow II

▶ Equations are much simpler for inviscid flow [1, 2, 3, 4]

▶ However, still are a set of non-linear partial differential field
equations [1, 2, 3, 4]

▶ No general solution [1, 2, 3, 4]



Newtonian Fluid I

▶ For most (isotropic) fluids, the shear stress is proportional to
the viscosity and shear rate [1, 2, 3, 4]

▶ The above is Newton’s law of viscosity [1, 2, 3, 4]:

▶ To define the shear stresses - need to define linear elongating
deformations, linear shearing deformations and volumetric
deformation

▶ Linear elongating deformations [1, 2, 3, 4]:

exx =
∂u

∂x

eyy =
∂v

∂y

ezz =
∂w

∂z



Newtonian Fluid II
▶ Linear shearing deformations [1, 2, 3, 4]:

exy = eyx =
1

2

(
∂u

∂y
+

∂v

∂x

)

exz = ezx =
1

2

(
∂u

∂z
+

∂w

∂x

)
eyz = ezy =

1

2

(
∂v

∂z
+

∂w

∂y

)
▶ Volumetric deformation [1, 2, 3, 4]:

exx + eyy + exx =
∂u

∂x
+

∂v

∂y
+

∂w

∂z
= ∇ · (−→u )

▶ Shear stresses [1, 2, 3, 4]:

τii = 2µeii + λ∇ · (−→u )

τij = τji = 2µeij



Newtonian Fluid III

▶ λ is the second viscosity [1, 2, 3, 4]:

▶ Usually effect of λ is negligible [1, 2, 3, 4]:

▶ Not necessary for incompressible flows (∇ · (−→u ) = 0)
[1, 2, 3, 4]:

▶ For gases can use λ = −2/3µ [1, 2, 3, 4]:

▶ After substitution and lots of algebra momentum equations
reduce to [1, 2, 3, 4]:

∂ρu

∂t
+∇ · (ρu−→u ) = −∂p

∂x
+∇ · (µ∇u) + Bx + SMx

∂ρv

∂t
+∇ · (ρv−→u ) = −∂p

∂y
+∇ · (µ∇v) + By + SMy

∂ρw

∂t
+∇ · (ρw−→u ) = −∂p

∂z
+∇ · (µ∇w) + Bz + SMz



Newtonian Fluid IV

▶ Known as Navier-Stokes Equations [1, 2, 3, 4]

▶ The energy equation reduces to [1, 2, 3, 4]:

∂ρi

∂t
+∇ · (ρi−→u ) = −p∇ · (−→u ) +∇ · (k∇T ) + Φ + Si

▶ Φ is the viscous dissipation (viscous heating term) [1, 2, 3, 4]

▶ Φ - can be ignored for flows where Br = (µUe)/(k∆T ) << 1
[6]

▶ Also a set of non-linear partial differential field equations
[1, 2, 3, 4]

▶ No general solution [1, 2, 3, 4]

▶ Thus, above equations with the continuity equation form the
governing equations for (Newtonian) fluid flow



Non-Newtonian Fluid

▶ Newtonian fluids - the shear stress is proportional to the
viscosity and shear rate [1, 2, 3, 4]

▶ Certain fluids have significantly different behaviour [8]

▶ These are known as Non-Newtonian fluids [8]
▶ Three main categories for Non-Newtonian behaviour [8]:

▶ time independent behaviour - viscosity (apparent) that varies
as the shear rate varies

▶ time dependent behaviour - viscosity (apparent) changes with
time at constant shear rate

▶ visco-elastic behaviour - fluid bahaviour between pure liquid
and pure solid

▶ Treatment beyond scope of this course - can consult literature
such as [8]



Generalised Scalar Transport Equation I

▶ The governing equations for fluid dynamics and heat transfer,
in conservative form, are [1, 2, 3, 4]

∂ρu

∂t
+∇ · (ρu−→u ) = −∂p

∂x
+∇ · (µ∇u) + Bx + SMx

∂ρv

∂t
+∇ · (ρv−→u ) = −∂p

∂y
+∇ · (µ∇v) + By + SMy

∂ρw

∂t
+∇ · (ρw−→u ) = −∂p

∂z
+∇ · (µ∇w) + Bz + SMz

∂ρi

∂t
+∇ · (ρi−→u ) = −p∇ · (−→u ) +∇ · (k∇T ) + Φ + Si



Generalised Scalar Transport Equation II

▶ Equations can be re-written in the form of a generalised scalar
transport equation for the general transport variable named ϕ
[1, 2, 3, 4]

∂ρϕ

∂t
+∇ · (ρϕ−→u ) = ∇ · (Γ∇ϕ) + Sϕ

▶ Meaning [1, 2, 3, 4]: Rate of increase of ϕ of fluid element +
Net rate of flow of ϕ out of fluid element = Rate of increase
of ϕ due to diffusion + Rate of increase of ϕ due to sources

▶ Important Concept in CFD

▶ Keep in mind - will need it later



Compressible and Incompressible Flow I

▶ Till now dealt with general compressible flow

▶ For incompressible flow can simplify equations using:

∂ρ

∂t
= 0

∂ρϕ

∂t
= ρ

∂ϕ

∂t
+ ϕ

∂ρ

∂t
= ρ

∂ϕ

∂t

∇ · (ρϕ−→u ) = ρ∇ · (ϕ−→u )

∇ · (ρ−→u ) = ρ∇ · (−→u )



Compressible and Incompressible Flow II

▶ Thus the governing equations become:

ρ∇ · (−→u ) = 0, Thus, ∇ · (−→u ) = 0

ρ
∂u

∂t
+ ρ∇ · (u−→u ) = −∂p

∂x
+∇ · (µ∇u) + Bx + SMx

ρ
∂v

∂t
+ ρ∇ · (v−→u ) = −∂p

∂y
+∇ · (µ∇v) + By + SMy

ρ
∂w

∂t
+ ρ∇ · (w−→u ) = −∂p

∂z
+∇ · (µ∇w) + Bz + SMz

ρ
∂i

∂t
+ ρ∇ · (i−→u ) = −p∇ · (−→u ) +∇ · (k∇T ) + Φ + Si



Steady and Unsteady Flow I
▶ Till now dealt with general unsteady flow
▶ For steady flow can simplify equations using:

∂ρ

∂t
= 0

∂ρϕ

∂t
= 0

▶ Thus the governing equations become:

∇ · (ρ−→u ) = 0

∇ · (ρu−→u ) = −∂p

∂x
+∇ · (µ∇u) + Bx + SMx

∇ · (ρv−→u ) = −∂p

∂y
+∇ · (µ∇v) + By + SMy

∇ · (ρw−→u ) = −∂p

∂z
+∇ · (µ∇w) + Bz + SMz

∇ · (ρi−→u ) = −p∇ · (−→u ) +∇ · (k∇T ) + Φ + Si



Introduction to Turbulence I

▶ Most flows are turbulent [1, 9]

▶ Thus, need to quantify the effects of turbulence in CFD
models [1, 9]

▶ For this need sound understanding of the physics of
turbulence [1, 9]

▶ What is turbulence?

▶ Simple definition [1]:
”A chaotic and random state of motion develops in which the
velocity and pressure change continuously with time within
substantial regions of flow”

▶ To characterise the onset of turbulence - use Reynolds number

▶ Is turbulence good or a bad?

▶ In other words to we want turbulence in a system or not?

▶ The answer depends on the purpose of the system



Introduction to Turbulence II

▶ Turbulence by nature has a ”three dimensional spatial
character“ [1]

Figure: Transition in a Boundary Layer over a Flat Plate [10]



Introduction to Turbulence III
▶ This is the case even when the mean velocities and pressure

vary in one or two dimensions
▶ An important aspect of turbulence is the formation of

rotational flow structures [1, 9]
▶ These are known as eddies
▶ The turbulent eddies vary in length scale
▶ Large scale eddies are anisotropic and are highly flow

dependent - inertia effects are dominant
▶ Small scale eddies - viscous effects are dominant
▶ Small scale eddies - isotropic for high Reynolds number flows
▶ Transition - Don’t confuse with transient
▶ Transition - intermediate region between stable laminar flow

and unstable turbulent flow
▶ Characterised by Turbulent spot formation and merging of

turbulent spots
▶ Transition - still very difficult physical phenomenon to model

in CFD



Navier-Stokes Equations and Laminar Flow I

▶ Navier-Stokes Equations for Newtonian Fluid [1, 2, 3, 4]

∂ρ

∂t
+∇ · (ρ−→u ) = 0

∂ρu

∂t
+∇ · (ρu−→u ) = −∂p

∂x
+∇ · (µ∇u) + Bx + SMx

∂ρv

∂t
+∇ · (ρv−→u ) = −∂p

∂y
+∇ · (µ∇v) + By + SMy

∂ρw

∂t
+∇ · (ρw−→u ) = −∂p

∂z
+∇ · (µ∇w) + Bz + SMz

▶ Above applicable for laminar and turbulent flow.

▶ However as it stands the above equations, without expanding
are equations for laminar flow



Reynolds Averaged Navier-Stokes Equations I

▶ To include effects of turbulence express instantaneous
velocities (u, v ,w) and pressure p as superposition of two
components [1, 9]:

ϕ(t) = ϕ̄+ ϕ′(t)

▶ The first component is the mean flow component and the
second term is the random fluctuating component (due to
turbulence) [1, 9]

▶ The mean flow component is given by [1, 9]:

ϕ̄ =
1

∆t

∫ ∆t

0
ϕ(t)dt

▶ The time average of the fluctuating component is given by
[1, 9]:

ϕ̄′ =
1

∆t

∫ ∆t

0
ϕ′(t)dt ≡ 0



Reynolds Averaged Navier-Stokes Equations II
▶ Thus, use the RMS of the fluctuating components [1]:√

(ϕ′)2 =
1

∆t

∫ ∆t

0
(ϕ′(t))2dt

▶ Use the above to derive the time-averaged or Reynolds
averaged Navier-Stokes equations [1, 9]

▶ Navier-Stokes Equations for Newtonian Fluid [1, 2, 3, 4]

∂ρ

∂t
+∇ · (ρū) = 0

∂ρū

∂t
+∇ · (ρūū) = −∂p̄

∂x
+∇ · (µ∇ū) + Bx + SMx

-

[
∂ρu′2

∂x + ∂ρu′v ′

∂y + ∂ρu′w ′

∂z

]
∂ρv̄

∂t
+∇ · (ρv̄ ū) = −∂p̄

∂y
+∇ · (µ∇v̄) + By + SMy



Reynolds Averaged Navier-Stokes Equations III

-

[
∂ρu′v ′

∂x + ∂ρv ′2

∂y + ∂ρv ′w ′

∂z

]
∂ρw̄

∂t
+∇ · (ρw̄ ū) = −∂p̄

∂z
+∇ · (µ∇w̄) + Bz + SMz

-

[
∂ρu′w ′

∂x + ∂ρv ′w ′

∂y + ∂ρw ′2

∂z

]
▶ By averaging - we gain nine extra terms −puiuj
▶ Known as Reynolds stresses

▶ Under-determined system of equations

▶ Thus, need closure model

▶ Thus, the need for turbulence models

▶ Turbulence modelling is central to CFD

▶ Models built to provide closure by introducing additional
equations These models are developed either empirically from
experiment or rigorous mathematical methods



Reynolds Averaged Navier-Stokes Equations IV

▶ Thus, they vary in applicability based on the assumptions
about the fluid physics

▶ Thus, must choose appropriate model for specific flow problem

▶ Direct Numerical Simulation (DNS) resolves all scales of
turbulence - costly

▶ Other models resolve some scales and model other scales



Reynolds Averaged Navier-Stokes Equations V

Figure: Turbulence Models - Resolved Scales vs. Modelled Scales [10]



The Finite Volume Method (in brief) I

▶ Remember the Generalised Scalar transport Equation:

▶ Equations can be re-written in the form of a generalised scalar
transport equation for the general transport variable named ϕ
[1, 2, 3, 4]

∂ρϕ

∂t
+∇ · (ρϕ−→u ) = ∇ · (Γ∇ϕ) + Sϕ

▶ Discretise Domain into discrete (control) volumes
(cells/voxels):

▶ Discretise the generalised scalar transport equation:

▶

∂(ρϕ)

∂t
V +

Nfaces∑
f

ρf ϕf uf .Af =

Nfaces∑
f

Γf∇ϕf .Af + SϕV

▶ Write above for each cell in the computational domain, for
each transport variable ϕ [2, 1, 11, 6, 12].



The Finite Volume Method (in brief) II
▶ Apply boundary and/or initial conditions.

▶ The resulting equations are solved for all the transport
variables ϕ at the cell center for all cells [2, 1, 11, 6, 12].

Figure: Hydrocyclone geometry
[13]

Figure: Computational grid
(mesh) [13]



The Finite Volume Method (in brief) III

▶ Thus, providing an approximate solution for the given problem
[2, 1, 11, 6, 12].

▶ The FVM has more complexity, however, above is a basic
overview.

▶ Important to keep in mind - CFD is an approximation.

▶ CFD solutions have sources of error:
▶ Modelling error: as a result of model

assumptions/simplifications
▶ Computing error: as a result of numerical methods and

computer round-off (finite precision machine)



Other Numerical Methods or Approached I

▶ Can use the Finite Difference Method (FDM) or the Finite
Element Method (FEM)

▶ other approaches:
▶ the Lattice Boltzmann Method (LBM)
▶ Smooth Particle Hydrodynamics (SPH)
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