Cosmology – Lecture I – Theory

Mathieu de Naurois LLR – IN2P3 – CNRS – Ecole Polytechnique denauroi@in2p3.fr

History of the Universe

General Introduction Theory

See also talk by Prof. Chanda Prescod-Weinstein (30/11)

Mathieu de Naurois

What is Cosmology?

Fundamental questions about the origin and destiny of the Universe:
 What is the Universe made up of ?
 How did the matter and structures form in the Universe ?
 Why is the Universe as we see it ?
 What is our place in the Universe ?
 Did the Universe always exists, and if not, what is its age ?
 How will the Universe evolve / possibly end ?
 Questions that appear in all cultures/religions
 Many different answers across history

Historical Cosmology

Movement of the planets & stars:
During one night
From one night to the other: puzzling retrograde motion
From one year to the other: apparent movement of stars
From different places on the earth

Model of Ptolemy

Earth at center, fixed stars
 Complicated movement of planets explained by epi-cycles
 Able to describe this retrograde motion

Mathieu de Naurois

Major Steps in History

- □ -3000 : Flat earth, mythological Cosmology (Egypt, ...)
- \square ~100 : Earth at centre (Ptolemy)
- □ 1520 1680 : Sun at centre (Copernic, Newton)
- □ 1917 : Universe is infinite (Einstein)
- 1922 : Evolving Universe (Friedman Lemaître)
- 1964 : Discovery of Cosmological Background. Big Bang model (Penzias & Wilson)
- \square > 2000 : Accelerated expansion (Supernova Ia, ...), modern cosmology

Open questions, observables

Evolution of the Universe

Formation of structures

Big bang Nucleo-synthesis

Supernova 1a: distance versus recession velocity

Cosmological Background

Abundances of light elements

Mathieu de Naurois

Cosmology without General relativity (!)

Mathieu de Naurois

Is a static Universe possible?

Take a Universe with many galaxies isotropically distributed
 Gravity force between each pair of galaxies is attractive
 Calculate the evolution in a mean gravitational field
 Mathieu de Naurois

Is a static Universe possible?

R(t)

 $\vec{F}(R)$

Consider only one Galaxy at distance R(t)
 Forces:

- Radial by symmetry
- Isotropic pressure \rightarrow no net force
- Radial force due to inner matter (Gauss theorem)

 $\vec{F}(R) = -\frac{GM(R)m}{R^2}\vec{u}_R$

Evolution of a "bubble":

 $\frac{d^2 R}{d t^2} = -\frac{G M (R)}{R^2}$ Matter Universe, conservation of mass

 $M(R) = \frac{4}{3}\rho_m(t)R^3 = C_{\text{ste}}$

Evolution of a matter Universe

R(t)

Only for Matter!

Gravitational force $\vec{F}(R) = -\frac{GM(R)m}{R^2}\vec{u}_R$ □ Fundamental principle $\frac{\mathrm{d}^2 R}{\mathrm{d} t^2} = -\frac{G M(R)}{R^2}$ Conservation of mass $M(R) = \frac{4}{3} \rho_m(t) R^3 = C_{\text{ste}}$ Evolution Equation:

$$\left(\frac{\ddot{R}}{R}\right) = -\frac{4\pi}{3}\rho_m G \quad \Rightarrow \quad \dot{R}\ddot{R} = -\frac{4\pi}{3}(\rho_m R^3)G\frac{\dot{R}}{R^2}$$
$$\Rightarrow \quad \left(\frac{\dot{R}}{R}\right)^2 = \frac{8\pi}{3}(\rho_m R^3)\frac{G}{R^3} + \frac{C}{R^2}$$

Mathieu de Naurois

Evolution of a matter Universe

• Evolution Equations:

Velocity Acceleration $\left(\frac{\dot{R}}{R}\right)^2 = M_0 \frac{G}{R^3} + \frac{C}{R^2} \qquad q = \left(\frac{\ddot{R}}{R}\right) = -\frac{8\pi G \rho_m}{3} \le 0$

Expansion of the Universe is decelerated by matter content
 C is a constant specific to the Universe (Curvature! - see later)
 This does NOT require general relativity, pure classical mechanics!

NO static massive Universe is possible !!

Mathieu de Naurois

Interlude – Why no static Universe? Olber's paradox (1758-1840)

- Imagine a infinite, static Universe existing since ever.
- Isotropic distribution of Galaxies
- Light received by a galaxy at distance R scales as 1/R²
- Number of galaxies at distance [R, R+dR] scales a R² dR
- Each slice contribute to ~ same value, integration leads to infinity

The night sky must be White!

Mathieu de Naurois

Observation – Hubble Law

Galaxies are separating apart at a speed proportional to their distance

$$\frac{\mathrm{d}R}{\mathrm{d}t} = H_0 R + v_p \implies H_0 = \left\langle \frac{\dot{R}}{R} \right\rangle_t$$

Hubble flow

Proper Motion

 t_0

Mathieu de Naurois

Evolution of a matter Universe

Rewriting the evolution equations with current value

 $\left(\frac{\dot{R}}{R}\right)^{2} = \frac{8\pi}{3} (\rho_{m} R^{3}) \frac{G}{R^{3}} + \frac{C}{R^{2}} \implies H_{0}^{2} = \frac{8\pi}{3} (\rho_{m}^{0} G) + \frac{C}{R_{0}^{2}}$

Critical density

$$\rho_c = \frac{3 H_0}{8 \pi G}, \quad \Omega_m = \frac{\rho}{\rho_c} \qquad \text{Matter}$$

Dimensionless evolution equation:

Slowdown of expansion driven by matter:

 $\frac{1}{H_0^2} \left(\frac{\dot{R}}{R}\right)^2 = \left(\Omega_m \left(\frac{R_0}{R}\right)^3 + (1 - \Omega_m) \left(\frac{R_0}{R}\right)^2\right)$ $\left(\frac{\ddot{R}}{R}\right) = -\frac{4\pi G \rho_m}{3} = -\frac{\Omega_m}{2} H_0^2$

Mathieu de Naurois

Evolution of a matter Universe

 $\square \ \Omega_{\rm m} = 0, \text{ monotonic expansion}$ $R(t) = R_0 H_0 \times t$

 $\square \ \Omega_m = 1 \ (critical \ Universe) \\ Decelerating \ expansion$

 $R(t) = R_0 \left(\frac{3}{2} H_0 \times t\right)^{2/3}$

Ω_m>1 (critical Universe)
 Collapsing Universe

 $R_{max} = R_0 \frac{\Omega_m}{(\Omega_m - 1)}$

Mathieu de Naurois

A (tiny)-bit of General relativity

Mathieu de Naurois

Equivalence Principle - A. Einstein

No difference could be found between inertial mass (in acceleration) and gravitational mass (in gravity forces)
 ⇒ Implies that acceleration of a body in a gravitational field is independent of the nature of the body
 □ Tested extensively in vacuum tower

 Thus there is no way to distinguish between a free-fall movement in gravity field from a accelerated movement in absence of field
 ⇒ Gravity can be understood as a property of space and not of the falling body

Mathieu de Naurois

ASP VII – Gqberha – Sou

General Relativity vs Newtonian

Newtonian Gravity: Universe is flat and immuable, trajectories are curved due to a force (non-inertial movement)
 General relativity: Gravity is a geometric property of space, not a force. Trajectories are always inertial (geodesics) in a curved space
 Major conclusion: massless particles (light) are also affected, confirmed by measure of deflection of stars (Eddington, 1919)

Evolving Universe – Tensor Algebra

□ We consider a space time, in which we have a base of vectors $\{\vec{e}_{\mu}\}$ □ The metric is defined by the cross-product of vectors:

$$g_{\mu\nu} = \vec{e}_{\mu} \cdot \vec{e}_{\nu}$$

• Any vector can be decomposed on the base: $\vec{x} = x^{\mu} \vec{e}_{\mu}$ Covariant coordinates

Several bases can describe the same Universe, transformation given by

$$dx^{\mu} = \frac{\partial x^{\mu}}{\partial y^{\nu}} dy^{\nu} = \Lambda^{\mu}_{\nu} dy^{\nu}, \quad \vec{e}_{\mu} = \Lambda^{\nu}_{\mu} \vec{f}_{\nu}$$

Tensors are objects of higher rank (2, 3,) which transform in a similar manner

$$T^{\mu\nu} = \Lambda^{\mu}_{\ \alpha} \Lambda^{\nu}_{\ \beta} T'^{\alpha\beta}$$

Mathieu de Naurois

Norm & Invariants

□ Scalar are invariant by change of coordinate, for instance: $A = U^{\mu} \cdot V_{\mu} = g^{\mu\nu} U_{\mu} V_{\mu}$

The elementary distance, defining the metric, can be expressed as: $d s^2 = d x^{\mu} \cdot d x_{\mu} = g^{\mu\nu} d x_{\mu} d x_{\mu}$ Units where c = 1!

And is invariant by coordinate changes (such as the scalar product)

Tensor Algebra is the recipe to ensure that equations are Lorentz invariant, i.e. that equivalence principle is satisfied.

Curved Universe

 $g_{\mu\nu}$

□ In a flat Universe, the metric can be expressed in a diagonal form. e.g. Minkowski space (flat space-time)

□ This is not the case any more in curved Universe The "curvature" is a mathematical concept that is obtained from derivatives of the metric: $R_{\mu\nu}$

Ricci tensor

Scalar curvature $R = g^{\mu\nu} R_{\mu\nu}$

Mathieu de Naurois

Uniform, Isotropic Universe

A uniform, isotropic universe can be described by the Friedman-Lemaitre-Robertson-Walker metric

$$ds^{2} \equiv dx^{\mu}dx_{\mu} = dt^{2} - a^{2}(t) \left| \frac{dr^{2}}{1 - kr^{2}} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\phi^{2} \right|$$

 a(t) is a "scale factor" giving the size of a bubble of Universe The grid itself is expanding, not the content!
 k = 1: Spherical space (Sum of angles > π)
 k = -1: Hyperbolic space (Sum of angles < π)

k = 0: Euclidean space (Sum of angles = π)

Mathieu de Naurois

магээооов ASP VII – Gaberha – South Africa - 2022

 $\Omega_0 = 1$

Einstein Equation – I

 General idea: find the minimum covariant formalism compatible with Newton gravity
 Start for the Poisson equation for gravitational potential

Field $\nabla^2 \Phi_p = -4\pi\rho_g$ **Matter Content Construct a Lorentz-invariant** (Covariant) version

Covariant Derivative

$$\left(\frac{\partial^2}{\partial t^2} - \nabla^2\right) A^{\mu} = 4 \pi j^{\mu}$$

Matter Quadri-current (Density is NOT Lorentz invariant)

$$G_{\mu\nu} = \left(R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} \right) = 8 \pi G T_{\mu\nu}$$

Curvature of Universe

Energy Content

Mathieu de Naurois

Energy Momentum Tensor?

Need a covariant (Lorentz invariant) formulation of energy conservation
 In special relativity Energy & Momentum are coupled

$$\frac{\partial \rho}{\partial t} + \operatorname{div}(\rho \vec{v}) = 0$$
 $\bigvee_{\mu} T^{\mu}_{\nu} = 0$

Energy momentum tensor for a perfect fluid (Lorentz Invariant)

$$T_{\mu\nu} = n(\widetilde{x}) \frac{p_{\mu} p_{\nu}}{E} = \rho u_{\mu} u_{\nu} + P(g_{\mu\nu} + u_{\mu} u_{\nu})$$

 u_{μ} is the four velocity In the rest frame of fluid, $u^{\mu}=(1,0,0,0)$ and thus:

$$\begin{array}{c}
\rho(t) \\
-P(t) \\
-P(t) \\
-P(t)
\end{array}$$

Mathieu de Naurois

Energy Momentum Tensor

Mathieu de Naurois

T

ASP VII – Gqberha – South Africa - 2022

Flux

Momentum

Momentum

Density

Pressure

Viscosity

Einstein Equation – II

Minimum Covariant Equation

$$G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = 8 \pi G T_{\mu\nu}$$

Curvature of Universe Energy Content

• Energy Content:

$$T_{\mu\nu} = \sum_{\text{species}} \left(\rho \, u_{\mu} u_{\nu} + P \left(g_{\mu\nu} + u_{\mu} u_{\nu} \right) \right)$$

One can add a Cosmological Constant to force a static universe (Compensates for matter), no classical equivalent

$G_{\mu\nu} + \bigwedge g_{\mu\nu} = 8 \pi G T_{\mu\nu}$

Mathieu de Naurois

General relativity in Friedman-Lemaitre-Robertson-Walker metric

Einstein Equation (Isotropic Uniform Universe)

$$H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G}{3} \sum_{i} \rho_{i} - \frac{k}{a^{2}}$$

□ Acceleration

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \sum_{i} (\rho_i + 3p_i)$$

So we still need:
 Relation between pressure & density (equation of state)
 Corresponding evolution of density with time

Mathieu de Naurois

Why pressure?

Gravitation depends on energy content
But what if the size of the Universe changes?
Thermodynamics never lies and says:

$d E = \delta W = -p d V$

Decrease of gravitation

Mathieu de Naurois

ASP VII – Gqberha – South Africa - 2022

Decrease of energy

density

R(t)

Thermodynamics – Evolution of density □ Work of pressure: $dE = \delta W = -p dV$ $E = \rho V$ Expression of energy: $\frac{\mathrm{d}E}{\mathrm{d}t} = \rho \frac{\mathrm{d}V}{\mathrm{d}t} + V \frac{\mathrm{d}\rho}{\mathrm{d}t} = -p \frac{\mathrm{d}V}{\mathrm{d}t}$ $\frac{\mathrm{d}\rho}{\mathrm{d}t} = -(p+\rho)\frac{1}{V}\frac{\mathrm{d}V}{\mathrm{d}t} = -3\frac{\dot{a}}{a}(p+\rho)$ • Evolution of density: $\frac{\mathrm{d}\rho}{\mathrm{d}t} = 0 \quad \Leftrightarrow \quad p = -\rho$ In particular, $P = w \rho \implies \rho(t) = \rho_0 \left(\frac{a}{a_0}\right)^{-3(1+w)}$ Using equation of state:

Mathieu de Naurois

Equation of state – Matter (cold)

Normal matter:Energy Density

$$\frac{E}{V} = \rho_m \left(c^2 + \frac{1}{2} v^2 \right) \approx \rho_m c^2$$

Pressure is related to kinetic energy (internal energy)

$$P = \frac{n R T}{V} = \frac{2}{3} \frac{\langle E_c \rangle}{V} \approx \frac{2}{3} \frac{\langle v^2 \rangle}{c^2} \times \frac{E}{V} \ll \frac{E}{V}$$

For normal matter kinetic energy is negligible compared to mass energy

$P=0=w\rho$ with w=0

Mathieu de Naurois

Equation of state – Radiation

Radiation:Energy Density

$$\frac{E}{V} = \frac{N}{V} \times pc$$

Simple calculation (reflection of photons with momentum transfer) shows

$$P = \frac{N}{V} \times p c \int \cos^2 \alpha \, \mathrm{d} \cos \alpha$$
$$= \frac{1}{3} \frac{E}{V}$$

 $P = w \rho$ with $w = \frac{1}{2}$

Mathieu de Naurois

Equation of state – Cosmological constant Cosmological constant is characterized by constant density $\rho = \text{constant}$ Thus $\frac{d\rho}{dt} = -3\frac{\dot{a}}{a}(p+\rho) = 0$

□ This implies

 $P = -\rho = w\rho$ with w = -1

□ Strange fluid with negative pressure!
 ⇒ Volume increase lead to energy increase!

Mathieu de Naurois

Cosmological Constant

- Introduced by Einstein to allow for a static Universe (counteracting the mass)
- Positive energy density, independent of size, implying negative pressure
- □ Kind of "vacuum energy"
- But in 1929 Edwin Hubble showed that the Universe is in expansion
- Much later, when I was discussing cosmological problems with Einstein, he remarked that the introduction of the cosmological term was the biggest blunder of his life.
 - -- George Gamow, My World Line, 1970

General relativity in Friedman-Lemaitre-Robertson-Walker metric

Einstein Equation (Isotropic Uniform Universe)

 $H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G}{3} \sum_{i} \rho_{i} - \frac{k}{a^{2}}$ Acceleration $\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \sum_{i} (\rho_i + 3p_i)$ Evolution of density $\frac{\mathrm{d}\rho}{\mathrm{d}t} = -(p+\rho)\frac{1}{V}\frac{\mathrm{d}V}{\mathrm{d}t} = -3\frac{\dot{a}}{a}(p+\rho)$ Equation of state $P = w \rho \implies \rho(t) = \rho_0 \left(\frac{a}{a_0}\right)^{-3(1+w)}$

Mathieu de Naurois

Matter, radiation, ...

Content	State Equation	Dilution Law	Evolution
Cold Matter	$p \approx 0$	$ \rho \propto a(t)^{-3} $	$a(t) \propto t^{2/3}$
Hot Radiation	$p = \frac{\rho}{3}$	$ \rho \propto a(t)^{-4} $	$a(t) \propto t^{1/2}$
Curvature		$\left(\frac{\dot{a}}{a}\right)^2 = -\frac{k}{a^2}$	$a(t) \propto t$
Cosmological constant	<i>p</i> =-ρ	$\rho = C_{ste} = \frac{\Lambda}{8\pi G_N}$	$a(t) \propto e^{H \times t}$
Generic	$p = w \rho$	$\rho \propto a(t)^{-3(1+w)}$	$a(t) \propto t^{1/3(1+w)}$

Evolution of the Universe

Mathieu de Naurois

Deceleration parameter

Deceleration parameter

$$q = -\frac{1}{H^2} \left[\frac{\ddot{a}}{a} \right] = \frac{\Omega_m}{2} + \Omega_r - \Omega_\Lambda$$

Matter and radiation decelerates expansion
 Cosmological constants accelerates expansion
 Curvature is neutral
 Null deceleration (static universe) if

$\Omega_m + 2 \Omega_r = 2 \Omega_\Lambda$

Mathieu de Naurois

Epochs and Fate

- Universe starts by a radiation dominated era
- After some times, matters dominates over the radiation and expansion slows down
- □ If Ω > 1 and $Ω_Λ ~ 0$, the Universe re-collapses and radiation dominates again
- □ If Ω < 1 and $Ω_Λ ~ 0$, the Universe ends in free expansion governed by curvature
- □ If $\Omega < 1$ and $\Omega_{\Lambda} > 0$, the Universe ends in accelerated exponential expansion governed by cosmological constant

Mathieu de Naurois

