

The University of Manchester

ASP STUDY OF COVID-19 DATA FROM AFRICAN COUNTRIES

Dr. Ann Njeri

7th Biennial ASP, Nelson Mandela University. 7th December 2022

Outline:

□ Global COVID-19 Situation

COVID-19 Situation in Africa

□ ASP COVID-19 Study

□ Conclusions

□ Global COVID-19 Situation:

WHO Coronavirus (COVID-19) Dashboard

NHO Coronavirus (COVID-19) Dashboard							Back to t
Name	Cases - cumulative total =↓	Cases - newly reported in last 7 days	Deaths - cumulative total	Deaths - newly reported in last 7 days	doses administered per 100 population	primary series per 100 population	Persons Boosted per 100 population
Global	640,395,651	2,819,661	6,618,579	6,971	167.32	64.34	29.9
+ By WHO Region							
+ By World Bank Income Group							
United States of America	97,618,392	288,901	1,071,245	1,488	195.04	68.16	33.98
India	44,672,913	2,083	530,624	20	159.36	68.9	16.04
France	36,837,205	370,785	155,407	454	227.4	77.48	60.47
Germany	36,530,020	170,922	158,109	74	226.9	78.04	62.46
O Brazil	35,266,159	184,123	689,801	529	231.79	79.18	49.88
(Republic of Korea	27,208,800	370,960	30,621	343	257.01	87.17	65.63
Japan	24,911,367	782,453	49,826	1,054	271.49	81.42	66.47
Italy	24,260,660		181,098		248.9	82.95	75.04

COVID-19 Situation in Africa:

WHO prediction 2020:

- 29-44m Africans could be infected
- 83-190000 Africans could die
- Suggests Africa has lower transmission rates
- Prolong outbreak for several years
- Pressure on economic resources
- Containment measures challenge: 60% living below poverty line

Current Situation:

- 9.4m infected
- <180,000 dead</p>
- Millions rendered jobless, increased poverty & insecurity
- A number of studies conducted

ASP COVID-19 Study: Contribute to understanding & containment

□ ASP COVID-19 Study:

Call:

- March 2020
- Dr. Kétévi A. Assamagan
- ASP alumni
- Study COVID-19 data from their country (birth/resident)
- Permission from academic supervisor(s) sought
- A number of ASP alumni responded: <u>April 2020</u>
- 1st Publication:
- July 2020
- https://arxiv.org/pdf/2007.10927.pdf
- 2nd Publication:
- **Elsevier Scientific African**
- **3rd Publication:**
- https://arxiv.org/pdf/2209.08694.pdf

SIR Model

βSI

Simplest Model:

Infectious

- Recovered

- A good Model should successfully fit all the 3 datasets (Active, Recovered & Dead) simultaneously
- SIR unsuccessful in fitting the 3 curves simultaneously

- Fitting the recovered and the active independently also gives 2 different model parameters from fits to 2 independent datasets.
- Closure Test: using the 2 model parameters obtained by fitting the recovered to test for the active dataset, gives light blue curve, instead of the blue curve.
- Fitting only 1 dataset does not result in a good modeling on the other dataset.

SEIR Model

Mis-modelling did not improve

 Closure test: still poor – significant difference between the blue curve (active cases) & light blue curve

Conclusion: we need a model that can fit all the 3 datasets: <u>active</u>, <u>recovered</u> & <u>dead</u> simultaneously.

SIDARTHE Model

SIDARTHE-V Model: PaperII

Susceptible-Infected-Diagnosed-Ailing-Recognized-Threatened-Healed-Extinct-Vaccinated_Infected (SIDARTHE-VI)

Parameters:

- α, γ: Transmission rate due to contact with UNDETECTED asymptomatic, symptomatic infected, respectively.
- β, δ : Transmission rate due to contacts with DETECTED asymptomatic, symptomatic infected, respectively.
- E: Detection rate for ASYMPTOMATIC
- 0: Detection rate for SYMPTOMATIC
- ζ: Worsening rate, UNDETECTED asymptomatic infected becomes symptomatic
- η: Worsening rate, DETECTED asymptomatic infected becomes Symptomatic
- μ: Worsening rate, UNDETECTED symptomatic infected develop life-threatening symptoms.
- v: Worsening rate, DETECTED symptomatic infected develop life threatening symptoms.
- κ, λ: Recovery rate for undetected asymptomatic, symptomatic infected, respectively.
- ξ, ρ: Recovery rate for detected asymptomatic, symptomatic infected, respectively.
- φ: vaccination rate
- a': Reinfection rate of vaccinated
- τ₁, τ₂: Mortality rate for recognized infected and for infected with life-threatening symptoms

Methods

SIDARTHE mathematical model. The SIDARTHE dynamical system consists of eight ordinary differential equations, describing the evolution of the population in each stage over time: $\dot{V} = -\alpha' IV + \phi S$ (9)

$$\dot{S}(t) = -S(t)(\alpha I(t) + \beta D(t) + \gamma A(t) + \delta R(t))$$
(1)

$$\dot{I}(t) = S(t)(\alpha I(t) + \beta D(t) + \gamma A(t) + \delta R(t)) - (\varepsilon + \zeta + \lambda)I(t)$$
(2)

$$\dot{D}(t) = \varepsilon I(t) - (\eta + \rho)D(t)$$
(3)

$$\dot{A}(t) = \zeta I(t) - (\theta + \mu + \kappa)A(t)$$

$$\dot{R}(t) = \eta D(t) + \theta A(t) - (\nu + \xi) R(t)$$
(5)

$$\dot{T}(t) = \mu A(t) + \nu R(t) - (\sigma + \tau) T(t)$$
(6)

$$\dot{H}(t) = \lambda I(t) + \rho D(t) + \kappa A(t) + \xi R(t) + \sigma T(t)$$
(7)

$$\dot{E}(t) = \tau T(t) \tag{8}$$

Solved equations for modelling

(4)

16(17) parameters

https://www.nature.com/articles/s41591-020-0883-7.pdf

The Basic Reproduction Number R₀

- R₀ = expected number of secondary cases produced by a single (typical) infection in a completely susceptible population
- R₀ is one of the quantities used to parametrize the beginning of an epidemic ~ to understand if epidemic is growing = Appropriate containment measures
- R₀ is dimensionless and is NOT a rate
- R₀ is model dependent

SIR M

odel: Susceptible
$$\xrightarrow{\beta S i}$$
 Infectious $\xrightarrow{\gamma i}$ Recovered

- In an epidemic, we require *di/dt > 0*, *i.e* βsi-γi > 0
- At the outset of the epidemic, assuming everyone is susceptible, s=1 therefore:

$\beta/\gamma = R_o > 1$

 R₀ = probability of infection (given contacts) x average rate of contacts x duration of infectiousness

SIDARTHE Model:

$$R_0 = \frac{\alpha}{r_1} + \frac{\beta \times \epsilon}{r_1 \times r_2} + \frac{\gamma \times \zeta}{r_1 \times r_3} + \frac{\delta \times \eta \times \epsilon}{r_1 \times r_2 \times r_4} + \frac{\delta \times \zeta \times \theta}{r_1 \times r_3 \times r_4}$$

 $r_{1} = \varepsilon + \zeta + \lambda$ $r_{2} = \eta + \rho$ $r_{3} = \theta + \mu + \kappa$ $r_{4} = v + \chi$ $r_{5} = \sigma + \tau$

Calculating for the initial Ro:

 $R_0 = \alpha/r_1 + \beta x \epsilon/(r_1 x r_2) + \gamma x \zeta/(r_1 x r_3) + \delta x \eta x \epsilon/(r_1 x r_2 x r_4) + \delta x \zeta x \theta/(r_1 x r_3 x r_4) + r_5$

>All 16(17) parameters are solved for in the SIDARTHE-V differential equations

R₀ > 1: epidemic continues

- R₀<1: outbreak ends</p>
- R₀ can be used to estimate the fraction of people to vaccinate.
- R₀ must be applied with caution due to model dependency

What is an R value in an epidemic?

In an epidemic, one of the most important numbers is R - the reproduction number. If this is below one, then on average each infected person will infect fewer than one other person; the number of new infections will fall over time.

The lower the number, the faster the number of new infections will fall. When R is above one, the number of new infections is accelerating; the higher the number the faster the virus spreads through the population. 24 Jul 2020

www.gov.uk > publications > our-pl...

Our plan to rebuild: The UK Government's COVID-19 recovery ...

- Benin
- Cameroon
- Ghana
- Kenya
- Madagascar
- Mozambique
- Nigeria
- Rwanda
- South Africa
- Togo
- Zambia

Kenya, A. Njeri

Population = 46m

1st Case: 13th March-Travelled from US via London

Attended party: 2nd case friend of 1st case

Testing capacity increased ~April

Cessation of Movement in 2 major cities: Nairobi & Mombasa

Flights suspended, Partial country lockdown, Night Curfews

Social distancing in restaurants

50 people maximum

Curve slowed down(4th month), Flattening of a curve(Jul): Fatality rate ~1.57%

- Large R0>1 at the beginning
- No control measures in place yet
- Closure of points of entry eliminated the imported cases
- Decline in R0 implying that the control measures were effective
 - **Ro** rise and fall periodically due to a number of reasons

e.g increased testing capacity, relapses in control measures, etc

Months later R0<1</p>

Systematic Uncertainties on R₀

SIDARTHE Model:

H= **Healed** *\rangel not included in the data, yet it is included in the model.*

= Systematic error on the modeling

South Africa, Dr. D. Mathebula , F. Macucule & A. Guga

160

Waves vs. Daily Deaths:

-Vaccination impact ~1 year later (1/3 pop=vaccinated)

- Reduced daily death rates/
 Cumulative deaths plateau
- Relaxation of control = no resurgence/ peaks

Togo, Dr. S. Azote

1st Case: 6 March: Case travelled to Germany, France, Turkey & Benin

Surveillance at PoEs

Flights to Europe suspended ~10 days

Borders closed 2 weeks later

³ Curfew introduced

Public places e.g schools closed

Social gatherings restricted

Massive test drive form 07 April

5-20 May cases increased: neighboring countries reopened borders-Togolese returned home, Flights 1st August

(days)

Ghana, Dr. K. Amouzouvi

1st Case: 12 March

Day 6: Ban on all public gatherings Day 12: Borders & beaches closed **Day 18: Partial lockdown** Day 38: Lockdown lifted Day 47: Mandatory use of masks Day 60: Reopening of Hotels, bars and restaurants Day 98: Discharge policy is reviewed: Instead of following the two negative tests protocols, the infected who did not show any symptoms or whose symptoms disappeared during treatment Day 138: Public transport is allowed Day 173: Airports are opened.'

ΔRe[i] = (Re[i]-Re[i-1])/Re[i-1] at Day i

Ro rapid drop at ~Day 33 Highest peak in ΔRe Ro drops & ΔRe peaks 63 & 98

Mozambique, T. Mabote, Claudio M. Paulo

1st Case : 22nd March

Case had travelled from the UK

Schools closed immediately

Social gatherings restricted

State of emergency declared 01/04-29/07

Flights suspended on 12/05

No country lockdown

Country slowly reopening with social distancing measures in place

Waves vs. Time:

Zambia, G. Zimba, T. Mabote

1st Case: 13th March

Presidential Directive -26/03: Measures to control spread of COVID-19

Peak around day 60 truck driver crossing over from Tanzania in the northern region

Goodness of Fittings Zambia

Nigeria In PIII

Benin, A. Guga

Gov't measures to curb spread

Gap on the data on days 55-60: change in data reporting

Systematic difference before (PCR + RD test) & after the gap (PCR test only)

RD tests used only for contact tracing

Cameroon, T. Mabote & F. Onyie

Madagascar, Dr. L. Rakotondravohitra & Dr. F. Fanomezana

1st 3 Cases: 20 March

57 cases at end of March

High recovery end of April & dip in Active cases

Increased testing capacity

Infection/Active peaked from May-July. Maximum peak in July

Infection slowed down from August

Flattening of the curve towards end of August

Country is currently closed off to international flights

25-45 cases per week

Rwanda, T. Mabote & K. Mwale

1st Case : 14th March

Foreigner

Schools closed immediately

Testing of symptomatic cases & contact tracing

21/03 National lockdown

Contact tracing one of the most effective measure used by the Rwandan Govt to test asymptomatic individuals who came into contact with the infected persons.

Lowers the active cases after just the 1st month of pandemic outbreak

□ Conclusion:

- We model the COVID-19 data using the SIDARTHE(+V), and extracted a time-dependent basic reproduction number (R0) for each country studied
- Our study indicates that the initial measures taken by the African Govts were effective in curbing the spread of the virus (R₀<1): PII</p>
- Relaxation and difficulties to maintain the control measures over time drive the R0 in a time-dependent cyclic pattern of rises and falls In most countries, e.g. South Africa, after the initial growth, the epidemic has slowed and the R0 has fallen below 1

Impact of vaccination ~1 year later, no R0 peaks: PIII

The African Puzzle? The Low transmission rates: Youthful population? Low testing capacity? BCG vaccine? High Disease burden? Unreported deaths(2.4%)? Early preparedness? Experience from other epidemics? Worth investigating: OVERALL

COLLABORATORS:

Dr. Kétévi A. Assamagan Togo & USA **Team Leader**

Experimental Physicist Brookhaven National Laboratory Fellow, African Academy for Sciences

Research Interests: Search for new physics beyond the Standard Model of particle physics

Alma Mater: University of Lomé Co-founder, ASP

Passionate: Physics Education, Communication & Outreach

Prof. Simon Connell *South Africa* **Professor of Physics University of Johannesburg**

Research Interests: nuclear & particle physics

Alma Mater: University of Witswaterand Passionate: Technology & Innovation

SAIP former president

Prof. Azwinndini Muronga South Africa

Executive Dean of Science Nelson Mandela University

Interests: Research, Training & Innovation in Science

Assoc. Prof. Dephney Mathebula South Africa Snr Lecturer, Biomathematic UNISA

Dr. Somiealo Azote *Togo* Postdoc, Italy ASP 2016

Dr. Kossi Amouzouvi *Togo* Lecturer KNUST, Ghana TU Dresden, Germany APS2014

Dr. Laza Rakotondravo hitra Madagascar Resident Duke University Medical Center, USA

George Zimba Zambia PhD University of Jyväskylä, Finland ASP2016

Ebode Fabien Onyie Cameroon PhD University of Yaounde ASP2016

Kondwani C. Mwale Malawi Masters of Physics University of Rwanda, Rwanda ASP2020

Aluwani Guga South Africa PhD Physics Nelson Mandela University ASP2022

Essossolim C. Haliya *Togo* PhD University of Abomey-Calavi, Benin ASP2018

Moses Kamwela Lecturer & HoD Pharmacology Lusaka Apex Medical Uni.

Jesutofunmi A. Fajemisin Nigeria **Un. Of South Florida ASP2018**

Toivo S. Mabote Mozambique **MSc Astronomy, UP** ASP2020

Francisco Macucule Mozambique **MSc Astronomy**

Dr. Jean Baptiste **Fankam Fankam Postdoc, Wits South Africa**

Abigail Amankwah

Ghana MSc Maths, **AIMS Ghana**

Prof. Claudio Moises Paulo Mozambique Coordinator Astro & Space Universidade Eduardo Mondlane

Mulape Kanduza Zambia Cancer Diseases Hospital Lusaka, Zambia PDRA, Newcastle University PhD, Jodrell Bank Centre for Astrophysics University of Manchester

PhD Supervisor: Dr. Robert Beswick Research Interests: Extragalactic radio sources: AGNs + SFGs, VLBI

Alma Mater: University of Nairobi, University of Manchester

Passionate: STEM Mentorship for Schoolgirls

100% Primary-Secondary Education Transition

IAU-OAD UoM JIVE UoN

Jodrell Bank Centre for Astrophysics

http://arxiv.org/abs/2212.01874

Njeri et al. 2022, MNRAS, Accepted

Serendipitous discovery?

Elimisha Msichana 🖢 Elimisha Jamii

III. Astro-STEM Workshops & Mentorship

IV. Computer Literacy

- Computer Literacy non-existent
- Introduction to computer Astro-STEM
- Provided 7 computers so far

- Change misconceptions about STEM (e.g. Physics) subjects among schoolgirls
- Increase No.of girls selecting Physics in Year 3-4 & sitting for the Physics National exam

IV. Tuition Fees Scholarship

- secondary (Address these socio-economic issues via Astronomy Outreach. mentorship programmes, targeted STEM Workshops & Scholarship opportunities
- Demography: schoolgirls,12-20 yrs.

I. Mentorship & Outreach:

- 1. Engage the local communities (girls, parents, teachers, education stakeholders)- discuss ways to positively tackle above socio-economic issues.
- 2. Pair each teen girl with a line-long mentor
- 3. Leadership & men to ship programme.

- Mentorship throughout high school, long-term tracking & monitoring.
- Phone calls, one-on-one,

Can you be a mentor????

GET IN TOUCH!!!!!

4th Biennial ASP, Kigali Rwanda 2016!!!

waics and Ad

1132 40

$\bigcirc \bigcirc \bigcirc \land$

Liked by paulpablox and 25 others kenyangal Of new places and new friends #AUmanenoz @mounialaasiri @georgezimba \square