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Outline of Lectures

| ecture 1:

*What you should know

- QFT motivation
- Classical Field Theory

- Quantization for scalars, fermions.

- Interactions and Feynman rules

Abelian Gauge Theories

*Non Abelian Gauge Theories
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Outline of Lectures

L ecture 2: -Building the Electroweak Standard Model as a Gauge Theory

*The Mass Problem in the SM: Spontaneous Symmetry Breaking

*The Higgs Boson and its interactions

| ecture 3:

*Tests of the Electroweak Standard Model
‘Precision Tests of the Quantum SM

«Conclusions and Outlook



Complementary References

QFT I: http://fma.if.usp.br/~burdman/QFT1/gft1index.html
QFT II: http://fma.if.usp.br/~burdman/QFT2/gft2index.html

Each a semester long course with detailed notes and references

Referenced throughout the lectures. For instance as

.L7 = QFT I, Lecture 7
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What you should already know

Classical Field Theory (.L2)

Lagrangian is function of field ¢(£E) and its derivatives 8¢(az‘) _ ( )
OxH up@

= / dt I — / o £((x), 0,0(x)) -

Equations of Motion from 05 =0

oL
—> 9 0, (3(@@)) =3 Euler-Lagrange Eqns.



Example 1: Free real scalar field

1 1
— Hd — Zm? @2
L 2u¢8¢ 2m¢

— (0% +m?) ¢(z) =0 Klein-Gordon equation

Example 2: Free Dirac fermion

L =p(x) (iv"0, —m) p(x)

(17" 0y — m)(x) =0
:> and Dirac equation

Y(x) (iv" 0, +m) =0



Continuous Symmetries and Noether’s Theorem

We consider an infinitesimal shift in the fields

O(x) — ¢'(x) = ¢(x) + € Ad

This results in an infinitesimal shift in the Lagrangian

L— L4+ €eAL

Noether’'s Theorem: the current defined as

0L
H = A
"= 8@,9)

IS conserved, i.e. satisfies 8# j“ — () if we use the equations of motion




Example: Complex Scalar Field

The Lagrangian L = 0M¢* 8“¢ — m2 ¢*¢ IS iInvariant under the symmetry transformations

p(z) — e p(a)
" (x) — e " ¢"(2)

} with (¢ areal constant (i.e. this is a global symmetry)

Then the current is
j* =1i{(0"9") ¢ — (0"9) 9"}

which satisfies au j“ — () aslong as we impose the KG egns.

(0 +m*)p* =0,  (*+m*)p=0




Field Quantization (..3)

Similarly as in QM: Field ¢(z) and its conjugate momentum 7 () defined as

0L
™) = B9

satisfy the equal time commutation relation

justas L and P in QM satisfy

x,pl =1h

—> ¢(z) and 7(x) are now operators
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Expand field and conjugate momentum in most general solution of KG egn. In momentum space

P(x) :/ Ty {a e~ Put” b‘te"p“m“}
(2#)3\/2%9 P b

—> Up are b;; annihilation and creation operators

[apva;;] = 1 = [bpvb;;]

The operator ¢(33) annihilates a particle of momentum P

creates an anti-particle of momentum P

The operator ¢‘L (x) creates a particle of momentum P

annihilates an anti-particle of momentum P
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Quantization of Fermion Fields (See!.L4 to L6)

Solutions of the Dirac equation 1), (Z,t) are spinors. a = 1,2, 3,4
Spinors: objects that transform in a certain way so as to keep the Dirac egn. Lorentz invariant.

Conjugate momentum of spinor:

0L -5y
7T(£>—8(8O¢)—Z¢/Y —“?

Expansion of fermion in momentum space solutions of Dirac eqgn.

d>p 1 D -
r) — as 18 ot 4 bsT e 6—|—7,P-a:
0= | G g 2 @G0 o0t (p) e+iF%)
Where u.(p), v.(p) are spinor solutions of the Dirac egn. in momentum space

and s = 1,2 are the spinor helicities .



But now the quantization condition requires anti-commutation !

[a(x, 1), 9} (', 1)} = 6@ (x — X) 6

This is necessary to make the Hamiltonian bounded from below. Otherwise, creating particles lowers H !

Equivalent to

{CL;, CLZT} — (27‘-)3 5(3) (P o k) 0'° {bgv bZT} — (27‘-)3 5(3) (p o k) 0'°

for the particle and anti-particle annihilation and creation operators.

. 1(x) annihilates fermions or creates anti-fermions

—

. W(x) creates fermions or annihilates anti-fermions
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A consequence of the anti-commutation rule for fermions is Pauli’s Exclusion Principle:

E.g. consider a two particle state

1515) = o

i
Tak 0)
Anti-commutation of the creation operators implies
asla]l = —a}' all —> 1, 1) = =13 1,)

p p

Which means that if all quantum numbers are the same (S =7, p= k) then
1)1,) =—[1,17) =0

—> State does not exist
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Fermion Number Conservation

From the Dirac egns. for w(m) and @(az) we know that the fermion current is

jH =Pyt and is conserved. |.e. 0, j* =

Q= [ @2@) = [ Eaban vl) = [ ol @ v

dgp ST .S ST 1,8
Q — / (27_‘_)3 Z {%T (lp o bp]L bp} — Nparticles — {Vanti—particles

Particles have “charge” +1

Fermion number { } IS a global charge

Anti-particles have “charge” -1
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Fermion number conservation comes from a symmetry of the Dirac Lagrangian

L =(z) (1" 0y — m) P(z)
L is invariant under the symmetry transformations

Y(z) — " Y (z)

@Z(:L‘) — @—7304 @(a:) } With (X a real constant

—> This is a Global Symmetry

When (X is a function of the spacetime point rH, ie. oz(a;‘) , the symmetry becomes local or “gauged”.
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Interactions and Perturbation Theory (Seel.L10to L14)

Quadratic terms in the fields associated with propagation
Terms with 3 or more fields —» Interactions

Example: Real scalar with self interactions

A
4!

1 1
_ w2 2
L 26’M¢6’¢ 2m¢

o* or

Other examples:

Fermion-scalar (Yukawa) Lig = — g ZZ¢¢

Fermion-Gauge Boson (QED) L. = —e Auﬁw“zp
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From Correlation Functions to Amplitudes (.L12)

N-point Correlation Functions

G™ (513‘1, T 7$n) — <O‘T¢($1) T ¢(xn)|0>

contain all the information of a Quantum Field Theory

We can relate them to the momentum space amplitude for a given process by the LSZ formula

Afi<p17 S 7pn) — Op(f]fl, T wrn) X G(n)<x17 S 7xn)

with Op(a:l, S xn) a differential operator acting on the external spacetime positions

and depending on the appropriate equations of motion operators.
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Perturbation Theory

*In the absence of interactions all correlation functions can be computed exactly
They are products of propagators (2-point correlation functions) with the internal positions integrated over
In the functional integral approach, this can be understood as a result of the integrability of quadratic forms

 But interactions involve more than 2 powers of the field !

So to implement the calculation of the correlation functions need to implement a controlled approximation

G (zy. . x) = N /D¢6ifd4x{£o+£im.} (1) ¢(20)

G (zy,...,2,) =N /D¢eifd4‘f’”£0 ¢(x1)...0(xy,) X (1—|—7j/d4y£int,[qb(y)] —|—> ,

Each additional power of Lot corresponds to another power of the coupling constant

The functional integrals weighted by L result in products of propagators! (Wick’s theorem)
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Example: 4 point functionin = Ly, = ——

X1 x2 X1 XZ xl xz

+ = (=i)) +

20
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connected



LSZ Formalism takes us to Amplitudes in Momentum Space (See 1.L12)

¢ g ]
P p,
s >©< b
P2 P,
‘3 P, k
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Feynman Rules in Perturbation Theory

Contributions to amplitudes computed to a given order in perturbation theory

(Small) coupling expansion and loop (/) expansion

In momentum space:

* Draw all diagrams contributing to the process up to the desired order in PT

* Insert a factor of the coupling at each vertex (scalar theories). Typically the correct normalization
comes from L. up to combinatoric factors. E.g. 7 \

- Momentum conservation at each vertex results in overall factor of (277)4 54 (P3 ... Pn — Pi)
(Reflects the fact that interactions are local !)

. . . L
- Loop integration: for each undetermined momentum P add a factor of

4
d p (1 loop diagrams have 1 of these, 2 have 2, etc.)
(2m)*

* Divide by the appropriate symmetry factors
22



* Propagators:

- For each internal scalar line of momentum p"

- For each internal fermion line

p—m

- For each gauge boson internal line X (gauge dep. factors)

 External fermion of momentum p* :

— u’(p) (u’(p)) for each incoming (outgoing) fermion

— v°(p) (v°(p)) for each incoming (outgoing) anti-fermion

» Multiply by (-1) each closed fermion loop (consequence of anti-commutation rules)
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- External gauge boson of momentum p"* :

- Factor of the polarization €"(p)

Feynman Rules — Amplitude  —p Cross sections, Decay rates,...
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Gauge Theories (seelL1g

Symmetries

L = &(Z@ — m)@b Dirac Lagrangian for a free fermion

IS Invariant under the continuous field transformations

h(x) — e P(x)
_ With (¥ a real constant

Y(x) — e " P(x)
This is a global U(1) symmetry
fermions have global charge +1

Under it
anti-fermions have global charge -

The conserved currentis % = @W“ W
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But if we want the transformation to be local , i.e. ¢ = Oz(ai)

() — e ()
() — e 4 (z)

= L L =L =i — m)d — duala) Py £ L

S

The Lagrangian is not invariant under this local symmetry. It needs to be modified. The problem is clearly

with the derivative. We define the covariant derivative acting on the fermion field 1) 1 such that now
L=y —m)y

Is invariant under the local (gauge) transformation. For this lagrangian to be invariant we need

Covariant derivative must
transform just as ()

D, (x) — et () D, )(x)

20



To cancel the term containing (%a(x) we write the covariant derivative as

Dyp(x) = (O +ied,(x))y(2)

such that the field Au (a;') transforms under the symmetry as
1
Au(w) — Au(x) = = duale)

This guarantees Duw(aj) — ¢'(®@) Dﬂw(aj) (Exercise)

And the invariance of /. under the transformations of ¥)(x) and A, ()
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To summarize:
L =YD —m)
with
Dyip(x) = (Op +ieAy(x))p(z)

IS iInvariant under the transformations

Local (gauge) U(1) transformations
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QED «.L1s)

Quantum Electrodynamics is a QFT of electromagnetism

L=y —m)y=1(id —m)y —eA,py"y
The Dirac lagrangian with the covariant derivative is gauge invariant.

But we have a new field, AM(ZE) , which needs a gauge invariant kinetic term

Two power of derivatives of the field ( ~ p2 )

It must have: |
Be invariant under A, (z) — A, (x) — - 0, a(z)
e

The tensor F'*Y = " AY — 9Y A" is gauge invariant by itself

:> F“VFHV Fits all the requirements for a gauge field kinetic term
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The coefficient is fixed asking for F'*" to match the electromagnetic field tensor of electromagnetism
Then, the full QED lagrangian is

D —m) — P

D~ m) Y — eAydy — | FRE,

!

Interaction of fermion conserved current with the gauge boson field (photon)

L

Fermions that are charged under the U(1) gauge symmetry do transform under the gauge transformations

Charge in units of e: +1 (protons, anti-charged leptons), -1 (charged leptons), 2/3 (up quarks), etc.

Note: A mass term for the gauge boson is forbidden by gauge invariance:

MiAMAM s not gauge invariant = M4 = ()
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Note: Other terms involving w(ZL’) and Au () that are both gauge and Lorentz invariant are possible

But they all are higher dimensional operators (HDO) (more about this in Lecture 3)

E.Q.

FW@EJW@D
, i
with Opuy — 5 h/,u? /yu]

Operator responsible for (g-2). If the theory is renormalizable, HDO generated by loops are finite.
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QED : Feynman Rules

* \Vertex

Ling. = —e AX %VM@D —> (-ie)y,

* Photon propagator (in momentum space)

H y Vv a z _ k,uku_
YAV V.V .V.V.V.V Dp (k) = 3 |G ~ (1 —¢&)

Gauge fixing parameter &

E.Q. f — 1 Feynman gauge
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Example: e e’ — ,u_,u+

In the Center of Mass

33
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Angular Distribution

do
dcos

QED

Number of events “forward" same as number of events “backwards”. QED preserves parity!

Ling. = —e A" 15%10 = —e A" (@EL”Yqu T &RV,LL@DR)

Photon couples the same to left-handed and right-handed fermions | (QED is a vector theory)
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Non Abelian Gauge Theories

Continuous groups of interest are Lie Groups (Seell.L14)

Some basic facts about Lie groups

geG = g(a)=1+iat*+ O(a?)

with the aa real infinitesimal parameters and the ta the generators of G

Imposing basic properties on the group elements  ¢(0) = 1., g_l , multiplication
— tb] — ifabc L€ Algebra of G
with  f abc & dependent constants (structure constants)
In general, for non infinitesimal s g(a) — €
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Lie Groups of Interest:

* SU(N): Unitary transformations of N-dimensional vectors

If 4 and U are N-dim. vectors an element g € SU(IN) must preserve

UTU
m— u—4qgu., V—4guv ,
Then uw'v — ulg’ gv =u'v requires
gT =g ! S0 we conclude that 9 must be a unitary matrix

But then, we can write

g=e With H a hermitian matrix
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Remembering that g=¢€*" =14ia%t*+ ...
The generators t“ must be hermitian matrices

But so far, this describes a group called U(N). This is because it includes as one group element just a phase
transformation

u — et ¢, where I is the NxN identity

This element constitutes a U(1) subgroup of U(N). If we want to separate it, we can demand that

detlg) =1 —=> piTr[H] _q or Tr[H] = 0

This removes the identity as a generator since Tr[I] = N # 0
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In sum: SU(N) generators are NxN traceless, hermitian matrices

Or we can say that SU(N) is U(N) with the identity removed as generator

—  U(N)=SU(N) x U(1)

—>  The number of generators of SU(N) is N2 — 1

—O—

Other Lie groups:

* SO(N): Orthogonal transformations on N-dimensional vectors (i.e. rotations in N-dim space)

Transformations (rotations) must preserve the scalar product 7

N(N —1) independent generators (angles!) 1 for N=2 (plane), 3 for N=3 (3D space), etc.
2

* Sp(N): Symplectic transformations on N-dimensional vectors. They must preserve
U+ -V = Ug Eqb Up

- Exceptional Groups: G, Fy, Fs, E- 38



The Standard Model is a gauge theory using SU(3), SU(2) and a U(1)

* The generator of U(1) is always proportional to the identity

*SU(2) generators: 3 traceless, 2x2, hermitian matrices. They are

O.CL

7 Electroweak
Standard Model

1 =

with the Pauli matrices given by

i 01) ) 0 —i 1 0
g = — 3 __
(10 y i 0 "‘(0—1)

t =

— O O
o O O
o O =
o O =

0 —i .
0 0 5 = —
| 1) A

S = O
|

[\DOO
N
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Non Abelian Gauge Theories (I.L15)

Just as for the U(1) case, we consider the Lagrangian

L =YD —m)+...

and demand that it be invariant under the SU(N) local transformations

() —= P (z) = e () = g(z) Y(x)

This requires the covariant derivative acting on the fermion to be

D,p(x) = (0, —ig Al (x) t*) () as many gauge bosons A{, as generators ¢
N2 —-1 inSUN)

and the gauge fields to transform like
(

4,(0) = 9(2) (A0 + 20, ) o' (@

Where we defined the gauge boson matrix by A, (z) = A7, (x) t“
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The covariant derivative
Dyip(z) = (9 —ig Ay () ") P(z)
=  D,Y(x) = g(z) D,y(x) so 1) (i) —m)1) is gauge invariant

To complete £ we need the kinetic terms for the gauge bosons
Need 2 derivatives of the gauge fields. We start by considering the following “differential operator”

Dy, Dy|(x) = —ig Fry (x)

Writing it out
[Dua Du]w(l’) = —1g (a,uAu — &/Au) w(x) — 92 [A,ua Au] ¢($)

Then [DM,DV] not really a differential operator!
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From the definition we see that the tensor matrix is

Or, in components

Fl = (0,A% — 9,A%) t* —ig A% A [t%,t”]

It Is useful to define

Fu, =F,,t°

So the non Abelian field strength tensor is

F, = 0,A% — 0,A% + gf "¢ A, AS
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Gauge Boson Kinetic Term

Since under a gauge transformation ¥ (x) — g(x)¥(z) and also D, (z) — g(x) D ()

then
Dy, Dyy(z) = g(x) [Dy, Do)y (z)

which means that
Dy, Dy] = g(z) [Dy, Dy]g" ()

or equivalently

Fu, — g(x) Fu gT(w)

— Tr[F,, F*] — Tr[g(x)F..g" (z)g(x)F* gt (z) = Tr[F,, F"] is gauge invariant
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Choosing the standard normalization (which reduces to the QED one for the U(1) case)

and using that sab

1T [tatb] — 7

We arrive at the Gauge invariant Lagrangian of a non Abelian gauge theory

L= D — m) — 5 TelFyy ™)

— (i) — m)yp — ~FO Fom

4 *

Careful: form of gauge boson kinetic term is deceivingly simple! It’s not just the sum of N? — 1 photons

a a a aocC C 2
(FW = 0, A7, — 8VA,LL + g f0 AZAV)

Contains triple and quartic gauge bosons interactions in addition to the squared derivatives
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Feynman Rules in Non Abelian Gauge Theories (I.L16)

(

a,H
J
a,u
Y K
PN
b,v G pP
a,Hd b,V

C,p d,o

a

ig/yu 7/] (27]:17“'7]\[) (CL

g [ g™ (k—p) + 9" (p— )" + g™ (q— k)"]

_7:92 [fabefcde (g,upgya L g,uagyp)
facefbde (g,ul/gpa o g,uagyp)
4+ fadefbce (g,ul/ng' B g,upgua)}
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