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INTRODUCTION



Introduction: Sample

Fundamental Assumption of Statistics: data are randomly
sampled.

A statistic is a function of a data sample, x = x1, x2, … xn. 
Here are some well-known statistics:

sample average 𝑥̅ = !
"
∑#$!" 𝑥#

sample variance 𝑆% = !
"
∑#$!" 𝑥# − 𝑥̅ %

sample moments 𝑚! =
"
#
∑$%"# 𝑥$!
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Introduction: Population

An infinitely large sample is called a population.

A population is clearly an abstraction. But, like many 
abstractions, we can study this one mathematically and we 
can study it approximately by simulating large samples.
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Introduction: Population

A few characteristics of populations

Expected Value 𝐸[𝑥]
Mean 𝜇
Error 𝜖 = 𝑥 − 𝜇
Mean Square Error 𝑀𝑆𝐸 = 𝐸[𝜖&]
Bias 𝑏 = 𝐸 𝑥 − 𝜇
Variance 𝑉[𝑥] = 𝐸 𝑥 − 𝐸[𝑥] &

These characteristics are also abstractions!

6



Introduction: Statistical Inference

The main goal of statistical inference in high-energy physics 
is to use a data sample to infer interesting attributes of the 
associated population. These attributes are typically 
physical parameters such as particle masses.

Important point to note:
h In statistics, there is no such thing as “the right answer”.
hRather, there are many answers based on different 

assumptions and different opinions about which ones are 
reasonable. 
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Happily, however, everyone agrees that the key concept in 
statistics is probability, which is why random sampling is 
so important. 

Probability is interpreted in at least two ways:

1. Degree of belief in, or assigned to, a statement, e.g.:
statement: it will rain in San Esteban tonight. 
probability:  𝑝 = 2×10'(

This interpretation of probability is the basis of the 
Bayesian approach to statistical inference.

Introduction: Statistical Inference
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2. Relative frequency of a given outcome in a long 
sequence of trials, e.g.:

trial: a proton-proton collision at the LHC
outcome: creation of a Higgs boson
probability: 𝑝 = 5×10'")

This interpretation of probability is the basis of the 
frequentist approach to statistical inference.

Introduction: Statistical Inference



FREQUENTIST ANALYSIS (1)
BY EXAMPLE



LHC: 𝒑𝒑 → 𝑯 → 𝒁𝒁 → 𝟒𝒍

Process 𝝈 × 𝑩𝑹 (𝐟𝐛)
(a) Gluon gluon fusion (ggF) 12.18
(b) Vector boson fusion (VBF) 1.044
(c) Associated production (VH) 1.047
(d) Top anti-top fusion (ttH) 0.393

11http://www.scholarpedia.org/article/The_Higgs_Boson_discovery



2 4 Signal extraction

Predicted partial widths and branching fractions for Z boson decays to 4e, 4µ, and 2e2µ final
states are summarized in Table 1. The results are obtained at LO using CalcHEP 3.2 [7], which
takes quantum mechanical interferences into account. The partial width for the 2e2µ channel
is different from twice the width in either the 4e or 4µ channel because decays to four leptons
of the same flavour involve additional Feynman diagrams with permutations of same-sign
leptons. We do not have a sufficient number of events to measure the differences between
decay rates for the three four-lepton final states. We therefore measure the overall branching
fraction B(Z ! 4`) and assume the 4e, 4µ, and 2e2µ relative branching fractions predicted by
theory (Table 1). The main irreducible background is the process qq̄ ! Zg⇤ ! 4`, for which
the LO Feynman diagram is shown in Fig. 1 (right). Events are simulated with the next-to-
leading-order generator POWHEG [8]. The effects of multiple pp collisions within each bunch
crossing are taken into account in all simulated samples.

Table 1: Partial widths and branching fractions for Z boson decays to 4e, 4µ, 2e2µ final states
with m`` > 4 GeV for all lepton pairs. The branching fractions are calculated with CalcHEP
3.2 [7] at LO using the total Z boson width Gtot = 2.4952 GeV [9]. Theoretical uncertainties are
smaller than experimental uncertainties and are not shown in the table.

Quantity of interest 4e 4µ 2e2µ 4`
Partial width, Gi (keV) 2.95 2.95 5.21 11.12
Branching fractions, Gi/Gtot 1.18 ⇥ 10�6 1.18 ⇥ 10�6 2.09 ⇥ 10�6 4.45 ⇥ 10�6

Relative fractions, fi = Gi/G4` 0.2655 0.2655 0.4690 -

4 Signal extraction

The trigger and selection criteria used in this analysis closely follow the H ! ZZ ! 4` search
by CMS [10]. We use data collected with dielectron and dimuon triggers selecting events with
at least two electrons or two muons with transverse momentum pT > 17 and 8 GeV. To match
the trigger selection, we require that at least two leptons reconstructed offline have pT > 20 and
10 GeV. In this phase-space region, we expect and observe a high trigger efficiency of 96–99%,
depending on the final state.

Muon candidates are reconstructed using two algorithms, one in which tracks in the silicon
strip tracker are matched to hits in the muon detectors, and another in which a combined fit
is performed to signals in both the silicon strip tracker and the muon system [11]. The muon

Figure 1: (Left) Diagram of the Z ! 4` process. (Right) Diagram of the Zg⇤ ! 4` process for
the irreducible background of Z ! 2` production with the initial-state radiation undergoing
an internal conversion g⇤ ! 2`. Both Z and g⇤ are present in all propagators. The choice of
propagators shown in the figures corresponds to the dominant contributions in the phase space
80 < m4` < 100 GeV.

CMS (2018): 𝒑𝒑 → 𝑯 → 𝒁𝒁 → 𝟒𝒍
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The main backgrounds:

𝒁 → 𝟒𝒍

𝒁𝒁 → 𝟒𝒍
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Knowns and Unknowns: 𝐻 → 𝑍𝑍 → 4𝑙

Let’s consider some results published by the CMS 
Collaboration in 2014 (𝑝𝑝 → 𝐻 → 𝑍𝑍 → 4𝑙 (Phys. Rev. 
D89, 092007 (2014)).

Knowns:
N = 25 observed event count
𝐵 ± 𝛿𝐵 = 9.4 ± 0.5 background event count
𝑆 ± 𝛿𝑆 = 17.3 ± 1.3 predicted signal count

@ 𝑚* = 125 GeV
Unknowns:

b mean background count
s mean signal count
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Probability Model: 𝐻 → 𝑍𝑍 → 4𝑙

Our goals: 
1. Estimate (i.e., measure) the mean signal, s.
2. Quantify the accuracy of the estimate.
3. Quantify how confident we are that the signal is real.

In order to do the above, we need to construct a probability 
(or statistical) model of the mechanism that generated the 
data.

Let’s start from the very beginning…



Bernoulli Trial (1): 𝐻 → 𝑍𝑍 → 4𝑙
A Bernoulli trial has two outcomes: 

S = success or F = failure. 

Example: Each collision between protons at the LHC is a 
Bernoulli trial in which either something interesting 
happens (S) or does not happen (F).

What is the probability of this sequence of events? 
Without assumptions, there is no answer!
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Bernoulli Trial (2) : 𝐻 → 𝑍𝑍 → 4𝑙
If we assume:
1. The probability p of a success is the same for every proton-

proton collision (trial). 
2. A success S and a failure F are exhaustive and mutually 

exclusive. 
3. Every sequence of collisions (trials) is equally probable.

Then the probability of k successes in n trails is

𝑃 𝑘| 𝑝, 𝑛 = 𝑛
𝑘 𝑝+(1 − 𝑝)#'+, 

that is, the binomial distribution, Binomial 𝑘, 𝑛, 𝑝 .
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Bernoulli Trial (3) : 𝐻 → 𝑍𝑍 → 4𝑙
The mean number of successes a is 
𝒂 = 𝒑𝒏.

For the Higgs boson outcomes, 𝒑 ~ 𝟏𝟎'𝟏𝟎 and n >> 1012.

Let’s, therefore, consider p → 0 and n → ∞, with a constant,

Binomial(k, n, p) → Poisson(k, a) = 𝑎+ exp −𝑎 /𝑘!
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Exercise 2: Show that Binomial(k, n, p) → Poisson(k, a)

Exercise 1: Show this



Probability Model:
The probability to observe n events is, therefore,

𝑝 𝑛 𝑠, 𝑏 = Poisson 𝑛, 𝑠 + 𝑏 =
𝑠 + 𝑏 #𝑒'(/01)

𝑛!
where 𝑠 and 𝑏 are the mean signal and background counts, 

respectively.
Likelihood Function:

p(N |s,  b), N =25
The likelihood function is simply the probability model into 

which data have been entered. 

But what about 𝐵 ± 𝛿𝐵 = 9.4 ± 0.5? 
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Example: 𝐻 → 𝑍𝑍 → 4𝑙



We need more assumptions! (Or we need to study in detail 
how CMS arrived at 𝐵 ± 𝛿𝐵 = 9.4 ± 0.5.)

Let’s assume that
𝐵 ± 𝛿𝐵 = 9.4 ± 0.5

is the result of scaling down a count M by a factor k
B = M / k, δB = √M / k.

M could be the result of a Monte Carlo (MC) simulation of the 
background or the event count in a background-dominated 
sample. Let’s also assume that the probability model for M 
is a Poisson with mean ≈ 𝑀 and standard deviation ≈ 𝑀.

Solving for M and k, we get M = 353, k = 37.6. 

19

Example: 𝐻 → 𝑍𝑍 → 4𝑙



Given the last assumption, the likelihood for the count M is

Poisson 𝑀, 𝑘𝑏 = 𝑘𝑏 3𝑒'+1/ 𝑀!, 

The full likelihood for the data 𝐷 = (𝑁,𝑀) is, therefore,

𝑝 𝐷 𝑠, 𝑏 = Poisson 𝑁, 𝑠 + 𝑏 Poisson 𝑀, 𝑘𝑏

= &'( !)"($%&)

*!
(-()()")&

/!
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Example: 𝐻 → 𝑍𝑍 → 4𝑙
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Example: 𝐻 → 𝑍𝑍 → 4𝑙 Summary

Now that we have our statistical model, 𝑝 𝐷 𝑠, 𝑏 , we can 
answer the questions:

1. How does one estimate (measure) the mean signal, s?
2. How does one quantify the accuracy of the estimate?
3. How does one decide if a signal is real? 



22

Maximum Likelihood

1. How does one estimate (measure) the mean signal, s?

The standard to answer this question is to choose as estimates 
of the parameters the values that maximize the likelihood:

𝜕 ln 𝑝(𝐷|𝑠, 𝑏)
𝜕𝑠

= 0,
𝜕 ln 𝑝(𝐷|𝑠, 𝑏)

𝜕𝑏
= 0

Estimates obtained this way are called maximum likelihood 
estimates (MLE).

For this example, we find the unsurprising results:

𝑠̂ 𝐷 = 𝑁 − 𝐵, o𝑏 𝐷 = 𝐵
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The Frequentist Principle

2. How does one quantify the accuracy of the estimate?

A general answer to this question was proposed by Jerzy 
Neyman in 1937:

Statistical statements should be constructed with the 
guarantee that a fraction f ≥  p of them are true over a 
population of statements with p chosen a priori.

This is called the frequentist principle (FP). The fraction f is 
called the coverage probability (or coverage for short) and 
p is called the confidence level (CL).



The Frequentist Principle

Example 1
Consider statements of the form 𝜃 < 𝑁 + 𝑁, each 

associated with a pair of numbers, a mean count θ
randomly sampled from uniform(0, 3) and a count N
randomly sampled from a Poisson distribution with mean 
θ. Note: each statement is either true or false.

In a real experiment, we do not know which are true and 
which are false, but we do in a simulation.  So we can 
compute the coverage f and and determine p.
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Exercise 3: Estimate by simulation the coverage probability 
of these statements. Repeat using uniform(0, 10). Then repeat
for fixed values of 𝜃 in steps of 0.2 from 0.1 to 9.9 and plot 
the coverage versus 𝜃. What is p?



The Frequentist Principle

Example 2
Consider 𝑥 = 𝐷 sampled from a Gaussian statistical model

𝑝 𝑥 𝜇, 𝜎 = exp −
𝜒&

2
/(𝜎 2𝜋) , 𝜒& =

𝑥 − 𝜇 &

𝜎&

with known standard deviation 𝜎 but unknown mean 𝜇.

The MLE of 𝜇 is 𝜇̂ 𝐷 = 𝐷. According to Neyman, we 
should quantify its accuracy with a statement of the form

𝜇 ∈ 𝜇 𝑥 , 𝜇 𝑥

with a specified confidence level, say 68%.
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The Frequentist Principle

Example 2 
For a Gaussian, the standard method for constructing such a 

statement is to solve the equation 

𝜒& = −2 ln 𝑝 𝑥 𝜇, 𝜎 = 𝟏

The solutions are 𝜇 𝑥 = 𝑥 − 𝜎 and 𝜇 𝑥 = 𝑥 + 𝜎.

A statement of the form 𝜇 ∈ 𝜇 𝑥 , 𝜇 𝑥 is either true or 
false. Consider a large number of experiments, each 
yielding an interval 𝜇 𝐷 , 𝜇 𝐷 , which varies randomly
from one experiment to another. 
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The Frequentist Principle

Example 2 (contd.)
For the Gaussian, the coverage probability f of statements of 

the form 

𝜇 ∈ 𝜇 𝑥 , 𝜇 𝑥 is 0.683. 

Moreover, for any given point 𝜇, the coverage probability 
never to falls below 0.683. 

Therefore, the confidence level (CL) associated with the 
above statements is 100f % = 68%. 

Ideally, we would like to arrive at similar statements in our 
Higgs boson example.

27



The Frequentist Principle

Example 3
Our (simplified) Higgs boson likelihood

𝑝 𝐷 𝑠, 𝑏 = Poisson 𝑁, 𝑠 + 𝑏 Poisson 𝑀, 𝑘𝑏

contains two parameters s and b.
Suppose we want to make statements about both parameters 

similar to the ones we made in examples 1 and 2
𝑠, 𝑏 ∈ 𝑅(𝐷)

except that this time 𝑅(𝐷) is not a confidence interval but 
rather a confidence set. 

How do we construct such a set?
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Wilks’ Theorem (1)
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If certain conditions are met (e.g., we have a enough data) 
then the quantity 𝑡 𝑥 = −2 ln 𝜆 𝑥

where

𝜆 𝑥 =
𝑝 𝑥 𝑠, 𝑏
𝑝 𝑥 𝑠̂, o𝑏

has a distribution that approximates a χ2 density of 2 degrees 
of freedom (because there are 2 free parameters).

This is a special case of Wilks’ Theorem (1938)*. 

(*Glen Cowan, Kyle Cranmer, Eilam Gross, Ofer Vitells “Asymptotic formulae for 
likelihood-based tests of new physics.” Eur.Phys.J.C71: 1554, 2011)



Wilks’ Theorem (2)

30

If we want to create confidence sets with a confidence level of 
68%, Wilks’ theorem suggests that we construct the set by 
finding all points (s, b) that satisfy the inequality

𝑡 𝐷 ≈ 𝜒&& ≤ 𝟐. 𝟐𝟗𝟔

for observed data 𝑥 = 𝐷, or, equivalently, from the inequality

𝐶& 𝑡 𝐷 ≤ 𝟎. 𝟔𝟖𝟑

where 𝐶& 𝑡 𝐷 = ∫)
4(5)𝑝& 𝑧 𝑑𝑧 is the cumulative 

distribution function of the 𝜒&& density.



Summary

Probability
Interpretations: degree of belief, relative frequency

Likelihood Function
Statistical model into which data have been inserted. 

Frequentist Principle
Construct statements such that a fraction f ≥ CL of them 

will be true over a population of statements.
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