Statistics \& Machine Learning for HEP 1

Harrison B. Prosper

Florida State University

> 11 ${ }^{\text {th }}$ CERN 15 - 28 MARCH 2023
> LATIN-AMERIGAN SCHOOL OF H|GH-ENERGY PHYSICS San Esteban, Chile https://indico.cern.ch/e/clashep2023

Topics

- Lecture 1
- Frequentist Analysis (1)
- Lecture 2
- Frequentist Analysis (2)
- Bayesian Analysis
- Lectures 3, 4
- Introduction to Machine Learning

INTRODUCTION

Introduction: Sample

Fundamental Assumption of Statistics: data are randomly sampled.
A statistic is a function of a data sample, $\boldsymbol{x}=x_{1}, x_{2}, \ldots x_{\mathrm{n}}$. Here are some well-known statistics:
sample average

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

sample variance

$$
S^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

sample moments

$$
m_{r}=\frac{1}{n} \sum_{i=1}^{n} x_{i}^{r}
$$

Introduction: Population

An infinitely large sample is called a population.

A population is clearly an abstraction. But, like many abstractions, we can study this one mathematically and we can study it approximately by simulating large samples.

Introduction: Population

A few characteristics of populations

Expected Value
Mean
Error
Mean Square Error
Bias
Variance

$$
\begin{aligned}
& E[x] \\
& \mu \\
& \epsilon=x-\mu \\
& M S E=E\left[\epsilon^{2}\right] \\
& b=E[x]-\mu \\
& V[x]=E\left[(x-E[x])^{2}\right]
\end{aligned}
$$

These characteristics are also abstractions!

Introduction: Statistical Inference

The main goal of statistical inference in high-energy physics is to use a data sample to infer interesting attributes of the associated population. These attributes are typically physical parameters such as particle masses.

Important point to note:

- In statistics, there is no such thing as "the right answer".
- Rather, there are many answers based on different assumptions and different opinions about which ones are reasonable.

Introduction: Statistical Inference

Happily, however, everyone agrees that the key concept in statistics is probability, which is why random sampling is so important.
Probability is interpreted in at least two ways:

1. Degree of belief in, or assigned to, a statement, e.g.: statement: it will rain in San Esteban tonight. probability: $p=2 \times 10^{-3}$

This interpretation of probability is the basis of the Bayesian approach to statistical inference.

Introduction: Statistical Inference

2. Relative frequency of a given outcome in a long sequence of trials, e.g.:
trial: a proton-proton collision at the LHC
outcome: creation of a Higgs boson
probability: $p=5 \times 10^{-10}$

This interpretation of probability is the basis of the frequentist approach to statistical inference.

FREQUENTIST ANALYSIS (1) BY EXAMPLE

LHC: $p p \rightarrow H \rightarrow Z Z \rightarrow 4 l$

CMS (2018): $p p \rightarrow H \rightarrow Z Z \rightarrow 4 l$

The main backgrounds:

Knowns and Unknowns: $H \rightarrow Z Z \rightarrow 4 l$

Let's consider some results published by the CMS
Collaboration in 2014 ($p p \rightarrow H \rightarrow Z Z \rightarrow 4 l$ (Phys. Rev. D89, 092007 (2014)).

Knowns:
$N=25$
$B \pm \delta B=9.4 \pm 0.5$
$S \pm \delta S=17.3 \pm 1.3$
observed event count
background event count predicted signal count
@ $m_{H}=125 \mathrm{GeV}$
Unknowns:

mean background count mean signal count

Probability Model: $H \rightarrow Z Z \rightarrow 4 l$

Our goals:

1. Estimate (i.e., measure) the mean signal, \boldsymbol{s}.
2. Quantify the accuracy of the estimate.
3. Quantify how confident we are that the signal is real.

In order to do the above, we need to construct a probability (or statistical) model of the mechanism that generated the data.

Let's start from the very beginning...

Bernoulli Trial (1): $H \rightarrow Z Z \rightarrow 4 l$

A Bernoulli trial has two outcomes:
$\boldsymbol{S}=$ success or $\boldsymbol{F}=$ failure.

Example: Each collision between protons at the LHC is a Bernoulli trial in which either something interesting happens $(\boldsymbol{S}$) or does not happen (\boldsymbol{F}).

What is the probability of this sequence of events?
Without assumptions, there is $\underline{\boldsymbol{n} \boldsymbol{o}}$ answer!

Bernoulli Trial (2) : $H \rightarrow Z Z \rightarrow 4 l$

If we assume:

1. The probability \boldsymbol{p} of a success is the same for every protonproton collision (trial).
2. A success \boldsymbol{S} and a failure \boldsymbol{F} are exhaustive and mutually exclusive.
3. Every sequence of collisions (trials) is equally probable.

Then the probability of k successes in n trails is

$$
P(k \mid p, n)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

that is, the binomial distribution, $\operatorname{Binomial}(k, n, p)$.

Bernoulli Trial (3) : $H \rightarrow Z Z \rightarrow 4 l$

The mean number of successes \boldsymbol{a} is

$$
a=p n . \quad \text { Exercise 1: Show this }
$$

For the Higgs boson outcomes, $p \sim \mathbf{1 0}^{-10}$ and $n \gg 10^{12}$.

Let's, therefore, consider $\boldsymbol{p} \rightarrow 0$ and $\boldsymbol{n} \rightarrow \infty$, with \boldsymbol{a} constant,
$\operatorname{Binomial}(k, n, p) \rightarrow \operatorname{Poisson}(k, a)=a^{k} \exp (-a) / k!$
Exercise 2: Show that $\operatorname{Binomial}(k, n, p) \rightarrow \operatorname{Poisson}(k, a)$

Example: $H \rightarrow Z Z \rightarrow 4 l$

Probability Model:

The probability to observe n events is, therefore,

$$
p(n \mid s, b)=\operatorname{Poisson}(n, s+b)=\frac{(s+b)^{n} e^{-(s+b)}}{n!}
$$

where s and b are the mean signal and background counts, respectively.

Likelihood Function:

$$
p(N \mid s, b), \quad N=25
$$

The likelihood function is simply the probability model into which data have been entered.

But what about $B \pm \delta B=9.4 \pm 0.5$?

Example: $H \rightarrow Z Z \rightarrow 4 l$

We need more assumptions! (Or we need to study in detail how CMS arrived at $B \pm \delta B=9.4 \pm 0.5$.)
Let's assume that

$$
B \pm \delta B=9.4 \pm 0.5
$$

is the result of scaling down a count M by a factor k

$$
B=M / k, \quad \delta B=\sqrt{ } M / k .
$$

M could be the result of a Monte Carlo (MC) simulation of the background or the event count in a background-dominated sample. Let's also assume that the probability model for M is a Poisson with mean $\approx M$ and standard deviation $\approx \sqrt{M}$.
Solving for M and k, we get $M=353, k=37.6$.

Example: $H \rightarrow Z Z \rightarrow 4 l$

Given the last assumption, the likelihood for the count M is

$$
\operatorname{Poisson}(M, k b)=(k b)^{M} e^{-k b} / M!,
$$

The full likelihood for the data $D=(N, M)$ is, therefore,

$$
\begin{aligned}
p(D \mid s, b) & =\operatorname{Poisson}(N, s+b) \operatorname{Poisson}(M, k b) \\
& =\frac{(s+b)^{N} e^{-(s+b)}}{N!} \frac{(k b)^{M} e^{-k b}}{M!}
\end{aligned}
$$

Example: $H \rightarrow Z Z \rightarrow 4 l$ Summary

Now that we have our statistical model, $p(D \mid s, b)$, we can answer the questions:

1. How does one estimate (measure) the mean signal, s ?
2. How does one quantify the accuracy of the estimate?
3. How does one decide if a signal is real?

Maximum Likelihood

1. How does one estimate (measure) the mean signal, s ?

The standard to answer this question is to choose as estimates of the parameters the values that maximize the likelihood:

$$
\frac{\partial \ln p(D \mid s, b)}{\partial s}=0, \quad \frac{\partial \ln p(D \mid s, b)}{\partial b}=0
$$

Estimates obtained this way are called maximum likelihood estimates (MLE).
For this example, we find the unsurprising results:

$$
\hat{s}(D)=N-B, \quad \hat{b}(D)=B
$$

The Frequentist Principle

2. How does one quantify the accuracy of the estimate?

A general answer to this question was proposed by Jerzy Neyman in 1937:

Statistical statements should be constructed with the guarantee that a fraction $\boldsymbol{f} \geq \boldsymbol{p}$ of them are true over a population of statements with \boldsymbol{p} chosen a priori.

This is called the frequentist principle (FP). The fraction f is called the coverage probability (or coverage for short) and p is called the confidence level (CL).

The Frequentist Principle

Example 1

Consider statements of the form $\theta<N+\sqrt{N}$, each associated with a pair of numbers, a mean count θ randomly sampled from uniform $(0,3)$ and a count N randomly sampled from a Poisson distribution with mean θ. Note: each statement is either true or false.
In a real experiment, we do not know which are true and which are false, but we do in a simulation. So we can compute the coverage f and and determine p.

> Exercise 3: Estimate by simulation the coverage probability of these statements. Repeat using uniform $(0,10)$. Then repeat for $f i x e d$ values of θ in steps of 0.2 from 0.1 to 9.9 and plot the coverage versus θ. What is \boldsymbol{p} ?

The Frequentist Principle

Example 2

Consider $x=D$ sampled from a Gaussian statistical model

$$
p(x \mid \mu, \sigma)=\exp \left(-\frac{\chi^{2}}{2}\right) /(\sigma \sqrt{2 \pi}), \quad \chi^{2}=\frac{(x-\mu)^{2}}{\sigma^{2}}
$$

with known standard deviation σ but unknown mean μ.

The MLE of μ is $\hat{\mu}(D)=D$. According to Neyman, we should quantify its accuracy with a statement of the form

$$
\mu \in[\underline{\mu}(x), \bar{\mu}(x)]
$$

with a specified confidence level, say 68%.

The Frequentist Principle

Example 2

For a Gaussian, the standard method for constructing such a statement is to solve the equation

$$
\chi^{2}=-2 \ln p(x \mid \mu, \sigma)=1
$$

The solutions are $\underline{\mu}(x)=x-\sigma$ and $\bar{\mu}(x)=x+\sigma$.
A statement of the form $\mu \in[\underline{\mu}(x), \bar{\mu}(x)]$ is either true or false. Consider a large number of experiments, each yielding an interval $[\underline{\mu}(D), \bar{\mu}(D)]$, which varies randomly from one experiment to another.

The Frequentist Principle

Example 2 (contd.)

For the Gaussian, the coverage probability f of statements of the form

$$
\mu \in[\underline{\mu}(x), \bar{\mu}(x)] \text { is } \mathbf{0 . 6 8 3}
$$

Moreover, for any given point μ, the coverage probability never to falls below 0.683.

Therefore, the confidence level (CL) associated with the above statements is $100 f \%=68 \%$.

Ideally, we would like to arrive at similar statements in our Higgs boson example.

The Frequentist Principle

Example 3
Our (simplified) Higgs boson likelihood

$$
p(D \mid s, b)=\operatorname{Poisson}(N, s+b) \operatorname{Poisson}(M, k b)
$$

contains two parameters \boldsymbol{s} and \boldsymbol{b}.
Suppose we want to make statements about both parameters similar to the ones we made in examples 1 and 2

$$
s, b \in R(D)
$$

except that this time $R(D)$ is not a confidence interval but rather a confidence set.

How do we construct such a set?

Wilks' Theorem (1)

If certain conditions are met (e.g., we have a enough data) then the quantity $t(x)=-2 \ln \lambda(x)$
where

$$
\lambda(x)=\frac{p(x \mid s, b)}{p(x \mid \hat{s}, \hat{b})}
$$

has a distribution that approximates a χ^{2} density of $\mathbf{2}$ degrees of freedom (because there are $\mathbf{2}$ free parameters).

This is a special case of Wilks' Theorem (1938)*.
(*Glen Cowan, Kyle Cranmer, Eilam Gross, Ofer Vitells "Asymptotic formulae for likelihood-based tests of new physics." Eur.Phys.J.C71: 1554, 2011)

Wilks' Theorem (2)

If we want to create confidence sets with a confidence level of 68%, Wilks’ theorem suggests that we construct the set by finding all points (s, b) that satisfy the inequality

$$
t(D) \approx \chi_{2}^{2} \leq 2.296
$$

for observed data $x=D$, or, equivalently, from the inequality

$$
C_{2}(t(D)) \leq \mathbf{0 . 6 8 3}
$$

where $C_{2}(t(D))=\int_{0}^{t(D)} p_{2}(z) d z$ is the cumulative distribution function of the χ_{2}^{2} density.

Summary

Probability

Interpretations: degree of belief, relative frequency

Likelihood Function
Statistical model into which data have been inserted.

Frequentist Principle
Construct statements such that a fraction $f \geq \mathrm{CL}$ of them will be true over a population of statements.

