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INTRODUCTION




Introduction: Sample

Fundamental Assumption of Statistics: data are randomly
sampled.

A statistic 1s a function of a data sample, x = x,, x,, ... X,

Here are some well-known statistics:

— 1
sample average X =—i=1%;
: 2 _ 1 =) 2
sample variance Se = - iz (x; — X)
_lyn _r
sample moments My = —Qi=1X;




Introduction: Population

An infinitely large sample 1s called a population.

A population is clearly an abstraction. But, like many
abstractions, we can study this one mathematically and we
can study 1t approximately by simulating large samples.




Introduction: Population

A few characteristics of populations

Expected Value E|x]

Mean U

Error E=X—U

Mean Square Error MSE = E[€e?]

Bias b=FE[x]—u
Variance V[x] = E[(x — E[x])?]

These characteristics are also abstractions!




Introduction: Statistical Inference

The main goal of statistical inference 1n high-energy physics
1s to use a data sample to infer interesting attributes of the
associated population. These attributes are typically
physical parameters such as particle masses.

Important point to note:
® In statistics, there i1s no such thing as “the right answer”.

® Rather, there are many answers based on different
assumptions and different opinions about which ones are
reasonable.




Introduction: Statistical Inference

Happily, however, everyone agrees that the key concept in
statistics 1s probability, which 1s why random sampling 1s
so important.

Probability 1s interpreted 1n at least two ways:

1. Degree of belief 1n, or assigned to, a statement, e.g.:

statement: 1t will rain in San Esteban tonight.
probability: p = 2x1073

This interpretation of probability is the basis of the
Bayesian approach to statistical inference.




Introduction: Statistical Inference

2. Relative frequency of a given outcome 1n a long
sequence of trials, e.g.:

trial: a proton-proton collision at the LHC
outcome: creation of a Higgs boson
probability: p = 5x10710

This interpretation of probability is the basis of the
frequentist approach to statistical inference.




FREQUENTIST ANALYSIS (1)
BY EXAMPLE




LHC: pp - H - ZZ - 4l

Process o X BR (fb)
(a) Gluon gluon fusion (ggF) 12.18
(b) Vector boson fusion (VBF) 1.044
(c) Associated production  (VH) 1.047
(d) Top anti-top fusion (ttH) 0.393

http://www.scholarpedia.org/article/The Higgs Boson discovery 1



CMS (2018): pp - H - ZZ — 41

The main backgrounds:
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Knowns and Unknowns: H - ZZ — 4l

Let’s consider some results published by the CMS
Collaboration in 2014 (pp - H = ZZ — 4l (Phys. Rev.
D89, 092007 (2014)).

Knowns:
N=25 observed event count

B+6B=94 +£05 background event count
S +65=173 £ 1.3 predicted signal count

@ myg = 125 GeV
Unknowns:
b mean background count
s mean signal count
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Probability Model: H - ZZ — 4l

Our goals:

1. Estimate (1.e., measure) the mean signal, s.

2. Quantify the accuracy of the estimate.

3. Quantify how confident we are that the signal 1s real.

In order to do the above, we need to construct a probability
(or statistical) model of the mechanism that generated the
data.

Let’s start from the very beginning...
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Bernoulli Trial (1): H - ZZ — 4l

A Bernoulli trial has two outcomes:

S = success or F = failure.

Example: Each collision between protons at the LHC 1s a
Bernoulli trial in which either something interesting
happens (§) or does not happen (F).

What 1s the probability of this sequence of events?

Without assumptions, there 1s no answer!
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Bernoulli Trial (2) : H - ZZ - 4l

If we assume:

1. The probability p of a success is the same for every proton-
proton collision (trial).

2. A success S and a failure F are exhaustive and mutually
exclusive.

3. Every sequence of collisions (trials) 1s equally probable.

Then the probability of £ successes in » trails 1s

P(klp,n) = (Z) pe(1—p)" 7",

that is, the binomial distribution, Binomial(k,n,p).
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Bernoulli Trial 3) : H - ZZ — 4l

The mean number of successes a 1s

a = pn. Exercise 1: Show this

For the Higgs boson outcomes, p ~ 10710 and n >> 1012,

Let’s, therefore, consider p — 0 and n — oo, with a constant,

Binomial(k, n, p) — Poisson(k, a) = a® exp(—a) /k!

Exercise 2: Show that Binomial(k, n, p) — Poisson(k, a)

17



Example: H - ZZ - 4l

Probability Model:

The probability to observe n events 1s, therefore,
(S 1 b)ne—(s+b)
n!
where s and b are the mean signal and background counts,
respectively.
Likelihood Function:
p(N|s, b), N=25

The likelihood function 1s ssmply the probability model into
which data have been entered.

p(n|s, b) = Poisson(n,s +b) =

But what about B + 6B = 9.4 + 0.5?
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Example: H - ZZ - 4l

We need more assumptions! (Or we need to study 1n detail
how CMS arrived at B + 6B = 9.4 + 0.5.)

Let’s assume that
B+6B=94 +£05

1s the result of scaling down a count M by a factor k&
B=M/k o6B=M/k

M could be the result of a Monte Carlo (MC) simulation of the
background or the event count in a background-dominated
sample. Let’s also assume that the probability model for M

is a Poisson with mean ~ M and standard deviation ~ VM.
Solving for M and k, we get M =353, k=137.6.
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Example: H - ZZ - 4l

Given the last assumption, the likelithood for the count A 1s
Poisson(M, kb) = (kb)Me %0/ M1,

The full likelihood for the data D = (N, M) 1s, therefore,

p(D|s, b) = Poisson(N,s + b) Poisson(M, kb)

_ (s+b)Ne=(5+D) (gp)Me—kb
B N! M!
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Example: H - ZZ — 4] Summary

Now that we have our statistical model, p(D|s, b), we can
answer the questions:

1. How does one estimate (measure) the mean signal, s?
2. How does one quantify the accuracy of the estimate?
3. How does one decide 1f a signal is real?
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Maximum Likelihood

1. How does one estimate (measure) the mean signal, s?

The standard to answer this question 1s to choose as estimates
of the parameters the values that maximize the likelihood.

dIlnp(D|s, b) 0 dInp(D|s,b) — 0
ds - db -

Estimates obtained this way are called maximum likelihood
estimates (MLE).

For this example, we find the unsurprising results:

§(D)=N-B, b(D) =B
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The Frequentist Principle

2. How does one quantify the accuracy of the estimate?

A general answer to this question was proposed by Jerzy
Neyman 1n 1937:

Statistical statements should be constructed with the
guarantee that a fraction f > p of them are true over a
population of statements with p chosen a priori.

This 1s called the frequentist principle (FP). The fraction f1s

called the coverage probability (or coverage for short) and
p 1s called the confidence level (CL).
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The Frequentist Principle

Example 1

Consider statements of the form 8 < N + +/N, each
associated with a pair of numbers, a mean count 6
randomly sampled from uniform(0, 3) and a count N
randomly sampled from a Poisson distribution with mean
0. Note: each statement is either true or false.

In a real experiment, we do not know which are true and
which are false, but we do 1n a simulation. So we can
compute the coverage f and and determine p.

Exercise 3: Estimate by simulation the coverage probability
of these statements. Repeat using uniform(0, 10). Then repeat
for fixed values of 8 1n steps of 0.2 from 0.1 to 9.9 and plot
the coverage versus 8. What is p?
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The Frequentist Principle

Example 2

Consider x = D sampled from a Gaussian statistical model

_ (x—p)?
- —;

2
p(x|u, o) = exp (— %) /(o\2m), %

with known standard deviation o but unknown mean u.

The MLE of u is i(D) = D. According to Neyman, we
should quantify its accuracy with a statement of the form

b€ [n@), )|
with a specified confidence level, say 68%.
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The Frequentist Principle

Example 2

For a Gaussian, the standard method for constructing such a
statement 1s to solve the equation

x*=-2Inp(xlp,0) =1

The solutions are u(x) = x — o and u(x) = x + o.

A statement of the form u € [,u (x), ﬁ(x)] is either true or
false. Consider a large number of experiments, each
yielding an interval [,u (D),H(D)], which varies randomly

from one experiment to another.
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The Frequentist Principle

Example 2 (contd.)

For the Gaussian, the coverage probability f of statements of
the form

U € [,u(x),ﬁ(x)] is 0.683.
Moreover, for any given point u, the coverage probability

never to falls below 0.683.

Therefore, the confidence level (CL) associated with the
above statements 1s 100f % = 68%.

Ideally, we would like to arrive at similar statements 1n our
Higgs boson example.
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The Frequentist Principle

Example 3
Our (simplified) Higgs boson likelithood

p(D|s, b) = Poisson(N,s + b) Poisson(M, kb)

contains two parameters s and b.

Suppose we want to make statements about both parameters
similar to the ones we made 1n examples 1 and 2
s,b € R(D)

except that this time R(D) 1s not a confidence interval but
rather a confidence set.

How do we construct such a set?
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Wilks’ Theorem (1)

If certain conditions are met (e.g., we have a enough data)
then the quantity t(x) = —21n A(x)

where

has a distribution that approximates a y* density of 2 degrees
of freedom (because there are 2 free parameters).

This 1s a special case of Wilks’ Theorem (1938)*,

(*Glen Cowan, Kyle Cranmer, Eilam Gross, Ofer Vitells “Asymptotic formulae for
likelihood-based tests of new physics.” Eur.Phys.J.C71: 1554, 2011)
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Wilks’ Theorem (2)

If we want to create confidence sets with a confidence level of
68%, Wilks’ theorem suggests that we construct the set by
finding all points (s, b) that satisfy the mnequality

t(D) =~ x5 < 2.296
for observed data x = D, or, equivalently, from the inequality

C,(t(D)) < 0.683

where C,(t(D)) = | HD) p,(z)dz is the cumulative

0
distribution function of the y4 density.
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Summary

Probability

Interpretations: degree of belief, relative frequency

Likelihood Function

Statistical model into which data have been inserted.

Frequentist Principle

Construct statements such that a fraction f > CL of them
will be true over a population of statements.
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