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Today’s high energy colliders

Collider Process  status
LEP/LEP2 e+e- 1989-2000

Hera e±p 1992-2007
Tevatron pp 1983-2011

LHC- Run I pp 2010-2012
LHC- Run II pp 2015-2018
LHC-Run III pp Started July 2022 

LEP high precision measurements of masses, couplings, EW parameters ... 

Hera: mainly measurements of proton structure / parton densities

Tevatron: mainly discovery of top and many QCD measurements

LHC designed to

discover the Higgs [done in Run I]
unravel possible BSM physics [elusive up to now]

Today’s high energy colliders

Collider Process status

HERA (A & B) e±p running

Tevatron (I & II) pp̄ running

LHC pp starts 2007

current and upcoming ex-

periments collide protons

⇒ all involve QCD

HERA: mainly measurements of parton densities and diffraction

Tevatron: mainly discovery of the top and related measurements

LHC designed to

discover the Higgs and measure it’s properties

unravel possible physics beyond the SM

Our ability to discover new particles and to measure their
properties limited by the quality of our understanding of QCD

The one-loop amplitude for six gluon scattering - April 2006 – p.2/20
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Today’s high energy physics program relies mainly on results from 
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Today’s status of particle physics

• The Higgs boson: the last missing ingredient of the Standard Model of 
particle physics 

• The SM is a consistent theory up to very high energy, but it can not be a 
complete theory because of many theory and experimental puzzles (Dark 
matter and dark energy, neutrino masses, flavour physics, hierarchy 
problem, no theory of quantum gravity…)  
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The days of guaranteed discoveries or no-lose theorems are over. Progress 
will be driven by LHC data.  

The LHC program in the coming decades will focus on 

• Direct searches: production of new (heavy status) … 

• Indirect searches: Higgs couplings and branchings, rare decay modes … 

• Consistency tests: precision electroweak data



Today’s status of particle physics
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Improving our theoretical description of data crucial to enhance sensitivity 
when looking for new physics. 

Sharpen the tools ⇒ get more accurate predictions ⇒ get improved 

indirect sensitivity to New Physics (which would modify SM couplings) 

Example: extraction of Higgs couplings limited by theory uncertainties 



Gendankenexperiment
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Higher precision can translate 
into higher discovery reach 

almost “for free” 

⇒ miss discovering new physics 

Theory with 5 times 
larger errors



Propose of these lectures
In these lectures: perturbative QCD as a tool for precision QCD at colliders

• Introduction to QCD (or refresh your knowledge of QCD) 

• Basic concepts which appear over and over in different contexts

• Understand the terminology 

• Recent developments in the field 
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Some bibliography
• A QCD primer                                                                                   

G. Altarelli (TASI lectures 2002) hep-ph/0204179

• QCD and Collider Physics (a.k.a. The Pink Book)                                
R.K. Ellis, W. J. Stirling, B. R. Webber, Cambridge University Press (1999) 

• Foundations of Quantum Chromodynamics                                            
T. Muta, World Scientific (1998) 

• Quantum Chromodynamics: High Energy Experiments and Theory         
G. Dissertori, I. Knowles, M. Schmelling, International Series of Monograph 
on Physics (2009) 

• The theory of quark and gluon interactions                                              
F. J. Yndurain, Springer-Verlag (1999) 

• Gauge Theory and Elementary Particle Physics                                        
T. Cheng and L. Li, Oxford Science Publications (1984) 

• The Black Book of Quantum Chromodynamics: A Primer for the LHC Era                                                                                                      
J. Campbell, J, Huston, F. Krauss (2018) 

• many write-ups of QCD lectures given at previous other schools ...  
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The beginning: the eightfold way

Organise hadron spectrum to manifest some symmetry-pattern 
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One hadron missing, but predicted following the pattern

But what is the reason for this pattern? 



Quarks (1964)

Gell-Mann and Zweig propose the existence of elementary spin 1/2 
particles (the quarks). Three types of quarks, up, down, strange (plus their 
antiparticles) can explain the composition of all observed hadrons 
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First experimental evidence for colour

I. Existence of Δ++ particle: particle with three up quarks of the same spin 
and with symmetric spacial wave function.  Without an additional 
quantum number Pauli’s principle would be violated 
⇒ color quantum number

10

�++ = �ijkuiujuk

u1 u2 u3

New quantum number solves 
spin-statistics problem (wave 
function becomes asymmetric)



First experimental evidence for colour
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II.R-ratio: ratio of (e+e- → hadrons)/(e+e- → µ+µ-) 

U †U = UU † = 1 det(U) = 1

∑

i

ψ∗
i ψi →

∑

ijk

U∗
ijψjUikψk =

∑

k

ψ∗
kψk

∑

ijk

ψiψjψk →
∑

ijki′j′k′
U∗

ii′Ujj′Ukk′ψi′ψj′ψk′ =
∑

i′j′k′
ψi′ψj′ψk′

nq − nq̄ = n · 3 with n integer

R ≡ e+e− → hadrons

e+e− → µ+µ− ∝ Nc

∑

f

Q2
f

1

Experimental data confirms Nc = 3.  (Will come back to R later.)

p2

p1e+

e�

Color becomes the charge of strong interaction. Interaction is so strong, 
that the only observed hadrons in nature are those where quarks are 
combined in colour singlet states

Colour SU(3) is an exact symmetry of nature



QCD  

Model for strong interactions: non-abelian gauge theory SU(3)

- each quark of a given flavour comes in Nc=3 colors 

- color SU(3) is an exact symmetry

- hadrons are colour neutral, i.e. colour singlet under SU(3)

- observed hadrons are colour neutral ⇒ hadrons have integer charge 

- hadrons (baryons, mesons): made of spin 1/2 quarks 

U †U = UU † = 1 det(U) = 1

∑

i

ψ∗
i ψi →

∑

ijk

U∗
ijψjUikψk =

∑

k

ψ∗
kψk

∑

ijk

ψiψjψk →
∑

ijki′j′k′
U∗

ii′Ujj′Ukk′ψi′ψj′ψk′ =
∑

i′j′k′
ψi′ψj′ψk′

R ≡ e+e− → hadrons

e+e− → µ+mu− ∝ Q2

1

Hadron spectrum fully classified with the following assumptions
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Color singlet hadrons

Quarks can be combined in 2 elementary ways into color singlets of the 
SUc(3) group

�

ijk

�ijk⇥i⇥j⇥k �
�

ii�jj�kk�

�ijkUii�Ujj�Ukk�⇥i�⇥j�⇥k� =
�

i�j�k�

�i�j�k� det(U)⇥i�⇥j�⇥k�

�

i

��
i �i �

�

ijk

U�
ijUik�j�k =

�

k

��
k�k

Baryons (fermions, e.g. proton, neutrons ...)

Mesons (bosons, e.g. pion ...)
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Quark mass spectrum

charge 2/3
mass=

up
few MeV

charm
~1.6 GeV

top
~172 GeV

charge -1/3
mass =

down
few MeV

strange
~100 MeV

bottom
~5 GeV
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The R-ratio: comparison to data
Renormalisation group

QCD beta function

Short-distance observables

Comparison of R̂ to experimental data
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nf = 3

nf = 3� 4

nf = 4� 5

R changes crossing quark flavour thresholds R = Nc
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QCD matter sector

• The light quark's existence was validated by the SLAC's deep inelastic 
scattering (DIS) experiments in 1968: strange was a necessary component 
of Gell-Mann and Zweig's three-quark model, it also provided an 
explanation for the kaon and pion mesons discovered 1947 in cosmic rays 

2nd1st

quark generation

up

down strange

u

d s
el

ec
tri

c 
ch

ar
ge

−1
/3

+ 
2/

3

e� e�

��

q

q

p
X

Feynman diagram 
describing DIS of an 
electron on a proton
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QCD matter sector

2nd1st

quark generation

up

down strange

u

d s
el

ec
tri

c 
ch

ar
ge

−1
/3

+ 
2/

3c
charm

[S. L. Glashow, J. Iliopoulos and L. Maiani, Phys. Rev. D 2 (1970) 2] 

• In 1970 Glashow, Iliopoulos, and Maiani (GIM mechanism) presented 
strong theoretical arguments for the existence of the as-yet undiscovered 
charm quark, based on the absence of flavour-changing neutral currents

� G2
F sin2 �c

m2
c

M2
W

s̄

d

K̄K

d̄

s

c c

Feynman diagram describing 
the mixing of a kaon into its 
anti-particle. The black boxes 
indicate weak effective four-
fermion interactions
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QCD matter sector

2nd1st

quark generation

up

down strange

u

d s
el

ec
tri

c 
ch

ar
ge

−1
/3

+ 
2/

3c
charm

Computer reconstruction of 
a ψ′ decay in the Mark I 
detector at SLAC, making a 
near-perfect image of the 
Greek letter ψ
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• Charm quarks were observed almost simultaneously in November 1974 
at SLAC and at BNL as charm anti-charm bound states (charmonium). 
The two groups had assigned the discovered meson two different 
symbols, J and ψ. Thus, it became known as the J/ψ (Nobel Prize 1976)



QCD matter sector

2nd1st

quark generation

up

down strange

u

d s

c
charm

el
ec

tri
c 

ch
ar

ge
−1

/3
+ 
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3

3rd

b
bottom

• The bottom quark was postulated in 1973 by Kobayashi and Maskawa to 
describe the phenomenon of CP violation, which requires the existence 
of at least three generations of quarks in Nature (Nobel Prize 2008)

[M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49 (1973) 652] 
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QCD matter sector
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The “bump” at 9.5 GeV 
that lead to the discovery 
of the bottom quark at 
FNAL in 1977
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• In 1977, physicists working at the fixed target experiment E288 at FNAL 
discovered Υ (Upsilon) meson. This discovery was eventually understood 
as the bound state of the bottom/anti-bottom (bottomonium)



QCD matter sector
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Diagram involving the virtual 
exchange of top quarks that 
induces a mass difference in 
the B meson system

• The measurement of the oscillations of B mesons into its own anti-
particles in 1987 by ARGUS led to the conclusion that the top-quark 
mass has to be larger than 50 GeV.  This was a big surprise at that time, 
because in 1987 the top quark was generally believed to be much lighter 
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QCD matter sector
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• It was also realized that certain precision measurements of the EW 
vector-boson masses and couplings are very sensitive to the mass of the 
top quark. By 1994 the precision of these indirect measurements led to a 
prediction of the top-quark mass between 145 GeV and 185 GeV



QCD matter sector

• The top quark was finally discovered in 1995 by CDF and D0 at FNAL. 
It’s mass is today measured to be mt = (173.1 ± 0.6) GeV
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QCD matter sector
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• The masses of the six different quarks range from 2 MeV for the up quark 
to 172 GeV for the top quark.  Why these masses are split by almost six 
orders of magnitude is one of the big mysteries of particle physics
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QCD matter sector
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• The up, down, and strange quark are much lighter than the proton. If one 
takes them to have an identical mass, the quarks become indistinguishable 
under QCD, and one obtains an effective SU(3)f symmetry  
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QED and QCD

QED and QCD are very similar, yet very different theories

quarks are a bit like leptons, but there are three of each

gluons are a bit like photons, but there are eight of them 

gluons interact with themselves

the QCD coupling is also small at collider energies, but larger then 
the QED one

the similarities and differences are evident from the two Lagrangians

So, let’s start by looking at the QED Lagrangian
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The QED Lagrangian

covariant derivative

electromagnetic vector potential

field strength tensor
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QED Feynman rules
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QED gauge invariance

A crucial property of the QED Lagrangian is that it is invariant under 

which acts on the Dirac field as a local phase transformation 

Exercise: 
Check that the QED Lagrangian is invariant under the above 
transformations

Yang and Mills (1954) proposed that the local phase rotation in QED 
could be generalised to invariance under a continuous symmetry also 
for more general (non-abelian) theories

[C. N. Yang and R. L. Mills, Phys. Rep. 96 (1954) 191]
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The QCD Lagrangian

U †U = UU † = 1 det(U) = 1

∑

i

ψ∗
i ψi →

∑

ijk

U∗
ijψjUikψk =

∑

k

ψ∗
kψk

∑

ijk

ψiψjψk →
∑

ijki′j′k′
U∗

ii′Ujj′Ukk′ψi′ψj′ψk′ =
∑

i′j′k′
ψi′ψj′ψk′

nq − nq̄ = n · 3 with n integer

R ≡ e+e− → hadrons

e+e− → µ+µ− ∝ Nc

∑

f

Q2
f

LQCD = −1

4
F µν

a F a
µν +

∑

f

ψ̄(f)
i (iD/ij − mfδij)ψ(f)

j

1

⇒ covariant derivative ⇒ field strength

U †U = UU † = 1 det(U) = 1

∑

i

ψ∗
i ψi →

∑

ijk

U∗
ijψjUikψk =

∑

k

ψ∗
kψk

∑

ijk

ψiψjψk →
∑

ijki′j′k′
U∗

ii′Ujj′Ukk′ψi′ψj′ψk′ =
∑

i′j′k′
ψi′ψj′ψk′

nq − nq̄ = n · 3 with n integer

R ≡ e+e− → hadrons

e+e− → µ+µ− ∝ Nc

∑

f

Q2
f

LQCD = −1

4
F µν

a F a
µν +

∑

f

ψ̄(f)
i (iD/ij − mfδij)ψ(f)

j

Dµ
ij ≡ ∂µδij + igst

a
ijA

µ
a , F a

µν ≡ ∂µAa
ν − ∂νA

a
µ − gsfabcA

b
µAc

ν

Lgauge−fixing = − 1

2λ

(
∂µAA

µ

)2

ψ(f) →
∑

f ′
Uff ′

ψ(f ′)

LF =
∑

f

(
ψ̄(f)

L D/ψ(f)
L + ψ̄(f)

R D/ψ(f)
R

)
−

∑

f

mf

(
ψ̄(f)

R ψ(f)
L + ψ̄(f)

L ψ(f)
R

)

SUL(Nf ) × SUR(Nf) × UL(1) × UR(1)

ψL = PLψ , ψR = PRψ , PL/R =
1

2
(1 ∓ γ5)

R0 =
σ0(γ∗ → hadrons)

σ0(γ∗ → µ+µ−)
= Nc

∑

f

q2
f

R1 = R0

(
1 +

αs

π

)

1

only one QCD parameter gs regulating the strength of the interaction 
(quark masses have EW origin)

setting gs = 0 one obtains the free Lagrangian (free propagation of 
quarks and gluons without interaction)

terms proportional to gs in the field strength cause self-interaction 
between gluons (makes the difference w.r.t. QED)

color matrices taij  are the generators of SU(3) 

QCD flavour blind (differences only due to EW)
30



The generators of SU(N)

The gauge group of QCD is SU(N) with N =3   

N×N complex generic matrix ⇒ N2 complex values, i.e. 2 N2 real ones

☛unit determinant ⇒ 1 condition 

det(U) = 1

☛unitarity ⇒ N2 conditions 

UU† = U†U = 1N�N

So, the fundamental representation of SU(N) has N2-1 generators ta :  
N×N traceless hermitian matrices ⇒ N2-1 gluons

U †U = UU † = 1 det(U) = 1

∑

i

ψ∗
i ψi →

∑

ijk

U∗
ijψjUikψk =

∑

k

ψ∗
kψk

∑

ijk

ψiψjψk →
∑

ijki′j′k′
U∗

ii′Ujj′Ukk′ψi′ψj′ψk′ =
∑

i′j′k′
ψi′ψj′ψk′

nq − nq̄ = n · 3 with n integer

R ≡ e+e− → hadrons

e+e− → µ+µ− ∝ Nc

∑

f

Q2
f

LQCD = −1

4
F µν

a F a
µν +

∑

f

ψ̄(f)
i (iD/ij − mfδij)ψ(f)

j

Dµ
ij ≡ ∂µδij + igst

a
ijA

µ
a , F a

µν ≡ ∂µAa
ν − ∂νA

a
µ − gsfabcA

b
µAc

ν

U = eiθa(x)ta

[ta, tb] = fabc tc

fabc = −facb = −fbac

Lgauge−fixing = − 1

2λ

(
∂µAA

µ

)2

ψ(f) →
∑

f ′
Uff ′

ψ(f ′)

LF =
∑

f

(
ψ̄(f)

L D/ψ(f)
L + ψ̄(f)

R D/ψ(f)
R

)
−

∑

f

mf

(
ψ̄(f)

R ψ(f)
L + ψ̄(f)

L ψ(f)
R

)

SUL(Nf ) × SUR(Nf) × UL(1) × UR(1)

1

a = 1, · · · N2 � 1
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The Gell-Mann matrices

Phenomenology: lecture 3 (p. 56)

QCD basics

Lagrangian
Lagrangian + colour

Quarks — 3 colours: ψa =





ψ1

ψ2

ψ3





Quark part of Lagrangian:

Lq = ψ̄a(iγ
µ∂µδab − gsγ

µtC
abA

C
µ − m)ψb

SU(3) local gauge symmetry ↔ 8 (= 32 − 1) generators t1
ab . . . t8

ab

corresponding to 8 gluons A1
µ . . .A8

µ.

A representation is: tA = 1
2λA,

λ
1

=

0

@

0 1 0

1 0 0

0 0 0

1

A , λ
2
=

0

@

0 −i 0

i 0 0

0 0 0

1

A , λ
3
=

0

@

1 0 0

0 −1 0

0 0 0

1

A , λ
4
=

0

@

0 0 1

0 0 0

1 0 0

1

A ,

λ
5

=

0

@

0 0 −i

0 0 0

i 0 0

1

A , λ
6
=

0

@

0 0 0

0 0 1

0 1 0

1

A , λ
7
=

0

@

0 0 0

0 0 −i

0 i 0

1

A , λ
8

=

0

B

@

1
√

3
0 0

0
1

√

3
0

0 0
−2
√

3

1

C

A
,

One explicit representation: 

λA are the Gell-Mann matrices

tA =
1
2
�A

Standard normalization: Tr(tatb) = TR �ab TR =
1
2

Notice that the first three Gell-Mann matrices contain the three Pauli 
matrices in the upper-left corner
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The generators of SU(N)

Infinitesimal transformations (close to the identity) give complete 
information about the group structure. The most important 
characteristic of a group is the commutator of two transformations: 

[U(�1), U(�2)] ⇥ U(�1)U(�2)� U(�2)U(�1)
= (i�a

1 ) (i�b
2) [ta, tb] +O(�3)

The two matrices to not commute, therefore the transformations don’t. 
Such a group is called non-abelian. 

• Familiar abelian groups: translations, phase transformations U(1) ... 

• Familiar non-abelian groups: 3D-rotations 
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The generators of SU(N)

Consider the commutator

The Lie algebra of the group is defined by the commutation relation of 
the generators if the group. fabc are the structure constants of the SU(Nc) 
algebra, they generate the adjoint representation of the algebra

Clearly, fabc is anti-symmetric in (ab). It is easy to show that it is fully 
antisymmetric

and that hence it is fully antisymmetric

ifabc = 2Tr ([ta, tb]tc)

fabc = �fbac = �facb

[ta, tb] = ifabct
cTr([ta, tb]) = 0 �
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Color algebra: fundamental identities

Fundamental representation 3:

Trace identities:

αs =
g2

s

4π

R2 = R0

(

1 +
αs

π
+

(
αs

π

)2
(

c + πb0 ln
M2

UV

Q2

))

αs(µ) = αbare
s + b0 ln

M2
UV

µ2

(
αbare

s

)2

b0 =
11Nc − 4nfTR

12π

R = R0



1 +
αs(µ)

π
+

(
αs(µ)

π

)2 (

c + πb0 ln
µ2

Q2

)

+ O(α3
s(µ))





β(αren
s ) ≡ µ2αren

s

dµ2

β = −b0 α2
s(µ) + . . .

1

αs(µ)
= b0 ln

µ2

µ2
0

+
1

αs(µ0)

αs(µ) =
1

b0 ln µ2

Λ2

β = −α2
s(µ)

∑

i

biα
i
s(µ)

b0 =
11Nc − 4nfTR

12π

b1 =
17N2

c − 5Ncnf − 3CFnf

24π2

Tr(ta) = 0

Tr(ta tb) = TRδab

2

αs =
g2

s

4π

R2 = R0

(

1 +
αs

π
+

(
αs

π

)2
(

c + πb0 ln
M2

UV

Q2

))

αs(µ) = αbare
s + b0 ln

M2
UV

µ2

(
αbare

s

)2

b0 =
11Nc − 4nfTR

12π

R = R0



1 +
αs(µ)

π
+

(
αs(µ)

π

)2 (

c + πb0 ln
µ2

Q2

)

+ O(α3
s(µ))





β(αren
s ) ≡ µ2αren

s

dµ2

β = −b0 α2
s(µ) + . . .

1

αs(µ)
= b0 ln

µ2

µ2
0

+
1

αs(µ0)

αs(µ) =
1

b0 ln µ2

Λ2

β = −α2
s(µ)

∑

i

biα
i
s(µ)

b0 =
11Nc − 4nfTR

12π

b1 =
17N2

c − 5Ncnf − 3CFnf

24π2

Tr(ta) = 0

Tr(ta tb) = TRδab

2

Adjoint representation 8:

i j = �ij

= �aba b

a a b= 0 = TR

i j = taij

= ifabcba

c
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What do color identities mean physically

�

�
0 1 0
1 0 0
0 0 0

�

�(1, 0, 0)

�

�
0
1
0

�

�

�̄i t1ij �jWhat does this really mean?

�̄i tAij �j

Gluons carry color and anti-color. They repaint quarks and other gluons.
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Color algebra: Casimirs & Fierz identity

Fundamental representation 3:

Adjoint representation 8:  

QCD Lagrangian

Feynman rules

Pictorial representation of SU(Nc) identities

Casimir factors

Fundamental representation 3:

X

a

taiktakj = CF δij CF =
N2

c − 1

2Nc CF=

Adjoint representation 8:

X

cd

facdfbcd = CAδab CA = Nc
CA

=

Fierz identity:

(ta)i
k (ta)l

j =
1

2
δi
j δl

k −
1

2Nc
δ1
k δl

j

2

1

Nc2

1
= −

Gluons as carriers of colour in the large-Nc limit

+  O(1/N )c
1

2
=

Andrea Banfi Lecture 1

QCD Lagrangian

Feynman rules

Pictorial representation of SU(Nc) identities

Casimir factors

Fundamental representation 3:

X

a

taiktakj = CF δij CF =
N2

c − 1

2Nc CF=

Adjoint representation 8:

X

cd

facdfbcd = CAδab CA = Nc
CA

=

Fierz identity:

(ta)i
k (ta)l

j =
1

2
δi
j δl

k −
1

2Nc
δ1
k δl

j

2

1

Nc2

1
= −

Gluons as carriers of colour in the large-Nc limit

+  O(1/N )c
1

2
=

Andrea Banfi Lecture 1

∑

a

(taij)(t
a
kj) = CF δij CF =

N2
c − 1

2Nc

∑

cd

facdf bdc = CAδab CA = Nc

(ta)i
k(t

a)l
j

1

2
δi
jδ

l
k −

1

2Nc
δi
kδ

l
j

3

∑

a

(taij)(t
a
kj) = CF δij CF =

N2
c − 1

2Nc

∑

cd

facdf bdc = CAδab CA = Nc

(ta)i
k(t

a)l
j

1

2
δi
jδ

l
k −

1

2Nc
δi
kδ

l
j

3

Fierz identity:

QCD Lagrangian

Feynman rules

Pictorial representation of SU(Nc) identities

Casimir factors

Fundamental representation 3:

X

a

taiktakj = CF δij CF =
N2

c − 1

2Nc CF=

Adjoint representation 8:

X

cd

facdfbcd = CAδab CA = Nc
CA

=

Fierz identity:

(ta)i
k (ta)l

j =
1

2
δi
j δl

k −
1

2Nc
δ1
k δl

j

2

1

Nc2

1
= −

Gluons as carriers of colour in the large-Nc limit

+  O(1/N )c
1

2
=

Andrea Banfi Lecture 1

∑

a

(taij)(t
a
kj) = CF δij CF =

N2
c − 1

2Nc

∑

cd

facdf bdc = CAδab CA = Nc

(ta)i
k(t

a)l
j =

1

2
δi
jδ

l
k −

1

2Nc
δi
kδ

l
j

3
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Exercises: 
1) derive Fierz identity
2) use the Fierz identity to derive the value of CF and CA



Gauge invariance

The QCD Lagrangian is invariant under local gauge transformations, i.e. 
one can redefine the quark and gluon fields independently at every point 
in space and time without changing the physical content of the theory

U †U = UU † = 1 det(U) = 1

∑

i

ψ∗
i ψi →

∑

ijk

U∗
ijψjUikψk =

∑

k

ψ∗
kψk

∑

ijk

ψiψjψk →
∑

ijki′j′k′
U∗

ii′Ujj′Ukk′ψi′ψj′ψk′ =
∑

i′j′k′
ψi′ψj′ψk′

nq − nq̄ = n · 3 with n integer

R ≡ e+e− → hadrons

e+e− → µ+µ− ∝ Nc

∑

f

Q2
f

LQCD = −1

4
F µν

a F a
µν +

∑

f

ψ̄(f)
i (iD/ij − mfδij)ψ(f)

j

Dµ
ij ≡ ∂µδij + igst

a
ijA

µ
a , F a

µν ≡ ∂µAa
ν − ∂νA

a
µ − gsfabcA

b
µAc

ν

U = eiθa(x)ta

ψi → ψ′
i = Ujk(x)ψk

taAa → taA′
a = U(x)taAaU

−1(x) +
i

gs
(∂U(x)) U−1(x)

[ta, tb] = fabc tc

fabc = −facb = −fbac

Lgauge−fixing = − 1

2λ

(
∂µAA

µ

)2

ψ(f) →
∑

f ′
Uff ′

ψ(f ′)

1

U †U = UU † = 1 det(U) = 1

∑

i

ψ∗
i ψi →

∑

ijk

U∗
ijψjUikψk =

∑

k

ψ∗
kψk

∑

ijk

ψiψjψk →
∑

ijki′j′k′
U∗

ii′Ujj′Ukk′ψi′ψj′ψk′ =
∑

i′j′k′
ψi′ψj′ψk′

nq − nq̄ = n · 3 with n integer

R ≡ e+e− → hadrons

e+e− → µ+µ− ∝ Nc

∑

f

Q2
f

LQCD = −1

4
F µν

a F a
µν +

∑

f

ψ̄(f)
i (iD/ij − mfδij)ψ(f)

j

Dµ
ij ≡ ∂µδij + igst

a
ijA

µ
a , F a

µν ≡ ∂µAa
ν − ∂νA

a
µ − gsfabcA

b
µAc

ν

U = eiθa(x)ta

ψ → ψ′ = U(x)ψ

taAa → taA′
a = U(x)taAaU

−1(x) +
i

gs
(∂U(x)) U−1(x)

Dµψ → D′
µψ

′ = U(x)Dµψ

[ta, tb] = fabc tc

fabc = −facb = −fbac

Lgauge−fixing = − 1

2λ

(
∂µAA

µ

)2

1

• Gauge transformation for the quark field

U †U = UU † = 1 det(U) = 1

∑

i

ψ∗
i ψi →

∑

ijk

U∗
ijψjUikψk =

∑

k

ψ∗
kψk

∑

ijk

ψiψjψk →
∑

ijki′j′k′
U∗

ii′Ujj′Ukk′ψi′ψj′ψk′ =
∑

i′j′k′
ψi′ψj′ψk′

nq − nq̄ = n · 3 with n integer

R ≡ e+e− → hadrons

e+e− → µ+µ− ∝ Nc

∑

f

Q2
f

LQCD = −1

4
F µν

a F a
µν +

∑

f

ψ̄(f)
i (iD/ij − mfδij)ψ(f)

j

Dµ
ij ≡ ∂µδij + igst

a
ijA

µ
a , F a

µν ≡ ∂µAa
ν − ∂νA

a
µ − gsfabcA

b
µAc

ν

U = eiθa(x)ta

ψ → ψ′ = U(x)ψ

taAa → taA′
a = U(x)taAaU

−1(x) +
i

gs
(∂U(x)) U−1(x)

Dµψ → D′
µψ

′ = U(x)Dµψ

[ta, tb] = fabc tc

fabc = −facb = −fbac

Lgauge−fixing = − 1

2λ

(
∂µAA

µ

)2

1

• The covariant derivative                                     must transform as 
(covariant = transforms “with” the field) 

• From which one derives the transformation property of the gluon field 

(Dµ)ij = �µ�ij + igst
a
ijA

µ
a
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Gauge invariance

The QCD Lagrangian is invariant under local gauge transformations, i.e. 
one can redefine the quark and gluon fields independently at every point 
in space and time without changing the physical content of the theory

• It follows that 

U †U = UU † = 1 det(U) = 1

∑

i

ψ∗
i ψi →

∑

ijk

U∗
ijψjUikψk =

∑

k

ψ∗
kψk

∑

ijk

ψiψjψk →
∑

ijki′j′k′
U∗

ii′Ujj′Ukk′ψi′ψj′ψk′ =
∑

i′j′k′
ψi′ψj′ψk′

nq − nq̄ = n · 3 with n integer

R ≡ e+e− → hadrons

e+e− → µ+µ− ∝ Nc

∑

f

Q2
f

LQCD = −1

4
F µν

a F a
µν +

∑

f

ψ̄(f)
i (iD/ij − mfδij)ψ(f)

j

Dµ
ij ≡ ∂µδij + igst

a
ijA

µ
a , F a

µν ≡ ∂µAa
ν − ∂νA

a
µ − gsfabcA

b
µAc

ν

U = eiθa(x)ta

ψ → ψ′ = U(x)ψ

taAa → taA′
a = U(x)taAaU

−1(x) +
i

gs
(∂U(x)) U−1(x)

Dµψ → D′
µψ

′ = U(x)Dµψ

ψ̄ → ψ̄′ = ψ̄U †(x)

i gs taF a
µν = [Dµ, Dν ]

taF a
µν → taF a′

µν = U(x)taF a
µνU

−1(x)

[ta, tb] = fabc tc

1

U †U = UU † = 1 det(U) = 1

∑

i

ψ∗
i ψi →

∑

ijk

U∗
ijψjUikψk =

∑

k

ψ∗
kψk

∑

ijk

ψiψjψk →
∑

ijki′j′k′
U∗

ii′Ujj′Ukk′ψi′ψj′ψk′ =
∑

i′j′k′
ψi′ψj′ψk′

nq − nq̄ = n · 3 with n integer

R ≡ e+e− → hadrons

e+e− → µ+µ− ∝ Nc

∑

f

Q2
f

LQCD = −1

4
F µν

a F a
µν +

∑

f

ψ̄(f)
i (iD/ij − mfδij)ψ(f)

j

Dµ
ij ≡ ∂µδij + igst

a
ijA

µ
a , F a

µν ≡ ∂µAa
ν − ∂νA

a
µ − gsfabcA

b
µAc

ν

U = eiθa(x)ta

ψ → ψ′ = U(x)ψ

taAa → taA′
a = U(x)taAaU

−1(x) +
i

gs
(∂U(x)) U−1(x)

Dµψ → D′
µψ

′ = U(x)Dµψ

ψ̄ → ψ̄′ = ψ̄U †(x)

i gs taF a
µν = [Dµ, Dν ]

taF a
µν → taF a′

µν = U(x)taF a
µνU

−1(x)

[ta, tb] = fabc tc

1

e.g. because

U †U = UU † = 1 det(U) = 1

∑

i

ψ∗
i ψi →

∑

ijk

U∗
ijψjUikψk =

∑

k

ψ∗
kψk

∑

ijk

ψiψjψk →
∑

ijki′j′k′
U∗

ii′Ujj′Ukk′ψi′ψj′ψk′ =
∑

i′j′k′
ψi′ψj′ψk′

nq − nq̄ = n · 3 with n integer

R ≡ e+e− → hadrons

e+e− → µ+µ− ∝ Nc

∑

f

Q2
f

LQCD = −1

4
F µν

a F a
µν +

∑

f

ψ̄(f)
i (iD/ij − mfδij)ψ(f)

j

Dµ
ij ≡ ∂µδij + igst

a
ijA

µ
a , F a

µν ≡ ∂µAa
ν − ∂νA

a
µ − gsfabcA

b
µAc

ν

U = eiθa(x)ta

ψ → ψ′ = U(x)ψ

taAa → taA′
a = U(x)taAaU

−1(x) +
i

gs
(∂U(x)) U−1(x)

Dµψ → D′
µψ

′ = U(x)Dµψ

ψ̄ → ψ̄′ = ψ̄U †(x)

i gs taF a
µν = [Dµ, Dν ]

taF a
µν → taF a′

µν = U(x)taF a
µνU

−1(x)

[ta, tb] = fabc tc

1

U †U = UU † = 1 det(U) = 1

∑

i

ψ∗
i ψi →

∑

ijk

U∗
ijψjUikψk =

∑

k

ψ∗
kψk

∑

ijk

ψiψjψk →
∑

ijki′j′k′
U∗

ii′Ujj′Ukk′ψi′ψj′ψk′ =
∑

i′j′k′
ψi′ψj′ψk′

nq − nq̄ = n · 3 with n integer

R ≡ e+e− → hadrons

e+e− → µ+µ− ∝ Nc

∑

f

Q2
f

LQCD = −1

4
F µν

a F a
µν +

∑

f

ψ̄(f)
i (iD/ij − mfδij)ψ(f)

j

Dµ
ij ≡ ∂µδij + igst

a
ijA

µ
a , F a

µν ≡ ∂µAa
ν − ∂νA

a
µ − gsfabcA

b
µAc

ν

U = eiθa(x)ta

ψ → ψ′ = U(x)ψ

taAa → taA′
a = U(x)taAaU

−1(x) +
i

gs
(∂U(x)) U−1(x)

Dµψ → D′
µψ

′ = U(x)Dµψ

ψ̄ → ψ̄′ = ψ̄U †(x)

i gs taF a
µν = [Dµ, Dν ]

taF a
µν → taF a′

µν = U(x)taF a
µνU

−1(x)

−1

4
F

′µν
a F

′a
µν = −1

4
F µν

a F a
µν

1∑

f

ψ̄
′(f)
i

(
iD/′ij − mfδij

)
ψ

′(f)
j =

∑

f

ψ̄(f)
i (iD/ij − mfδij) ψ(f)

j

[ta, tb] = fabc tc

fabc = −facb = −fbac

Lgauge−fixing = − 1

2λ

(
∂µAA

µ

)2

ψ(f) →
∑

f ′
Uff ′

ψ(f ′)

LF =
∑

f

(
ψ̄(f)

L D/ψ(f)
L + ψ̄(f)

R D/ψ(f)
R

)
−

∑

f

mf

(
ψ̄(f)

R ψ(f)
L + ψ̄(f)

L ψ(f)
R

)

SUL(Nf ) × SUR(Nf) × UL(1) × UR(1)

ψL = PLψ , ψR = PRψ , PL/R =
1

2
(1 ∓ γ5)

R0 =
σ0(γ∗ → hadrons)

σ0(γ∗ → µ+µ−)
= Nc

∑

f

q2
f

R1 = R0

(
1 +

αs

π

)

αs =
g2

s

4π

R2 = R0

(

1 +
αs

π
+

(
αs

π

)2
(

c + πb0 ln
M2

UV

Q2

))

αs(µ) = αbare
s + b0 ln

M2
UV

µ2

(
αbare

s

)2

b0 =
11Nc − 4nfTR

12π

2

• Therefore the QCD Lagrangian is indeed gauge invariant 
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Gauge invariance

The QCD Lagrangian is invariant under local gauge transformations, i.e. 
one can redefine the quark and gluon fields independently at every point 
in space and time without changing the physical content of the theory

• the field strength alone is not gauge invariant in QCD (unlike in QED) 
because of self interacting gluons (carries of the force carry colour, 
unlike the photon) 

• a gluon mass term violate gauge invariance and is therefore forbidden 
(as for the photon). On the other hand quark mass terms are gauge 
invariant.

Remarks:

m2AµAµ
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Isospin symmetry

Isospin SU(2) symmetry: relates the content in terms of up and down 
quarks. Isospin invariance means invariance under u ↔ d 

41

I3 =
1

2
[(nu � nū)� (nd � nd̄)]

• Proton has isospin I3=1/2, while the neutron I3=-1/2. Protons and 
neutrons form an iso-spin multiplet 

• Pions have I3=1 (𝜋+ = ud), I3=0 (𝜋0 =1/√2(uu+dd), I3=0 (𝜋- = ud). They 
are also in an iso-spin multiplet

Particles in the same isospin multiplet have very similar masses 
(proton and neutron, neutral and charged pions)



Isospin symmetry

Check: the QCD Lagrangian has isospin symmetry if mu = md or mu, md → 0

In this limit of vanishing mu, md masses, one can separate the fermion 
fields into left and right chiralities 

So neglecting fermion masses the Lagrangian has the larger symmetry

U †U = UU † = 1 det(U) = 1

∑

i

ψ∗
i ψi →

∑

ijk

U∗
ijψjUikψk =

∑

k

ψ∗
kψk

∑

ijk

ψiψjψk →
∑

ijki′j′k′
U∗

ii′Ujj′Ukk′ψi′ψj′ψk′ =
∑

i′j′k′
ψi′ψj′ψk′

nq − nq̄ = n · 3 with n integer

R ≡ e+e− → hadrons

e+e− → µ+µ− ∝ Nc

∑

f

Q2
f

LQCD = −1

4
F µν

a F a
µν +

∑

f

ψ̄(f)
i (iD/ij − mfδij)ψ(f)

j

Dµ
ij ≡ i∂µδij − gst

a
ijA

µ
a , F a

µν ≡ ∂µAa
ν − ∂νA

a
µ − gsfabcA

b
µAc

ν

Lgauge−fixing = − 1

2λ

(
∂µAA

µ

)2

ψ(f) →
∑

f ′
Uff ′

ψ(f ′)

LF =
∑

f

(
ψ̄(f)

L D/ψ(f)
L + ψ̄(f)

R D/ψ(f)
R

)
−

∑

f

mf

(
ψ̄(f)

R ψ(f)
L + ψ̄(f)

L ψ(f)
R

)

ψL = PLψ , ψR = PRψ , PL/R =
1

2
(1 ∓ γ5)

R0 =
σ0(γ∗ → hadrons)

σ0(γ∗ → µ+µ−)
= Nc

∑

f

q2
f

R1 = R0

(
1 +

αs

π

)

αs =
g2

s

4π

1

U †U = UU † = 1 det(U) = 1

∑

i

ψ∗
i ψi →

∑

ijk

U∗
ijψjUikψk =

∑

k

ψ∗
kψk
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Isospin arises because QCD interactions are flavour blind and the 
accidental fact that up and down have very close masses 

The QCD Lagrangian in terms of left and right states becomes 



Feynman rules: propagators 

Obtain quark/gluon propagators from free piece of the Lagrangian

Quark propagator: replace i∂ → k and take the i × inverse 
∑

f

ψ̄
′(f)
i

(
iD/′ij − mfδij

)
ψ

′(f)
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∑

f

ψ̄(f)
i (iD/ij − mfδij) ψ(f)

j
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i (i∂/ − mf) δijψ
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j
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R D/ψ(f)
R

)
−
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f
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(
ψ̄(f)

R ψ(f)
L + ψ̄(f)

L ψ(f)
R

)

SUL(Nf ) × SUR(Nf) × UL(1) × UR(1)

ψL = PLψ , ψR = PRψ , PL/R =
1

2
(1 ∓ γ5)

R0 =
σ0(γ∗ → hadrons)

σ0(γ∗ → µ+µ−)
= Nc

∑

f

q2
f

R1 = R0

(
1 +

αs

π

)

αs =
g2

s

4π

R2 = R0

(

1 +
αs

π
+

(
αs

π

)2
(

c + πb0 ln
M2

UV

Q2
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αs(µ) = αbare
s + b0 ln

M2
UV

µ2

(
αbare

s

)2

2

p
i j

i

/p�m
�ij

Gluon propagator: replace i∂ → k and take the i × inverse ? 

➥ inverse does not exist, since 

How can one to define the propagator ? 

Lg,free =
1
2
Aµ (�gµ⇥ � �µ�⇥) A⇥

(�gµ� � �µ��) �µ = ��� ���� = 0
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Gauge fixing

Solution: 
add to the Lagrangian a gauge fixing term which depends on an 
arbitrary parameter ξ

In covariant gauges:

ξ=1  Feynman gauge
ξ=0  Landau gauge 

Gauge fixing explicitly breaks gauge invariance. However, in the end physical 
results are independent of the gauge choice. Powerful check of higher order 
calculations: verify that the ξ dependence fully cancels in the final result

Gluon propagator: 

Lgauge fixing = �1
�

�
�µAA

µ

�2
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Ghosts

η: complex scalar field which obeys Fermi statistics 

QCD Lagrangian

Feynman rules

Pictorial representation of SU(Nc) identities

Covariant gauge

Gauge fixing condition: ∂µAµ
a = 0

LGF = −
1

2α
(∂µAµ

a)2 ⇒ ∆ab
µν(k) =

i

k2
dµν

dµν =
X

λ

ε∗µ(k, λ)εν(k, λ) = −gµν + (1 − α)
kµkν

k2

Ghost Lagrangian:

LF P = ∂µc̄aDab
µ cb = ∂µc̄a∂µca − gfabc∂µc̄aAb

µcc

Quantum corrections introduce non-physical polarisations whose contribution is
cancelled by ghost-gluon interactions

2 2 2

=+1,−1,0λ =+1,−1λ

− =

Andrea Banfi Lecture 1

k
a b

i

k2
�abLghost = �µ�a†Dµ

ab�
b
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In covariant gauges gauge fixing term must be supplemented with ghost 
term to cancel unphysical longitudinal degrees of freedom which should 
not propagate



Axial gauges

Alternative: choose an axial gauge (introduce an arbitrary direction n)

The gluon propagator becomes

i.e. only two physical polarizations propagate, that’s why often the term 
physical gauge is used

Light cone gauge: n2 = 0 and ξ = 0

Axial gauges for k2 � 0
dµ�kµ = dµ�nµ = 0

Laxial gauge = �1
�

�
nµAA

µ

�2

dµ� =
i

k2

�
�gµ� +

nµk� + n�kµ

n · k
+

(n2 + �k2)kµk�

(n · k)2

�
�ab
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QCD Feynman rules: the vertices 
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Perturbative expansion of the R-ratio

The R-ratio is defined as 

At lowest order in perturbation theory (PT)

R � �(e+e� � hadrons)
�(e+e� � µ+µ�)

�(e+e� � hadrons) = �0(e+e� � qq̄)

e-

e+

γ*/Z

Since common factors cancel in numerator/denominator, to lowest order 
one finds

U †U = UU † = 1 det(U) = 1
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f
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π

)

R2 = R0

(

1 +
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π

(
αs

π

)2
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c + πb0 ln
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Q2

))

1
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The R-ratio: perturbative expansion

First order correction

virtual real

Real and virtual do not interfere since they have a different # of particles. 
The amplitude squared becomes

|A1|2 = |A0|2 + �s

�
|A1,r|2 + 2Re{A0A

�
1,v}

⇥
+ O(�2

s) �s =
g2

s

4⇥

R1 = R0

�
1 +

�s

⇥

⇥
Integrating over phase space, the first order result reads
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R-ratio and UV divergences
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To compute the second order correction one has to compute diagrams 
like these and many more

Ultra-violet divergences do not cancel. Result depends on UV cut-off. 
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)
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+
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+
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1

...

One gets
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Renormalization

Loop corrections in QCD are (often) divergent. Divergences originate 
from regions of very large momenta 

51

QCD is a renormalizable theory. This means that that one can 

1. regularize the divergence (e.g. using dimensional regularization)

 

2. absorbe all UV divergences into a universal redefinition of a finite 
number of the bare parameters of QCD

d4k � µ2�d4�2�k



Renormalization and running coupling
For the R-ratio, the divergence is dealt with by renormalization of the 
coupling constant
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R expressed in terms of the renormalized coupling is finite

Renormalizability of the theory guarantees that the same redefinition of the 
coupling removes all UV divergences from all physical quantities (massless case)
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1

Renormalization achieved by replacing bare masses and the bare coupling 
with renormalized ones. Masses and coupling become dependent on the 
renormalization scale. The dependence is fully predicted in pQCD 

• the coupling ⇒	β function
• the masses ⇒	anomalous dimensions γm
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The beta-function

The renormalized coupling is 

β(αren
s ) ≡ µ2αren

s

dµ2
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2
s(µ) + . . .
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= b0 ln
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2

Integrating the differential equation one finds at lowest order
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⇒
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So, one immediately gets

�(�ren
s ) � µ2 d�s(µ2)

dµ2
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Where Λ is the scale at which the coupling would become infinite



Roughly speaking:
(a) quark loop vacuum polarization diagram gives a negative contribution 
to b0  ∼ - 2nf /12𝜋

(b) gluon loop gives a positive contribution to b0  ∼ 11Nc /12𝜋

Since (b) > (a) ⇒	b0,QCD > 0                                                               
⇒	overall negative beta-function in QCD  
While in QED (b) = 0 ⇒ b0,QED < 0 

More on the beta-function

(a)

(b)

�QED =
1
3�

�2 + . . .
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More on the beta-function

55

• QCD: perturbative picture valid for scales 𝝁 >> 𝛬QCD (about 200 MeV) 

• QED: perturbative picture valid for scales 𝝁 << 𝛬QED   

Question: why does nobody talk about 𝛬QED? 

Answer:

i.e. QED is not a consistent theory up to arbitrary high scales

⇤QED = me exp

⇢
� 1

2b0↵(me)

�
⇠ 1090GeV >> MPlanck



Back to the QCD beta-function

Perturbative expansion of the beta-function: 

β(αren
s ) ≡ µ2αren

s

dµ2

β = −b0 α2
s(µ) + . . .

1

αs(µ)
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2

• nf is the number of active flavours (depends on the scale)
• today, the beta-function known up to five loops, but only first two 

coefficients are independent of the renormalization scheme
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Exercise: proof the above statement [hint: use the fact that at O(αs) the 
coupling in two different schemes is related by a finite change]



Active flavours & running coupling

The active field content of a theory modifies the running of the couplings  

Constrain New Physics by measuring the running at high scales? 
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Renormalization Group Equation

But the renormalization scale is arbitrary. The dependence on it must cancel 
in physical observables up to the order to which one does the calculation. 

So, for any observable A one can write a renormalization group equation 

⇥(�s) = µ2 ⌅�s

⌅µ2�s = �s(µ2)

⇤
µ2 ⌅

⌅µ2
+ µ2 ⌅�s

⌅µ2

⌅

⌅�s

⌅
A

�
Q2

µ2
,�s(µ2)

⇥
= 0

Consider a dimensionless quantity A, function of a single scale Q. The 
dimensionless quantity should be independent of Q. However in quantum 
field theory this is not true, as renormalization introduces a second scale µ 

Scale dependence of A enters through the running of the coupling: 
knowledge of                    allows one to compute the variation of A with 
Q given the beta-function 

A(1,�s(Q2))
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Measurements of the running coupling

Summarizing:

• overall consistent picture: αs from very 
different observables compatible

• αs is not so small at current scales  

• αs decreases slowly at higher energies 
(logarithmic only) 

• higher order corrections are and will 
remain important 

World average
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Measurements of the running coupling
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Uncertainty on 𝛼s (and PDF) is in several cases the dominant source of 
uncertainty to provide precise theory predictions 

Procedure: 

• subdivide observables in categories

• provide an average for each category 

• provide an average of all categories         
⇒ the world average of 𝛼s

Many ambiguities, choices (e.g. treatment of correlations etc.), subtle aspects involved… 



Measurements of the running coupling
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The two faces of QCD
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Confinement 
(large distance)

asymptotic freedom 
(short distance)

NB: no proof of confinement. We simply never observed quarks as free particles 



Recap
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The formulation of QCD as a non-abelian Quantum Field Theory allows to 

• Describe the hadron spectrum 

• Explain experimentally the observed symmetries in the strong iteration 

• No mixing between strong and weak interactions 

• Obtain a field-theoretical description of the strong force, opening the 

path to a unified formalism of all fundamental interactions

We have then discussed the UV behaviour of QCD 

• discussed renormalisation of UV divergences

• introduced the running of the coupling constant and the beta-function

• discussed measurements of the coupling constant 

As we will see, the perturbative description of QCD is very predictive but 
we understand much less the regime governed by strong dynamics.



Next we’ll discuss generic properties of QCD amplitudes 

• Soft-collinear divergences (and how they are dealt with) 

• Kinoshita-Lee-Nauenberg theorem 

• The concept of infrared finiteness  

• Sterman Weinberg jets 

Next
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Isospin symmetry

This symmetry of the QCD is known as chiral symmetry and it is 
spontaneous broken by the QCD vacuum (much as the Higgs mechanism). 
The (approximately massless) pions are the Goldstone boson of the broken 
symmetry 

This happens when the vacuum state of the theory is not invariant under 
the same symmetries as the Lagrangian. In the case of QCD it is known 
that 
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The fact that left-handed and right-handed terms in the Lagrangian are 
separately invariant is a direct consequence of the fact that the chirality of 
massless fermions is conserved 

h0|qq̄|0i = h0|uū+ dd̄|0i ⇡ (250MeV )3

Similar mechanisms to the one that break the chiral symmetry in QCD 
have been proposed to explain why the Higgs boson so is light in 
composite Higgs scenarios … but this is a topic for a different lecture! 


