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Parton shower & Monte Carlo methods

today one can compute some IR-safe quantities at NNLO and very 
few ones at N3LO. Difficult to expect much more in the coming years.

we have also seen that sometimes large logarithms spoil the 
convergence of PT,  fixed-order becomes unreliable (divergent) 

now we adopt a different approach: we seek for an approximate result 
such that enhanced terms are taken into account to all orders

this will lead to a  ‘parton shower’ picture, which can be implemented 
in computer simulations, usually called Monte Carlo programs or 
event generators 

Monte Carlos enter any experimental study at current colliders



Perturbative evolution

In exact analogy with what done for parton densities inside hadrons we 
want to write an evolution equation for the probability to have partons at 
the momentum scale Q2 with momentum fraction z during PT branching 

Introduce a cut-off to regulate divergences
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Start from DGLAP equation 
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Introduce a Sudakov form factor 
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Perturbative evolution

The DGLAP equation becomes

Q2 ⌅

⌅Q2

⇤
f(x,Q2)
�(Q2)

⌅
=

1
�(Q2)

⇧ 1��

0

dz

z

�s

2⇥
P̂ (z)f

�x

z
,Q2

⇥

Integrating the above equation one gets
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This equation has a probabilistic interpretation

• First term: probability of evolving from      to     without emissions 
(ratio of Sudakovs                     )

• Second term: emission at scale     and evolution from     to      
without further emissions
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Multiple branchings

Denote by t the evolution variable (e.g t = Q2)
Start from one parton at scale t1 and momentum fraction x1 

Multiple branching can now be described using the above probabilistic 
equation

One needs to generate the values of {t2, x2 ,φ2}  with the correct probability 
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Multiple branchings

1. t2 generated with the correct probability by solving the equation                     
   ( r = random number in [0,1] )

   If t2 smaller than cut-off evolution stops (no further branching) 

2. Else, generate momentum fraction z = x2/x1 with Prob. � �s
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   ε: IR cut-off for resolvable branching 

3. Azimuthal angles: generated uniformly in (0,2π) (or taking into account       
   polarization correlations)

�(t1)/�(t2) = r



Space-like vs time-like evolution

Time-like: t evolves from a hard-
scale downwards to an IR cut-off 
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Each outgoing parton becomes a source of the new branching until the 
“no-branching” step is met (cut-off essential in parton shower)

⇒ a parton cascade develops, when all branchings are done partons are 
converted into hadrons via a hadronization model 

Space-like: t increases in the 
evolution up to the hard scale Q2 

Q0 < t1 < t2 < . . . , Q

1
2

3



Accuracy of Monte Carlos

Formally, Monte Carlos are Leading Logarithmic (LL) showers
• because they don’t include any higher order corrections to the 1→2 

splitting
• because they don’t have any 1→3 splittings
• .... 

However, they fare better than analytic Leading Log calculations, because

• they have energy conservation (NLO effect) implemented 

• they have coherence

• they have optimized choices for the coupling

• they provide an exclusive description of the final state  

So, despite not guaranteeing NLL accuracy, traditional parton showers 
fare better than LL analytic calculations 

The real issue is hard to estimate the uncertainty 



Illustration of shower evolution 
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Choices in parton showers 

Most relevant choices in the definition of a parton shower: 

• Evolution type: DGLAP evolution (e.g. Herwig Pythia) vs dipole/antenna 
type evolution (Vincia, Dire, Sherpa, Herwig-dipole…)

• Evolution variable: virtuality ordered, angular ordered, kt ordered… 

• Kinematic mapping: how to go from n to (n+1) particles? (local or global 
schemes) 

• Treatment of recoil: how to select the emitter, how to absorb the recoil 
(e.g. in the dipole frame or in the centre of mass frame)  



Choices in parton showers 

Considerable progress in recent years in understanding 

• What are the best choices (there are wrong/bad choices)  

• Assessing the logarithmic accuracy and uncertainty of parton shower 
predictions, at least for some observables 

• Matching parton shower and fixed-order NNLO QCD predictions

• Matching to NLO EW predictions 

• Inclusion of colour- and spin-correlation effects 


