
What lies beyond the Standard 
Model?

Supersymmetry
• Stabilize electroweak vacuum
• Successful prediction for Higgs mass

– Should be < 130 GeV in simple models
• Successful predictions for couplings

– Should be within few % of SM values
• Naturalness, GUTs, string, …, dark matter

New motivations
From LHC Run 1
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Early Russian 
& Ukrainian 
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Loop Corrections to Higgs Mass2

• Consider generic fermion and boson loops:

• Each is quadratically divergent: ∫Λd4k/k2

• Leading divergence cancelled if
Supersymmetry!

2

x 2

Naturalness of hierarchy of mass scales
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Minimal Supersymmetric Extension 
of the Standard Model

Dark 
Matter?
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• Double up the known particles:

• Two Higgs doublets
- 5 physical Higgs bosons:
- 3 neutral, 2 charged

• Lightest neutral supersymmetric Higgs looks like the 
single Higgs in the Standard Model

Minimal Supersymmetric Extension of 
the Standard Model (MSSM)
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Higgs Bosons in Supersymmetry
• Need 2 complex Higgs doublets

(cancel anomalies, form of SUSY couplings)
• 8 – 3 = 5 physical Higgs bosons

Scalars h, H; pseudoscalar A; charged H±

• Lightest Higgs < MZ at tree level:

• Important radiative corrections to mass:

ΔMH|TH ~ 1.5 GeV

1990/1

JE, Ridolfi & Zwirner,
Haber & Hempfling

Okada, Yamaguchi & Yanagida 6



Higgs Mass in Supersymmetry
1990/1

JE, Ridolfi & Zwirner;
Haber & Hempfling

Pushed beyond reach of LEP2
by radiative corrections?

Could be 125 GeV!

7



Bagnaschi, Sakurai, JE et al, 
arXiv:1710.11091

- No issue with
measured Higgs mass
- Central values of decay 

BRs similar to SM
- Substantial deviations

possible
- Opportunity for LHC!

Fit without gμ-2Fit with gμ-2

Higgs properties in the pMSSM
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Towards Grand Unification

• The three Standard Model gauge couplings are 
different: g3 >> g2, g ́

• Ratio sin!𝜃" ≡ #!!

#!!$#""
is free parameter in 

Standard Model
• All couplings vary energy scale, calculable 

using renormalisation group
• Best known is decrease of 𝛼% ≡

##"

&'
,“ asymptotic 

freedom”
• Offers prospect of unifying couplings at high 

energy, as in simple group structure, and 
predicting sin!𝜃"
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• … is not constant: weaker at higher energies

• Asymptotic freedom

Strong Coupling “Constant” 

10



Grand Unification
• At one-loop order without/with supersymmetry:

• At two-loop order without/with supersymmetry:

• At three-loop order …
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Grand Unification of Couplings

Almost works with just Standard Model particles
Better with supersymmetric particles
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Simplest Grand Unified Theory
• Electromagnetic charge embedded in simple group: 

charge quantized
• Minimal model: SU(5)
• Fermions of a single generation accommodated

• “Explain” “random” quantum numbers
• Renormalization prediction sin𝟐𝜃𝐖 ≃ 𝟎. 𝟐𝟑
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Electroweak Mixing Angle
• Related to ratio of SU(2), U(1) couplings:

• At one loop:

• One-loop coefficients w’out/with supersymmetry:

• Data:

1991

JE, Kelley & Nanopoulos
14



LEP Data 
Consistent with
Supersymmetric 

Grand Unification

1991

Amaldi, de Boer & Furstenau

JE, Kelley & Nanopoulos 15



Supersymmetry Breaking

• Supersymmetry must be broken, many models, no clear 
guidance from theory
• Assume universality at GUT scale? (CMSSM)
• Renormalisation effects increase 𝑞˜ masses 

relative to ℓ
˜
, 𝑔˜ mass relative to 𝑊

˜
±

• Lighter stop squark may have 𝑚
"
˜
"
< 𝑚

#
˜

• Renormalization can drive 𝑚$
% < 0, enabling 

spontaneous gauge symmetry breaking
• Alternatively: treat particle masses as free parameters 

(pMSSM)
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Smuon

Neutralino DM

MasterCode, E. Bagnaschi, …, JE et al, arXiv:1710.11091

𝑔! − 2 in Phenomenological
Supersymmetry (pMSSM11)

No problem accommodating BNL/FNAL result
Neutralino DM, smuon masses ∼ 300/400 GeV

Can accommodate
𝑔! − 2 result

No relation between squark/gluino masses
and slepton/neutralino masses
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Mass Renormalizations
• Assuming universality at the GUT scale
• Gaugino masses:

• Ma = (αa / αGUT) m1/2, e.g., → M2 / M3 = α2 / α3

• Squark and slepton masses:
• Squark mass2: m0

2 + 6 m1/2
2

• Left-handed slepton mass2: m0
2 + 0.5 m1/2

2

• Right-handed slepton mass2: m0
2 + 0.15 m1/2

2

• Minimal flavour violation (MFV):
• Flavour mixing of squarks and sleptons induced by CKM, 

neutrino mixing
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Renormalization of Susy Breaking Parameters

• After cancellation of quadratic divergences: 
renormalized logarithmically:

gaugino masses: d Ma/dt ~ βa Ma

scalar masses2:
• Assuming universal input parameters (CMSSM)
• Solutions at low energy scales Q:

Ma (Q) = (αa/ αGUT) m1/2

• Gluino heavier than photino, wino
• Squarks heavier than sleptons
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Electroweak Symmetry Breaking 

Could be driven 
by radiative

corrections due 
to top quark

A bonus:
supersymmetry

may explain
why μ2 < 0
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A Preview of Supersymmetry @ LHC
1984

JE, Gelmini & Kowalski, 1984

Gluinos
Squarks
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Nothing (yet) at the LHC
Nothing else, eitherNo supersymmetry

More of same?
Unexplored nooks?
Novel signatures? 22



Lightest Supersymmetric Particle

• Stable in many models because of conservation of R parity:
R = (-1) 2S –L + 3B 

where S = spin, L = lepton #, B = 
baryon #

• Particles have R = +1, sparticles R = -1:
Sparticles produced in pairs

Heavier sparticles à lighter sparticles
• Lightest supersymmetric particle (LSP) stable
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Lightest Sparticle as Dark Matter?

• No strong or electromagnetic interactions
Otherwise would bind to matter
Detectable as anomalous heavy nucleus

• Possible weakly-interacting scandidates
Sneutrino

(Excluded by LEP, direct searches)
Lightest neutralino χ (partner of Z, H, γ)
Gravitino

(nightmare for detection)
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The Dark Matter Hypothesis

• Proposed by Fritz Zwicky, based on observations of the 
Coma galaxy cluster
• The galaxies move too quickly
• The observations require a

stronger gravitational field
than provided by the visible matter

•Dark matter?
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The Rotation Curves of 
Galaxies

• Measured by Vera Rubin
• The stars also orbit ‘too quickly’
• Her observations also required a

stronger gravitational field
than provided by the visible matter

• Further strong evidence for dark matter
• Also:
–Structure formation, cosmic background 

radiation, …
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Galactic Rotation Curves
• In the Solar System

• The velocities decrease 
with distance from Sun
• Mass lumped at centre

• In galaxies

• The velocities do not 
decrease with distance
• Dark matter spread out
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Biggest Collider in the Universe?

Collision between 2 clusters of galaxies:
Gas interacts, heats and stops
Dark matter passes through
Dark matter weakly self-interacting 28



The Spectrum of Fluctuations in the Cosmic
Microwave Background

The position of the first peak
à total density ΩTot

The other peaks
depend on density of
ordinary matter Ωatoms
& dark matter ΩDark

29



The Content of the Universe

There is dark matter

And dark energyD
ar

k 
en

er
gy

• According to
– Microwave 

background
– Supernovae
– Structures (galaxies, 

clusters, …) in the 
Universe
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Strange Recipe for a Universe

The ‘Standard Model’ of the Universe
indicated by astrophysics and cosmology

31



The Origin of Structures in the Universe

Small primordial
quantum fluctuations:
~ 1/105

Gravitational instability: 
dark matter falls into the
gravitational potential wells,
visible matter follows

Become density fluctuations Become structures in Universe
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Dark Matter Generated Structures
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A Successful Theory of the Formation 
of Structures in the Universe

Dark matter:
ΩCDM ~ 0.25,

Visible matter:
Ωb ~ 0.05,

Dark energy:
ΩΛ ~ 0.7
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Properties of Dark Matter

•Should not have (much) electric charge
• Otherwise we would have seen it
•Should interact weakly with ordinary matter
• Otherwise we would have detected it, either 

directly or astrophysically
•Should not be too light
• Needed for forming and holding together 

structures in the Universe: galaxies, clusters, …
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Particle Dark Matter Candidates
•A
•A
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•A
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Neutrinos
• They exist! ☺
• They have weak interactions ☺
• They have masses ☺
• As indicated by neutrino oscillations
• But their masses are very small ☹
• < 1 eV (= 1/1000,000,000 of proton mass)
• Not able to grow all structures in Universe ☹
• (run away from small structures)
• Maybe some other neutrinos beyond the 

Standard Model?
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Particle Dark Matter Candidates
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Weakly-Interacting Massive 
Particles (WIMPs)

• Expected to have been numerous in the primordial 
Universe when it was a fraction of a second old, full 
of a primordial hot soup

• Would have cooled
down as Universe 
expanded

• Interactions would 
have weakened 

• WIMPs decoupled 
from visible matter

• “Freeze-out”
• Larger σ à lower Y
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Freeze-out at
O(10) GeV?

Tkachev, arXiv:1802.02414

‘Standard’ Thermal History of Early 
Universe

WIMP, e.g., SUSY
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The WIMP ‘Miracle’
• The TeV scale from cosmology:
• Generic density from freeze-out:

• Generic annihilation cross-section:

• Generic relic mass:

• Putting the numbers in:

Dimopoulos, PLB246, 347 (1990) 41



WIMP Candidates
• Could have right density if weigh 100 to 1000 GeV 

(accessible to LHC experiments?)
• Present in many extensions of Standard Model
• Particularly in attempts to understand strength of weak 

interactions, mass of Higgs boson
• Examples:
• Extra dimensions of space
• Supersymmetry
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Annihilation
in the early   è
Universe

Production
ç at particle

colliders

é
Direct dark matter 

detection

Searches for Dark Matter 
Annihilation
to particles è
in cosmic rays

Dark Matter

Dark Matter

Standard Model

Standard Model
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Classic Dark Matter Signature

Missing transverse energy 
carried away by dark matter particles
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Direct Dark Matter Detection

Scattering of dark
matter particle in 
deep underground 
laboratory

45



Direct Dark Matter Searches
• Compilation of present and future sensitivities

Neutrino
“fog”

SUSY
models
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Direct Dark Matter Searches
• Latest experimental results
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You must be joking!

We still believe in supersymmetry 
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