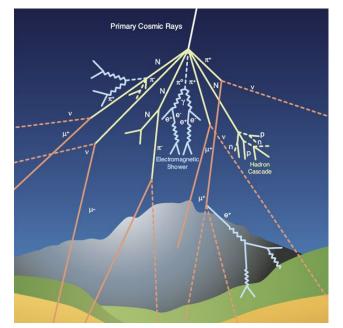
HAWC Study of UHE Spectrum of MGR0 J1908+06

arXiv:2112.00674 [astro-ph.HE]

Group D - UHE Cosmic Rays

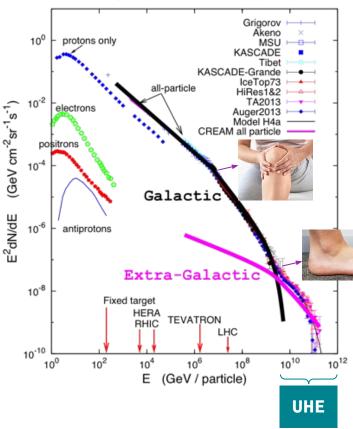
CERN Latin-American School of HEP 2023

Outline


- 1. Introduction and motivation
- 2. HAWC & MGRO J1908-06 data
- 3. Diffusion model
- 4. Statistics & results
- 5. Implications for multi-wavelength and multi-messenger experiments
- 6. Conclusions

Introduction

Cosmic Rays (CRs)


- High energy particles arriving from outer space
 → Primary Cosmic Rays (PCR)
 - Hadronic (*p*-*n*, *α*, heavy nuclei) & **γ-rays**
- Secondary showers generated upon collision with atmosphere constituents
- Shower properties depends on PCR nature
- Most of the shower does not reach ground level (i.e., mostly *muons*)
- "Fixed-target" experiment: **atmosphere** as target

CR (CERN)

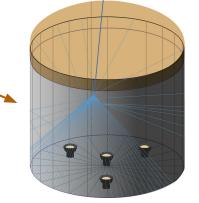
IceCube Masterclass

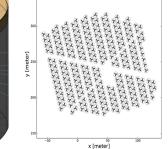
Energies and rates of the cosmic-ray particles

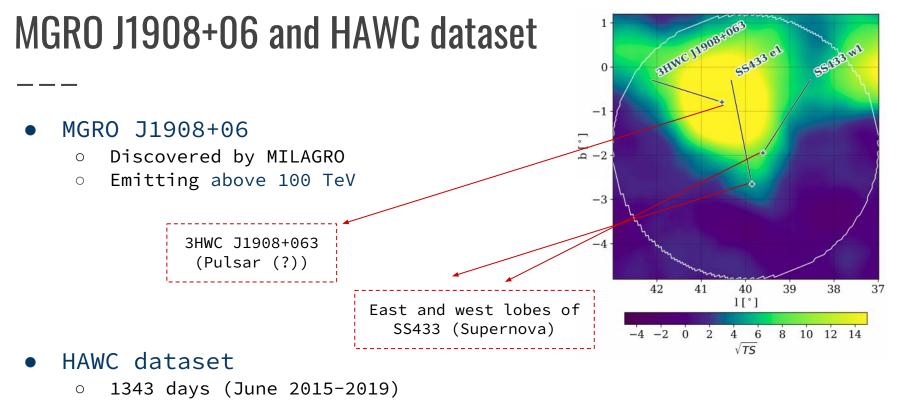
Ultra High Energy (UHE) CRs

- PCR energies vary between 10^9-10^{20} eV
- UHECRs \rightarrow Energies greater than 10^{18} eV
- What sources can emit at these energies?
 - Galactic/extra-galactic
 - \circ Neutron stars, pulsars
 - Supernovas, AGNs, etc.
- What are the **acceleration mechanisms**?
- Sufficient number of particles in secondary shower → Can be detected by large arrays of ground detectors

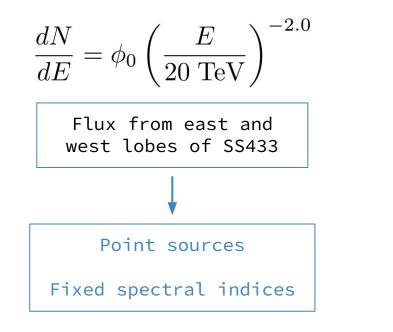
HAWC & MGRO J1908+06

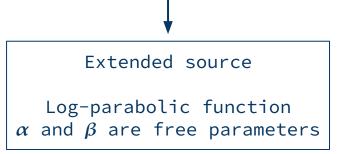

High Altitude Water Cherenkov (HAWC) Observatory


 2^{nd} generation wide-field γ -ray detector


4100m altitude (Sierra Negra, Puebla, México)

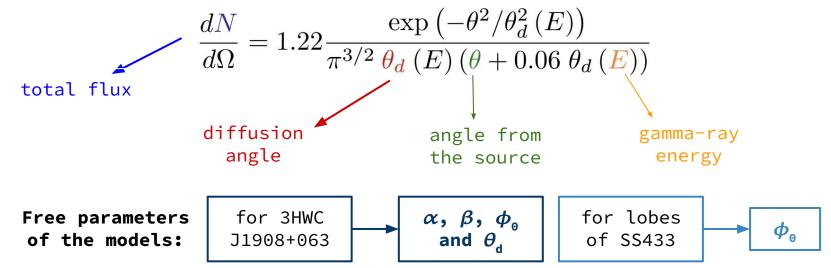
22000 m² area, 300 tanks (WCDs) w/ 4 PMTs each 4.5m in height and 7.3m in diameter




- Binned 2D scheme
 - Estimated Energy (Ê) x fractional multiplicity
- Group D CERN Latin-American School of HEP, 15-28 March 2023

Diffusion Model

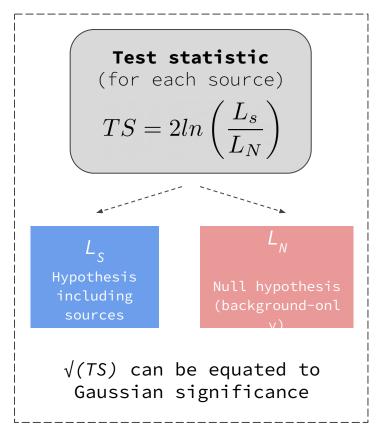
Diffusion Model

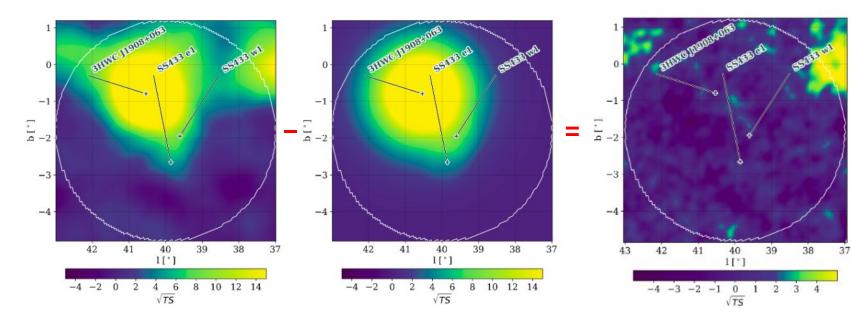

$$\frac{dN}{dE} = \phi_0 \left(\frac{E}{10 \text{ TeV}}\right)^{-\alpha - \beta \ln(E/10 \text{ TeV})}$$
Flux from 3HWC J1908+63

Diffusion Model

• Gamma ray spectrum and morphology $\rightarrow e^+e^-$ pairs diffusing

Spatial morphology:


Statistical Analysis & Results


Statistical Analysis

• Best-fit parameters obtained via Maximum Likelihood Fit

Significance:

- 3HWC J1908+063 \rightarrow 43.9 σ
- East & West lobes \rightarrow 2.9 and 3.9

Left: HAWC significance map of the region.

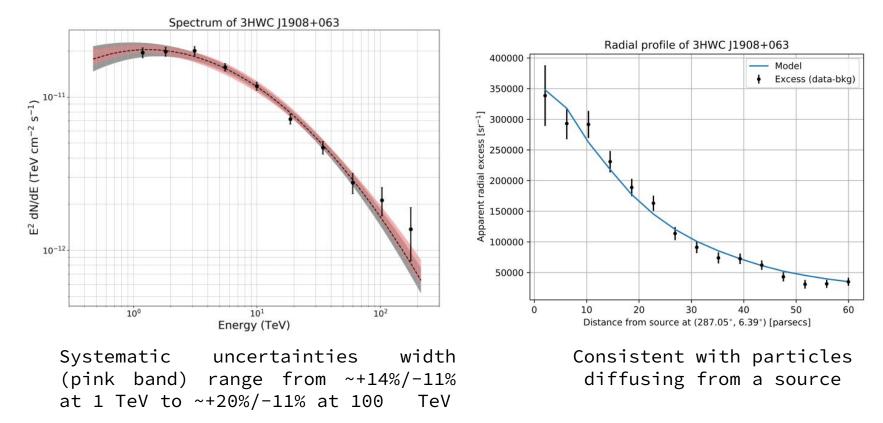
Centre: Significance for the best fit model.

Right: Significance of the residuals (left-centre).

- Bulk of emission from 3HWC J1908+063
- Maximum significance of 38.8σ
- Residual centred at $l=37^{\circ}$, $b=0^{\circ}$ likely diffuse emission

Best-fit Model

Parameter	Best-fit value	Statistical uncertainty	Systematic uncertainty
θ_d	1.78°	$\pm 0.08^{\circ}$	+0.07 -0.28
ϕ_0	$1.17 \times 10^{-13} (\text{TeV cm}^2 \text{ s})^{-1}$	$\pm 0.06 \times 10^{-13} (\text{TeV cm}^2 \text{ s})^{-1}$	
α	2.545	± 0.026	$^{+0.01}_{-0.06}$
β	0.134	± 0.018	+0.02 -0.03
ϕ_{SS433E}	$2.0 \times 10^{-16} \ ({\rm TeV \ cm^2 \ s})^{-1}$	$^{+1.0}_{-0.7} \times 10^{-16} \ (\text{TeV cm}^2 \text{ s})^{-1}$	$^{+0.2}_{-0.1} \times 10^{-16} (\text{TeV cm}^2 \text{ s})^{-1}$
ϕ_{SS433W}	$3.0 \times 10^{-16} \ ({\rm TeV \ cm^2 \ s})^{-1}$	$^{+1.1}_{-0.8} \times 10^{-16} \ (\text{TeV cm}^2 \text{ s})^{-1}$	$^{+0.2}_{-0.6} \times 10^{-16} \ (\text{TeV cm}^2 \text{ s})^{-1}$

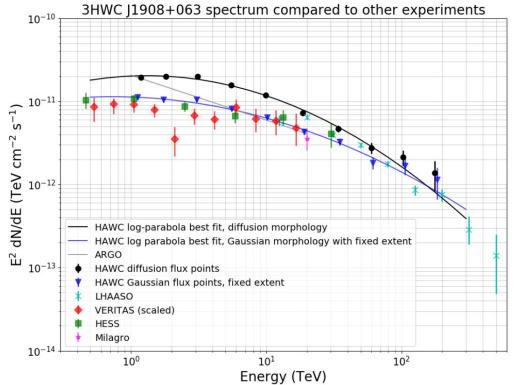

• Assuming the distance to the source is that of 3HWC J1907+0602, the diffusion radius (r_d) of the particle is ~74 parsec

Best-fit Model

Parameter	Best-fit value	Statistical uncertainty	Systematic uncertainty
θ_d	1.78°	$\pm 0.08^{\circ}$	+0.07 -0.28
ϕ_0	$1.17 \times 10^{-13} (\text{TeV cm}^2 \text{ s})^{-1}$	$\pm 0.06 \times 10^{-13} (\text{TeV cm}^2 \text{ s})^{-1}$	$^{+0.10}_{-0.23} \times 10^{-13} (\text{TeV cm}^2 \text{ s})^{-13}$
α	2.545	± 0.026	$^{+0.01}_{-0.06}$
β	0.134	± 0.018	+0.02 -0.03
ϕ_{SS433E}	$2.0 \times 10^{-16} \ ({\rm TeV \ cm^2 \ s})^{-1}$	$^{+1.0}_{-0.7} \times 10^{-16} \ (\text{TeV cm}^2 \text{ s})^{-1}$	$^{+0.2}_{-0.1} \times 10^{-16} \ ({\rm TeV} \ {\rm cm}^2 \ {\rm s})^{-1}$
ϕ_{SS433W}	$3.0 \times 10^{-16} \ ({\rm TeV \ cm^2 \ s})^{-1}$	$^{+1.1}_{-0.8} \times 10^{-16} \ (\text{TeV cm}^2 \text{ s})^{-1}$	$^{+0.2}_{-0.6} \times 10^{-16} (\text{TeV cm}^2 \text{ s})^{-1}$

• Assuming the distance to the source is that of 3HWC J1907+0602, the diffusion radius (r_d) of the particle is ~74 parsec

The HAWC Spectrum of 3HWC J1908+063

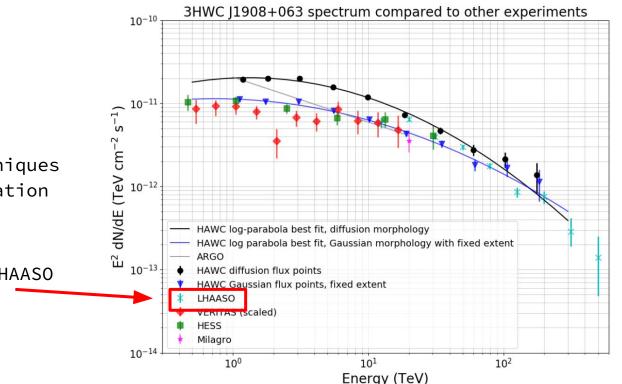


Comparison with Other Experiments

Different:

- Source morphology
- Field of view
- Resolution
- Reconstruction techniques
- Background determination

⇒ Good agreement with LHAASO experiment

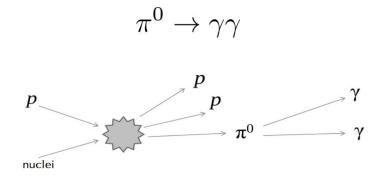


Comparison with Other Experiments

Different:

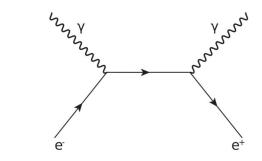
- Source morphology
- Field of view
- Resolution
- Reconstruction techniques
- Background determination

⇒ Good agreement with LHAASO experiment

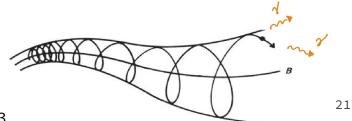


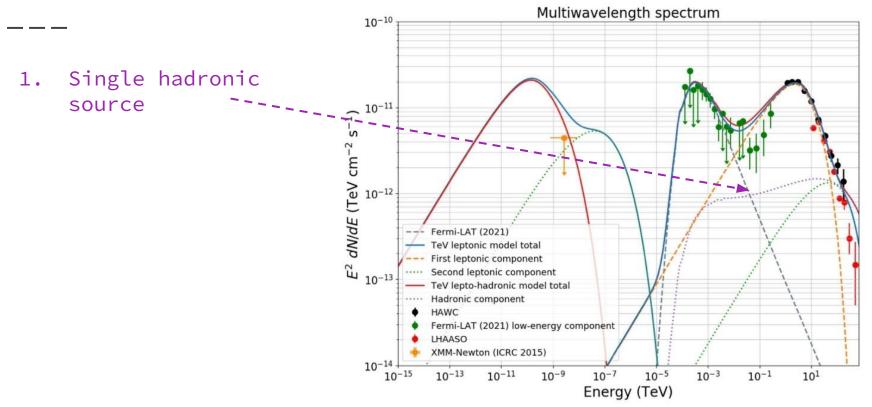
Theoretical Model

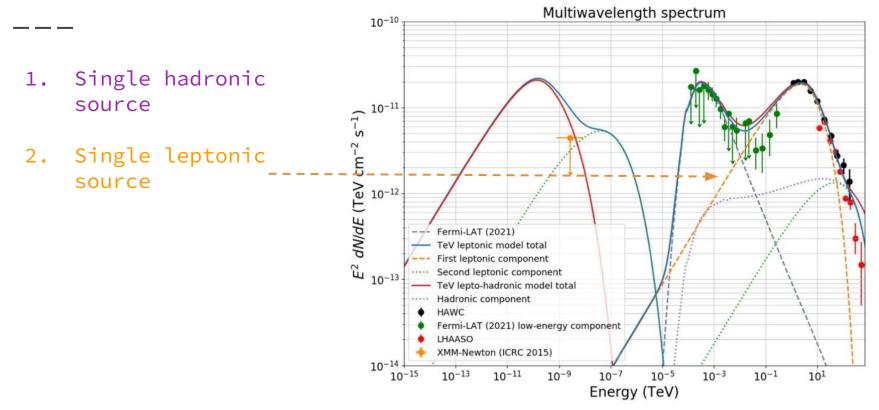
Methods of Production

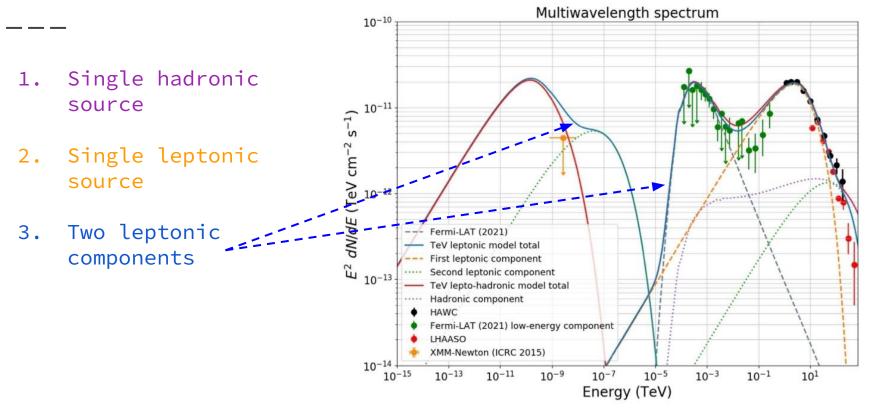

Hadronic

• Pions produced in spallation reactions

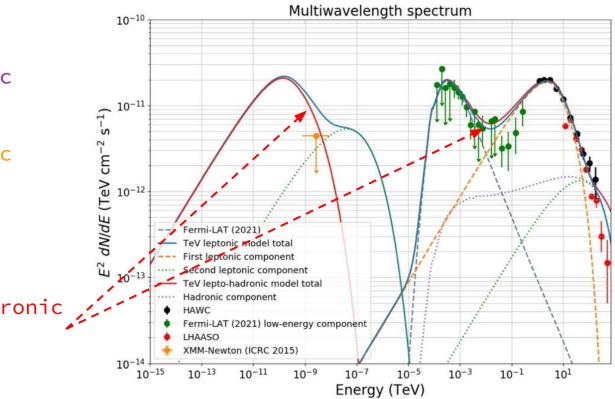


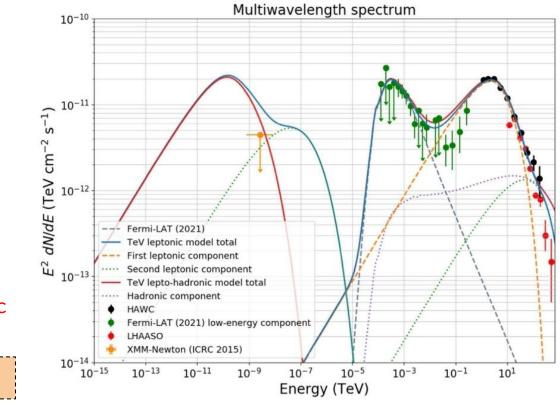

Leptonic


• Inverse Compton emission

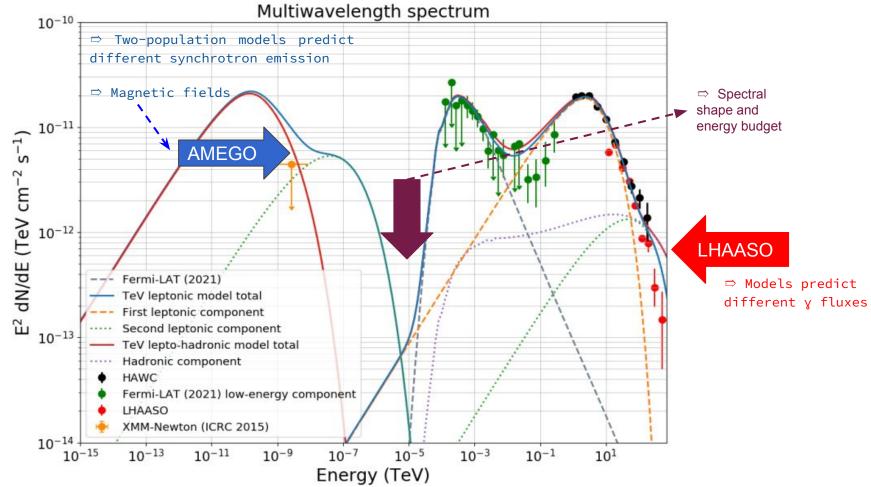


• Synchrotron emission



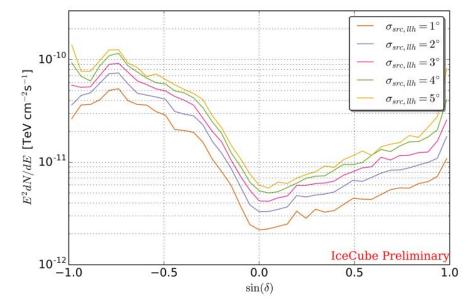


- 1. Single hadronic source
- 2. Single leptonic source
- 3. Two leptonic components
- 4. Leptonic + Hadronic components



- 1. Single hadronic source
- 2. Single leptonic source
- 3. Two leptonic components
- 4. Leptonic + Hadronic components

inconclusive results 😞



Implications for Multi-Wavelength and Multi-Messenger Experiments

Group D - CERN Latin-American School of HEP, 15-28 March 2023

Relation between a γ -ray flux and the corresponding ν -flux

10% hadronic component prediction one order of magnitude below current IceCube discovery potential

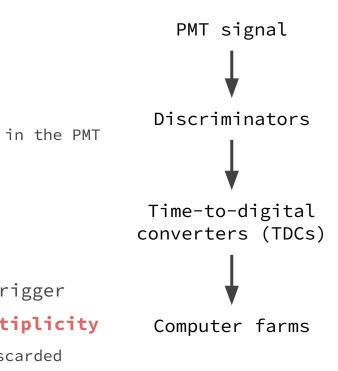
PoS(ICRC2017)963 arXiv:2008.04323

Conclusions and Final Remarks

- 3HWC J1908+063 → one of the few sources observed to emit in the TeV range
- **Source** consistent with **diffusion model** (extended)
- Leptonic models (one-two pop. & mixed with hadronic) consistent with data
 - Highly unconstrained parameter space
- In mixed scenario, **hadronic** contribution → most important at highest energies
- Multi-messenger/wavelength observations will be important to distinguish between these two contributions

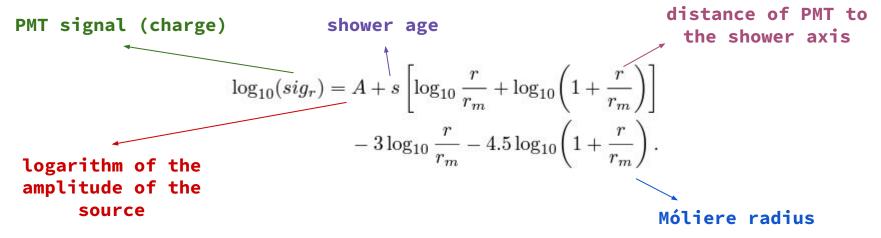
Conclusions and Final Remarks

- 3HWC J1908+063 → one of the few sources observed to emit in the TeV range
- **Source** consistent with **diffusion model** (extended)
- Leptonic models (one-two pop. & mixed with hadronic) consistent with data
 - \circ Highly unconstrained parameter space
- In mixed scenario, **hadronic** contribution → most important at highest energies
- Multi-messenger/wavelength observations will be important to distinguish between these two contributions
- ~93% of our group didn't have (much/any) experience in the topic but we survived!!!



BACK UP

HAWC & MGRO J1908+06

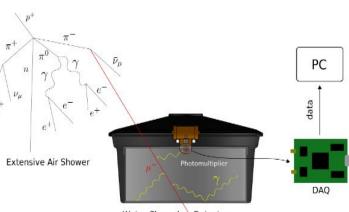

Trigger & Data Acquisition

- Time-over-threshold (**ToT**)
 - \circ $\,$ To determine the total charge collected in the PMT $\,$
- Noise:
 - PMT afterpulsing, dark noise
- Data Acquisition System (DAQ):
 - \circ ~ 1.5 μs of data from all PMTs hit
- Hits between -150 and +400 ns around trigger
- Real-time trigger based on **PMT hit multiplicity**
 - \circ $\;$ Events that hit few PMTs are usually discarded
 - \circ $\,$ Trigger air shower events at ~25 kHz $\,$

Ground Parameter Estimator (I)

- Charge density at fixed distance to shower axis
 - Lateral distribution function (LDF)
 - \circ Modified NKG function fit to the LDF \rightarrow measure the energy density

Ground Parameter Estimator (II)


• Energy is then obtained at 40m:

$$\log_{10} \hat{E} = m(\theta) \log_{10} sig_{40} + c(\theta)$$

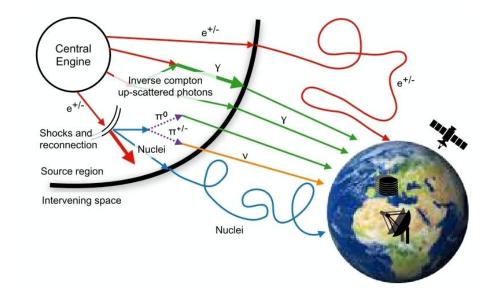
$$\downarrow$$
piecewise linear function piecewise quadratic function

Water Cherenkov Detectors

- Light travelling through a transparent medium slows down according to the refractive index
 Speed of light in water ~0.75c
- Charged particles faster than light in a medium:
 - Production of **light cone** (Cherenkov radiation)
- Cherenkov radiation is detected by PMTs and the cone of emission reconstructed
 - Cone's axis gives the **direction of the particle**
 - The light intensity gives the **particle energy**

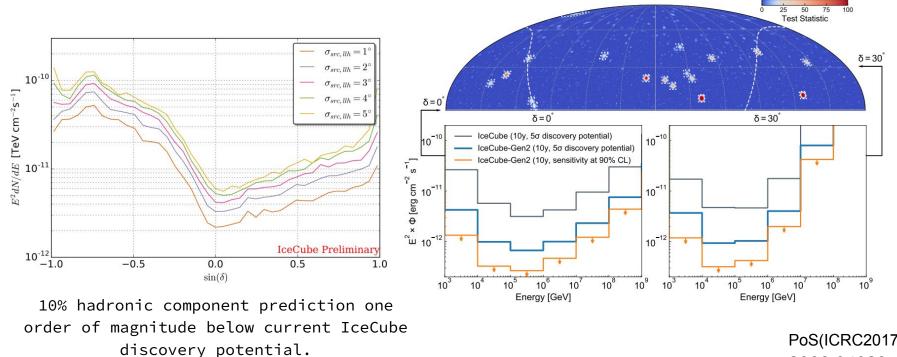
Water Cherenkov Detector

Statistical Analysis & Results


Systematics: Galactic Diffuse Emission

- Possible galactic diffusion:
 Modelled as gaussian centered at b=0⁰.
- β is lowered by ~16%
- Effect on the flux decreases with energy (varies between 18% and 31%)

Parameter	Galaxy	3HWC1908+063
Normalization $(\text{TeV}\text{cm}^2\text{s})^{-1}$	$(1.9 \pm 0.4) \times 10^{-14}$	$(0.96 \pm 0.08) \times 10^{-13}$
$\sigma(^{o})$	0.64 ± 0.15	
$\theta_D(^o)$		1.50 ± 0.10
α	2.75 (fixed)	2.505 ± 0.032
β		0.150 ± 0.022


Theoretical Model

Theoretical Model

Implications for Multi-Wavelength and Multi-Messenger Experiments

Relation between a γ -ray flux and the corresponding ν -flux

Group D - CERN Latin-American School of HEP, 15-28 March 2023

PoS(ICRC2017)963 2008.04323 43

Conclusions and Final Remarks

- Observations of UHE source 3HWC J1908+063 emitting to at least 200 TeV
- Source modelled using electron diffusion model
- Potential spectral hardening observed at highest energies
 - \circ More data needed to test this hypothesis
- Leptonic models (one-two pop. & mixed with hadronic) consistent with data
 - Highly unconstrained parameter space
- In mixed scenario, hadronic contribution is most important at highest energies
- Fully hadronic origin unlikely for TeV gamma-ray emissions
- Multi-messenger/wavelength observations will be important to distinguish between these two contributions